Skip to main content
Top

2017 | OriginalPaper | Chapter

2. Biosynthesis of Plant-Derived Odorants

Author : Matthias Wüst

Published in: Springer Handbook of Odor

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Plants produce thousands of structurally diverse volatile signal compounds to attract pollinating insects and seed dispersing animals. These compounds are often perceived by humans as a specific fruit or vegetable aroma. Many of these volatiles serve also as defense substances against fungi, bacteria, viruses, and herbivores. The knowledge of precursors and pathways leading to the formation of volatiles in fruits and vegetables has considerably progressed during the last years because of the use of molecular and biochemical techniques. In vitro characterization of the heterologously expressed enzymes has helped clarify the pathways of volatile formation. This chapter will, therefore, provide an overview of biosynthetic sequences and construction mechanisms that are illustrated in most cases using detailed reaction schemes. The various compounds are predominantly ordered according to the biosynthetic pathway that is used in plants to synthesize them and are grouped into carbohydrate-, lipid-, and amino-acid-derived odorants, terpenoids, and glycosidically bound odorants.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference P.M. Dewick: Medicinal Natural Products: A Biosynthetic Approach, 3rd edn. (Wiley, Hoboken 2008) P.M. Dewick: Medicinal Natural Products: A Biosynthetic Approach, 3rd edn. (Wiley, Hoboken 2008)
[2]
go back to reference K. Torssell: Natural Product Chemistry: A Mechanistic, Biosynthetic, and Ecological Approach, 2nd edn. (Apotekarsocieteten, Stockholm 1997) K. Torssell: Natural Product Chemistry: A Mechanistic, Biosynthetic, and Ecological Approach, 2nd edn. (Apotekarsocieteten, Stockholm 1997)
[3]
go back to reference N. Dudareva, F. Negre, D.A. Nagegowda, I. Orlova: Plant volatiles: Recent advances and future perspectives, Crit. Rev. Plant Sci. 25(5), 417–440 (2006)CrossRef N. Dudareva, F. Negre, D.A. Nagegowda, I. Orlova: Plant volatiles: Recent advances and future perspectives, Crit. Rev. Plant Sci. 25(5), 417–440 (2006)CrossRef
[4]
go back to reference J. Buckinghan: Dictionary of Natural Products on DVD (CRC, Boca Raton 2011) J. Buckinghan: Dictionary of Natural Products on DVD (CRC, Boca Raton 2011)
[5]
go back to reference M. Wink: Introduction: Biochemistry, physiology and ecological functions of secondary metabolites. In: Biochemistry of Plant Secondary Metabolism, ed. by M. Wink (Wiley, Oxford 2010)CrossRef M. Wink: Introduction: Biochemistry, physiology and ecological functions of secondary metabolites. In: Biochemistry of Plant Secondary Metabolism, ed. by M. Wink (Wiley, Oxford 2010)CrossRef
[6]
go back to reference B. Lange, G.W. Turner: Terpenoid biosynthesis in trichomes-current status and future opportunities, Plant Biotechnol. J. 11(1), 2–22 (2013)CrossRef B. Lange, G.W. Turner: Terpenoid biosynthesis in trichomes-current status and future opportunities, Plant Biotechnol. J. 11(1), 2–22 (2013)CrossRef
[7]
go back to reference G. Arimura, C. Kost, W. Boland: Herbivore-induced, indirect plant defences, Biochim. Biophys. Acta BBA – Mol. Cell Biol. Lipids 1734(2), 91–111 (2005)CrossRef G. Arimura, C. Kost, W. Boland: Herbivore-induced, indirect plant defences, Biochim. Biophys. Acta BBA – Mol. Cell Biol. Lipids 1734(2), 91–111 (2005)CrossRef
[8]
go back to reference M. Emura, D. Sugimoto, Y. Yaguchi, A. Nakahashi, N. Miura, K. Monde: Absolute stereochemistries and strucuture-odor relationships of 2-substituted-3()-furanones. In: Advances and Challenges in Flavor Chemistry and Biology, ed. by T. Hofmann, W. Meyerhof, P. Schieberle (Deutsche Forschungsanstalt für Lebensmittelchemie, Garching 2010) M. Emura, D. Sugimoto, Y. Yaguchi, A. Nakahashi, N. Miura, K. Monde: Absolute stereochemistries and strucuture-odor relationships of 2-substituted-3()-furanones. In: Advances and Challenges in Flavor Chemistry and Biology, ed. by T. Hofmann, W. Meyerhof, P. Schieberle (Deutsche Forschungsanstalt für Lebensmittelchemie, Garching 2010)
[9]
go back to reference M. Wein, E. Lewinsohn, W. Schwab: Metabolic fate of isotopes during the biological transformation of carbohydrates to 2,5-dimethyl-4-hydroxy-3(2H)-furanone in strawberry fruits, J. Agric. Food Chem. 49(5), 2427–2432 (2001)CrossRef M. Wein, E. Lewinsohn, W. Schwab: Metabolic fate of isotopes during the biological transformation of carbohydrates to 2,5-dimethyl-4-hydroxy-3(2H)-furanone in strawberry fruits, J. Agric. Food Chem. 49(5), 2427–2432 (2001)CrossRef
[10]
go back to reference W. Schwab: Natural 4-hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol), Molecules 18(6), 6936–6951 (2013)CrossRef W. Schwab: Natural 4-hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol), Molecules 18(6), 6936–6951 (2013)CrossRef
[11]
go back to reference T. Raab, J.A. Lopez-Raez, D. Klein, J.L. Caballero, E. Moyano, W. Schwab, J. Munoz-Blanco: FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase, Plant Cell 18(4), 1023–1037 (2006)CrossRef T. Raab, J.A. Lopez-Raez, D. Klein, J.L. Caballero, E. Moyano, W. Schwab, J. Munoz-Blanco: FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase, Plant Cell 18(4), 1023–1037 (2006)CrossRef
[12]
go back to reference A. Schiefner, Q. Sinz, I. Neumaier, W. Schwab, A. Skerra: Structural basis for the enzymatic formation of the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, J. Biol. Chem. 288(23), 16815–16826 (2013)CrossRef A. Schiefner, Q. Sinz, I. Neumaier, W. Schwab, A. Skerra: Structural basis for the enzymatic formation of the key strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, J. Biol. Chem. 288(23), 16815–16826 (2013)CrossRef
[13]
go back to reference N. Lavid, W. Schwab, E. Kafkas, M. Koch-Dean, E. Bar, O. Larkov, U. Ravid, E. Lewinsohn: Aroma biosynthesis in strawberry: S-adenosylmethionine: Furaneol O-methyltransferase activity in ripening fruits, J. Agric. Food Chem. 50(14), 4025–4030 (2002)CrossRef N. Lavid, W. Schwab, E. Kafkas, M. Koch-Dean, E. Bar, O. Larkov, U. Ravid, E. Lewinsohn: Aroma biosynthesis in strawberry: S-adenosylmethionine: Furaneol O-methyltransferase activity in ripening fruits, J. Agric. Food Chem. 50(14), 4025–4030 (2002)CrossRef
[14]
go back to reference J.C. Slaughter: The naturally occurring furanones: Formation and function from pheromone to food, Biol. Rev. 74(3), 259–276 (2007)CrossRef J.C. Slaughter: The naturally occurring furanones: Formation and function from pheromone to food, Biol. Rev. 74(3), 259–276 (2007)CrossRef
[15]
go back to reference M. Ashour, M. Wink, J. Gershenzon: Biochemistry of terpenoids: Monoterpenes, sesquiterpenes and diterpenes. In: Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism, ed. by M. Wink (Wiley, Chichester 2010) M. Ashour, M. Wink, J. Gershenzon: Biochemistry of terpenoids: Monoterpenes, sesquiterpenes and diterpenes. In: Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism, ed. by M. Wink (Wiley, Chichester 2010)
[16]
go back to reference S.S. Voo, H.D. Grimes, B.M. Lange: Assessing the biosynthetic capabilities of secretory glands in citrus peel, Plant Physiol. 159(1), 81–94 (2012)CrossRef S.S. Voo, H.D. Grimes, B.M. Lange: Assessing the biosynthetic capabilities of secretory glands in citrus peel, Plant Physiol. 159(1), 81–94 (2012)CrossRef
[17]
go back to reference L.P. Christensen, M. Edelenbos, S. Kreutzmann: Fruits and vegetables of moderate climate. In: Flavours and Fragrances, ed. by R.G. Berger (Springer, Berlin, Heidelberg 2007) L.P. Christensen, M. Edelenbos, S. Kreutzmann: Fruits and vegetables of moderate climate. In: Flavours and Fragrances, ed. by R.G. Berger (Springer, Berlin, Heidelberg 2007)
[18]
go back to reference J.A. Bick, B.M. Lange: Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: Unidirectional transport of intermediates across the chloroplast envelope membrane, Arch. Biochem. Biophys. 415(2), 146–154 (2003)CrossRef J.A. Bick, B.M. Lange: Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: Unidirectional transport of intermediates across the chloroplast envelope membrane, Arch. Biochem. Biophys. 415(2), 146–154 (2003)CrossRef
[19]
go back to reference U.-I. Flügge, W. Gao: Transport of isoprenoid intermediates across chloroplast envelope membranes, Plant Biol. 7(1), 91–97 (2005)CrossRef U.-I. Flügge, W. Gao: Transport of isoprenoid intermediates across chloroplast envelope membranes, Plant Biol. 7(1), 91–97 (2005)CrossRef
[20]
go back to reference A.L. Schilmiller, I. Schauvinhold, M. Larson, R. Xu, A.L. Charbonneau, A. Schmidt, C. Wilkerson, R.L. Last, E. Pichersky: Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate, Proc. Natl. Acad. Sci. USA 106(26), 10865–10870 (2009)CrossRef A.L. Schilmiller, I. Schauvinhold, M. Larson, R. Xu, A.L. Charbonneau, A. Schmidt, C. Wilkerson, R.L. Last, E. Pichersky: Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate, Proc. Natl. Acad. Sci. USA 106(26), 10865–10870 (2009)CrossRef
[21]
go back to reference E. Oldfield, F.-Y. Lin: Terpene biosynthesis: Modularity rules, Angew. Chem. Int. Ed. Engl. 51(5), 1124–1137 (2012)CrossRef E. Oldfield, F.-Y. Lin: Terpene biosynthesis: Modularity rules, Angew. Chem. Int. Ed. Engl. 51(5), 1124–1137 (2012)CrossRef
[22]
go back to reference A. Hemmerlin, J.L. Harwood, T.J. Bach: A raison d’être for two distinct pathways in the early steps of plant isoprenoid biosynthesis?, Prog. Lipid Res. 51(2), 95–148 (2012)CrossRef A. Hemmerlin, J.L. Harwood, T.J. Bach: A raison d’être for two distinct pathways in the early steps of plant isoprenoid biosynthesis?, Prog. Lipid Res. 51(2), 95–148 (2012)CrossRef
[23]
go back to reference M. Gutensohn, D.A. Nagegowda, N. Dudareva: Involvement of compartmentalization in monoterpene and sesquiterpene biosynthesis in plants. In: Isoprenoid Synthesis in Plants and Microorganisms, ed. by T.J. Bach, M. Rohmer (Springer, New York 2013) M. Gutensohn, D.A. Nagegowda, N. Dudareva: Involvement of compartmentalization in monoterpene and sesquiterpene biosynthesis in plants. In: Isoprenoid Synthesis in Plants and Microorganisms, ed. by T.J. Bach, M. Rohmer (Springer, New York 2013)
[24]
go back to reference A. Aharoni, A.P. Giri, F.W.A. Verstappen, C.M. Bertea, R. Sevenier, Z. Sun, M.A. Jongsma, W. Schwab, H.J. Bouwmeester: Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species, Plant Cell Online 16(11), 3110–3131 (2004)CrossRef A. Aharoni, A.P. Giri, F.W.A. Verstappen, C.M. Bertea, R. Sevenier, Z. Sun, M.A. Jongsma, W. Schwab, H.J. Bouwmeester: Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species, Plant Cell Online 16(11), 3110–3131 (2004)CrossRef
[25]
go back to reference D. Hampel, A. Mosandl, M. Wüst: Biosynthesis of mono- and sesquiterpenes in strawberry fruits and foliage: H-2 labeling studies, J. Agric. Food Chem. 54(4), 1473–1478 (2006)CrossRef D. Hampel, A. Mosandl, M. Wüst: Biosynthesis of mono- and sesquiterpenes in strawberry fruits and foliage: H-2 labeling studies, J. Agric. Food Chem. 54(4), 1473–1478 (2006)CrossRef
[26]
go back to reference D. Hampel, A. Swatski, A. Mosandl, M. Wüst: Biosynthesis of monoterpenes and norisoprenoids in raspberry fruits (Rubus idaeus L.): The role of cytosolic mevalonate and plastidial methylerythritol phosphate pathway, J. Agric. Food Chem. 55(22), 9296–9304 (2007)CrossRef D. Hampel, A. Swatski, A. Mosandl, M. Wüst: Biosynthesis of monoterpenes and norisoprenoids in raspberry fruits (Rubus idaeus L.): The role of cytosolic mevalonate and plastidial methylerythritol phosphate pathway, J. Agric. Food Chem. 55(22), 9296–9304 (2007)CrossRef
[27]
go back to reference E. Vranová, D. Coman, W. Gruissem: Network analysis of the MVA and MEP pathways for isoprenoid synthesis, Annu. Rev. Plant Biol. 64, 665–700 (2013)CrossRef E. Vranová, D. Coman, W. Gruissem: Network analysis of the MVA and MEP pathways for isoprenoid synthesis, Annu. Rev. Plant Biol. 64, 665–700 (2013)CrossRef
[28]
go back to reference F. Chen, D. Tholl, J. Bohlmann, E. Pichersky: The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom, Plant J. 66(1), 212–229 (2011)CrossRef F. Chen, D. Tholl, J. Bohlmann, E. Pichersky: The family of terpene synthases in plants: A mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom, Plant J. 66(1), 212–229 (2011)CrossRef
[29]
go back to reference D.C. Hyatt, B. Youn, Y. Zhao, B. Santhamma, R.M. Coates, R.B. Croteau, C. Kang: Structure of limonene synthase, a simple model for terpenoid cyclase catalysis, Proc. Natl. Acad. Sci. USA 104(13), 5360–5365 (2007)CrossRef D.C. Hyatt, B. Youn, Y. Zhao, B. Santhamma, R.M. Coates, R.B. Croteau, C. Kang: Structure of limonene synthase, a simple model for terpenoid cyclase catalysis, Proc. Natl. Acad. Sci. USA 104(13), 5360–5365 (2007)CrossRef
[30]
go back to reference D.A. Whittington, M.L. Wise, M. Urbansky, R.M. Coates, R.B. Croteau, D.W. Christianson: Bornyl diphosphate synthase: Structure and strategy for carbocation manipulation by a terpenoid cyclase, Proc. Natl. Acad. Sci. USA 99(24), 15375–15380 (2002)CrossRef D.A. Whittington, M.L. Wise, M. Urbansky, R.M. Coates, R.B. Croteau, D.W. Christianson: Bornyl diphosphate synthase: Structure and strategy for carbocation manipulation by a terpenoid cyclase, Proc. Natl. Acad. Sci. USA 99(24), 15375–15380 (2002)CrossRef
[31]
go back to reference C.J.D. Mau, R. Croteau: Cytochrome P450 oxygenases of monoterpene metabolism, Phytochem. Rev. 5(2/3), 373–383 (2006)CrossRef C.J.D. Mau, R. Croteau: Cytochrome P450 oxygenases of monoterpene metabolism, Phytochem. Rev. 5(2/3), 373–383 (2006)CrossRef
[32]
go back to reference B.M. Lange, S.S. Mahmoud, M.R. Wildung, G.W. Turner, E.M. Davis, I. Lange, R.C. Baker, R.A. Boydston, R.B. Croteau: Improving peppermint essential oil yield and composition by metabolic engineering, Proc. Natl. Acad. Sci. 108(41), 16944–16949 (2011)CrossRef B.M. Lange, S.S. Mahmoud, M.R. Wildung, G.W. Turner, E.M. Davis, I. Lange, R.C. Baker, R.A. Boydston, R.B. Croteau: Improving peppermint essential oil yield and composition by metabolic engineering, Proc. Natl. Acad. Sci. 108(41), 16944–16949 (2011)CrossRef
[33]
go back to reference M. Wüst, R.B. Croteau: Hydroxylation of specifically deuterated limonene enantiomers by cytochrome P450 limonene-6-hydroxylase reveals the mechanism of multiple product formation, Biochemistry 41(6), 1820–1827 (2002)CrossRef M. Wüst, R.B. Croteau: Hydroxylation of specifically deuterated limonene enantiomers by cytochrome P450 limonene-6-hydroxylase reveals the mechanism of multiple product formation, Biochemistry 41(6), 1820–1827 (2002)CrossRef
[34]
go back to reference E.M. Davis, R. Croteau: Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. In: Biosynthesis, ed. by D.F.J. Leeper, P.D.J.C. Vederas (Springer, Berlin, Heidelberg 2000) E.M. Davis, R. Croteau: Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. In: Biosynthesis, ed. by D.F.J. Leeper, P.D.J.C. Vederas (Springer, Berlin, Heidelberg 2000)
[35]
go back to reference D. Joulain, W.A. König: The Atlas of Spectral Data of Sesquiterpene Hydrocarbons (E.B. Verlag, Hamburg 1998) D. Joulain, W.A. König: The Atlas of Spectral Data of Sesquiterpene Hydrocarbons (E.B. Verlag, Hamburg 1998)
[36]
go back to reference S. Dev: CRC Handbook of Terpenoids (CRC, Boca Raton 1985) S. Dev: CRC Handbook of Terpenoids (CRC, Boca Raton 1985)
[37]
go back to reference J. Degenhardt, T.G. Köllner, J. Gershenzon: Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants, Phytochemistry 70(15/16), 1621–1637 (2009)CrossRef J. Degenhardt, T.G. Köllner, J. Gershenzon: Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants, Phytochemistry 70(15/16), 1621–1637 (2009)CrossRef
[38]
go back to reference C.L. Steele, J. Crock, J. Bohlmann, R. Croteau: Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of delta-selinene synthase and gamma-humulene synthase, J. Biol. Chem. 273(4), 2078–2089 (1998)CrossRef C.L. Steele, J. Crock, J. Bohlmann, R. Croteau: Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of delta-selinene synthase and gamma-humulene synthase, J. Biol. Chem. 273(4), 2078–2089 (1998)CrossRef
[39]
go back to reference P. Winterhalter: Generation of norisoprenoid volatiles – Recent advances. In: Advances and Challenges in Flavor Chemistry and Biology, ed. by T. Hofmann, W. Meyerhof, P. Schieberle (Deutsche Forschungsanstalt für Lebensmittelchemie, Garching 2010) P. Winterhalter: Generation of norisoprenoid volatiles – Recent advances. In: Advances and Challenges in Flavor Chemistry and Biology, ed. by T. Hofmann, W. Meyerhof, P. Schieberle (Deutsche Forschungsanstalt für Lebensmittelchemie, Garching 2010)
[40]
go back to reference D. Hampel, A. Mosandl, M. Wüst: Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucus carota L.): Metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways, Phytochemistry 66(3), 305–311 (2005)CrossRef D. Hampel, A. Mosandl, M. Wüst: Biosynthesis of mono- and sesquiterpenes in carrot roots and leaves (Daucus carota L.): Metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways, Phytochemistry 66(3), 305–311 (2005)CrossRef
[41]
go back to reference W. Schwab, F.-C. Huang, P. Molnár: Carotenoid cleavage dioxygenase genes from fruit. In: Carotenoid Cleavage Products, Vol. 1134, ed. by P. Winterhalter, S.E. Ebeler (American Chemical Society, Washington 2013)CrossRef W. Schwab, F.-C. Huang, P. Molnár: Carotenoid cleavage dioxygenase genes from fruit. In: Carotenoid Cleavage Products, Vol. 1134, ed. by P. Winterhalter, S.E. Ebeler (American Chemical Society, Washington 2013)CrossRef
[42]
go back to reference E. Lewinsohn, Y. Sitrit, E. Bar, Y. Azulay, M. Ibdah, A. Meir, E. Yosef, D. Zamir, Y. Tadmor: Not just colors – Carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit, Trends Food Sci. Technol. 16(9), 407–415 (2005)CrossRef E. Lewinsohn, Y. Sitrit, E. Bar, Y. Azulay, M. Ibdah, A. Meir, E. Yosef, D. Zamir, Y. Tadmor: Not just colors – Carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit, Trends Food Sci. Technol. 16(9), 407–415 (2005)CrossRef
[43]
go back to reference M.M. Mendes-Pinto: Carotenoid breakdown products the – norisoprenoids – in wine aroma, Arch. Biochem. Biophys. 483(2), 236–245 (2009)CrossRef M.M. Mendes-Pinto: Carotenoid breakdown products the – norisoprenoids – in wine aroma, Arch. Biochem. Biophys. 483(2), 236–245 (2009)CrossRef
[44]
go back to reference Z. Günata: Biosynthesis of C13-norisoprenoids in vitis vinifera: Evidence of carotenoid cleavage dioxygenase (CCD) and secondary transformation of norisoprenoid compounds. In: Carotenoid Cleavage Products, Vol. 1134, ed. by P. Winterhalter, S.E. Ebeler (American Chemical Society, Washington 2013)CrossRef Z. Günata: Biosynthesis of C13-norisoprenoids in vitis vinifera: Evidence of carotenoid cleavage dioxygenase (CCD) and secondary transformation of norisoprenoid compounds. In: Carotenoid Cleavage Products, Vol. 1134, ed. by P. Winterhalter, S.E. Ebeler (American Chemical Society, Washington 2013)CrossRef
[45]
go back to reference M.A. Sefton, G.K. Skouroumounis, G.M. Elsey, D.K. Taylor: Occurrence, sensory impact, formation, and fate of damascenone in grapes, wines, and other foods and beverages, J. Agric. Food Chem. 59(18), 9717–9746 (2011)CrossRef M.A. Sefton, G.K. Skouroumounis, G.M. Elsey, D.K. Taylor: Occurrence, sensory impact, formation, and fate of damascenone in grapes, wines, and other foods and beverages, J. Agric. Food Chem. 59(18), 9717–9746 (2011)CrossRef
[46]
go back to reference W. Schwab, P. Schreier: Enzymic formation of flavor volatiles from lipids. In: Lipid Biotechnology, ed. by T.M. Kuo, H.W. Gardner (Marcel Dekker, New York 2002) W. Schwab, P. Schreier: Enzymic formation of flavor volatiles from lipids. In: Lipid Biotechnology, ed. by T.M. Kuo, H.W. Gardner (Marcel Dekker, New York 2002)
[47]
go back to reference I. Ivanov, D. Heydeck, K. Hofheinz, J. Roffeis, V.B. O’Donnell, H. Kuhn, M. Walther: Molecular enzymology of lipoxygenases, Arch. Biochem. Biophys. 503(2), 161–174 (2010)CrossRef I. Ivanov, D. Heydeck, K. Hofheinz, J. Roffeis, V.B. O’Donnell, H. Kuhn, M. Walther: Molecular enzymology of lipoxygenases, Arch. Biochem. Biophys. 503(2), 161–174 (2010)CrossRef
[48]
go back to reference A. Andreou, I. Feussner: Lipoxygenases – Structure and reaction mechanism, Phytochemistry 70(13/14), 1504–1510 (2009)CrossRef A. Andreou, I. Feussner: Lipoxygenases – Structure and reaction mechanism, Phytochemistry 70(13/14), 1504–1510 (2009)CrossRef
[49]
go back to reference A.R. Brash: Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes, Phytochemistry 70(13/14), 1522–1531 (2009)CrossRef A.R. Brash: Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes, Phytochemistry 70(13/14), 1522–1531 (2009)CrossRef
[50]
go back to reference W. Schwab, R. Davidovich-Rikanati, E. Lewinsohn: Biosynthesis of plant-derived flavor compounds, Plant J. Cell Mol. Biol. 54(4), 712–732 (2008)CrossRef W. Schwab, R. Davidovich-Rikanati, E. Lewinsohn: Biosynthesis of plant-derived flavor compounds, Plant J. Cell Mol. Biol. 54(4), 712–732 (2008)CrossRef
[51]
go back to reference A.N. Grechkin, F. Brühlmann, L.S. Mukhtarova, Y.V. Gogolev, M. Hamberg: Hydroperoxide lyases (CYP74C and CYP74B) catalyze the homolytic isomerization of fatty acid hydroperoxides into hemiacetals, Biochim. Biophys. Acta 1761(12), 1419–1428 (2006)CrossRef A.N. Grechkin, F. Brühlmann, L.S. Mukhtarova, Y.V. Gogolev, M. Hamberg: Hydroperoxide lyases (CYP74C and CYP74B) catalyze the homolytic isomerization of fatty acid hydroperoxides into hemiacetals, Biochim. Biophys. Acta 1761(12), 1419–1428 (2006)CrossRef
[52]
go back to reference D.L. Iaria, L. Bruno, B. Macchione, A. Tagarelli, G. Sindona, D. Giannino, M.B. Bitonti, A. Chiappetta: The aroma biogenesis-related Olea europaea ALCOHOL DEHYDROGENASE gene is developmentally regulated in the fruits of two O. europaea L. cultivars, Food Res. Int. 49(2), 720–727 (2012)CrossRef D.L. Iaria, L. Bruno, B. Macchione, A. Tagarelli, G. Sindona, D. Giannino, M.B. Bitonti, A. Chiappetta: The aroma biogenesis-related Olea europaea ALCOHOL DEHYDROGENASE gene is developmentally regulated in the fruits of two O. europaea L. cultivars, Food Res. Int. 49(2), 720–727 (2012)CrossRef
[53]
go back to reference A. Schaller, A. Stintzi: Enzymes in jasmonate biosynthesis – Structure, function, regulation, Phytochemistry 70(13/14), 1532–1538 (2009)CrossRef A. Schaller, A. Stintzi: Enzymes in jasmonate biosynthesis – Structure, function, regulation, Phytochemistry 70(13/14), 1532–1538 (2009)CrossRef
[54]
go back to reference C. Wasternack, B. Hause: Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany, Ann. Bot. 111(6), 1021–1058 (2013)CrossRef C. Wasternack, B. Hause: Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany, Ann. Bot. 111(6), 1021–1058 (2013)CrossRef
[55]
go back to reference J. Hu, A. Baker, B. Bartel, N. Linka, R.T. Mullen, S. Reumann, B.K. Zolman: Plant peroxisomes: Biogenesis and function, Plant Cell 24(6), 2279–2303 (2012)CrossRef J. Hu, A. Baker, B. Bartel, N. Linka, R.T. Mullen, S. Reumann, B.K. Zolman: Plant peroxisomes: Biogenesis and function, Plant Cell 24(6), 2279–2303 (2012)CrossRef
[56]
go back to reference S. Goepfert, Y. Poirier: Beta-oxidation in fatty acid degradation and beyond, Curr. Opin. Plant Biol. 10(3), 245–251 (2007)CrossRef S. Goepfert, Y. Poirier: Beta-oxidation in fatty acid degradation and beyond, Curr. Opin. Plant Biol. 10(3), 245–251 (2007)CrossRef
[57]
go back to reference M. Schöttler, W. Boland: Biosynthesis of dodecano-4-lactone in ripening fruits: Crucial role of an epoxide-hydrolase in enantioselective generation of aroma components of the nectarine (prunus persica var. nucipersica) and the strawberry (fragaria ananassa), Helv. Chim. Acta 79(5), 1488–1496 (1996)CrossRef M. Schöttler, W. Boland: Biosynthesis of dodecano-4-lactone in ripening fruits: Crucial role of an epoxide-hydrolase in enantioselective generation of aroma components of the nectarine (prunus persica var. nucipersica) and the strawberry (fragaria ananassa), Helv. Chim. Acta 79(5), 1488–1496 (1996)CrossRef
[58]
go back to reference M. Schöttler, W. Boland: Über die Biosynthese von γ-Dodecanolacton in reifenden Früchten: Aroma-Komponenten der Erdbeere (Fragaria ananassa) und des Pfirsichs (Prunus persica), Helv. Chim. Acta 78(4), 847–856 (1995)CrossRef M. Schöttler, W. Boland: Über die Biosynthese von γ-Dodecanolacton in reifenden Früchten: Aroma-Komponenten der Erdbeere (Fragaria ananassa) und des Pfirsichs (Prunus persica), Helv. Chim. Acta 78(4), 847–856 (1995)CrossRef
[59]
go back to reference M. Hamberg, I. Ponce de Leon, M.J. Rodriguez, C. Castresana: Alpha-dioxygenases, Biochem. Biophys. Res. Commun. 338(1), 169–174 (2005)CrossRef M. Hamberg, I. Ponce de Leon, M.J. Rodriguez, C. Castresana: Alpha-dioxygenases, Biochem. Biophys. Res. Commun. 338(1), 169–174 (2005)CrossRef
[60]
go back to reference E. Fridman, J. Wang, Y. Iijima, J.E. Froehlich, D.R. Gang, J. Ohlrogge, E. Pichersky: Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species lycopersicon hirsutum identify a key enzyme in the biosynthesis of methylketones, Plant Cell Online 17(4), 1252–1267 (2005)CrossRef E. Fridman, J. Wang, Y. Iijima, J.E. Froehlich, D.R. Gang, J. Ohlrogge, E. Pichersky: Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species lycopersicon hirsutum identify a key enzyme in the biosynthesis of methylketones, Plant Cell Online 17(4), 1252–1267 (2005)CrossRef
[61]
go back to reference H. Strohalm, M. Dregus, A. Wahl, K.-H. Engel: Enantioselective analysis of secondary alcohols and their esters in purple and yellow passion fruits, J. Agric. Food Chem. 55(25), 10339–10344 (2007)CrossRef H. Strohalm, M. Dregus, A. Wahl, K.-H. Engel: Enantioselective analysis of secondary alcohols and their esters in purple and yellow passion fruits, J. Agric. Food Chem. 55(25), 10339–10344 (2007)CrossRef
[62]
go back to reference R. Pirona, A. Vecchietti, B. Lazzari, A. Caprera, R. Malinverni, C. Consolandi, M. Severgnini, G. De Bellis, G. Chietera, L. Rossini, C. Pozzi: Expression profiling of genes involved in the formation of aroma in two peach genotypes, Plant Biol. 15(3), 443–451 (2013)CrossRef R. Pirona, A. Vecchietti, B. Lazzari, A. Caprera, R. Malinverni, C. Consolandi, M. Severgnini, G. De Bellis, G. Chietera, L. Rossini, C. Pozzi: Expression profiling of genes involved in the formation of aroma in two peach genotypes, Plant Biol. 15(3), 443–451 (2013)CrossRef
[63]
go back to reference G. Sanchez, M. Venegas-Caleron, J.J. Salas, A. Monforte, M.L. Badenes, A. Granell: An integrative ’omics’ approach identifies new candidate genes to impact aroma volatiles in peach fruit, BMC Genomics 14, 343 (2013)CrossRef G. Sanchez, M. Venegas-Caleron, J.J. Salas, A. Monforte, M.L. Badenes, A. Granell: An integrative ’omics’ approach identifies new candidate genes to impact aroma volatiles in peach fruit, BMC Genomics 14, 343 (2013)CrossRef
[64]
go back to reference N. Dudareva, A. Klempien, J.K. Muhlemann, I. Kaplan: Biosynthesis, function and metabolic engineering of plant volatile organic compounds, New Phytol. 198(1), 16–32 (2013)CrossRef N. Dudareva, A. Klempien, J.K. Muhlemann, I. Kaplan: Biosynthesis, function and metabolic engineering of plant volatile organic compounds, New Phytol. 198(1), 16–32 (2013)CrossRef
[65]
go back to reference A. Matich, D. Rowan: Pathway analysis of branched-chain ester biosynthesis in apple using deuterium labeling and enantioselective gas chromatography-mass spectrometry, J. Agric. Food Chem. 55(7), 2727–2735 (2007)CrossRef A. Matich, D. Rowan: Pathway analysis of branched-chain ester biosynthesis in apple using deuterium labeling and enantioselective gas chromatography-mass spectrometry, J. Agric. Food Chem. 55(7), 2727–2735 (2007)CrossRef
[66]
go back to reference D.D. Rowan, J.M. Allen, S. Fielder, M.B. Hunt: Biosynthesis of straight-chain ester volatiles in red delicious and granny smith apples using deuterium-labeled precursors, J. Agric. Food Chem. 47(7), 2553–2562 (1999)CrossRef D.D. Rowan, J.M. Allen, S. Fielder, M.B. Hunt: Biosynthesis of straight-chain ester volatiles in red delicious and granny smith apples using deuterium-labeled precursors, J. Agric. Food Chem. 47(7), 2553–2562 (1999)CrossRef
[67]
go back to reference E.J.F. Souleyre, D.R. Greenwood, E.N. Friel, S. Karunairetnam, R.D. Newcomb: An alcohol acyl transferase from apple (cv. Royal Gala), MpAAT1, produces esters involved in apple fruit flavor, FEBS Journal 272(12), 3132–3144 (2005)CrossRef E.J.F. Souleyre, D.R. Greenwood, E.N. Friel, S. Karunairetnam, R.D. Newcomb: An alcohol acyl transferase from apple (cv. Royal Gala), MpAAT1, produces esters involved in apple fruit flavor, FEBS Journal 272(12), 3132–3144 (2005)CrossRef
[68]
go back to reference R.J. Schaffer, E.N. Friel, E.J.F. Souleyre, K. Bolitho, K. Thodey, S. Ledger, J.H. Bowen, J.-H. Ma, B. Nain, D. Cohen, A.P. Gleave, R.N. Crowhurst, B.J. Janssen, J.-L. Yao, R.D. Newcomb: A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway, Plant Physiol. 144(4), 1899–1912 (2007)CrossRef R.J. Schaffer, E.N. Friel, E.J.F. Souleyre, K. Bolitho, K. Thodey, S. Ledger, J.H. Bowen, J.-H. Ma, B. Nain, D. Cohen, A.P. Gleave, R.N. Crowhurst, B.J. Janssen, J.-L. Yao, R.D. Newcomb: A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway, Plant Physiol. 144(4), 1899–1912 (2007)CrossRef
[69]
go back to reference I. Gonda, E. Bar, V. Portnoy, S. Lev, J. Burger, A.A. Schaffer, Y. Tadmor, S. Gepstein, J.J. Giovannoni, N. Katzir, E. Lewinsohn: Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit, J. Exp. Bot. 61(4), 1111–1123 (2010)CrossRef I. Gonda, E. Bar, V. Portnoy, S. Lev, J. Burger, A.A. Schaffer, Y. Tadmor, S. Gepstein, J.J. Giovannoni, N. Katzir, E. Lewinsohn: Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit, J. Exp. Bot. 61(4), 1111–1123 (2010)CrossRef
[70]
go back to reference I. Gonda, S. Lev, E. Bar, N. Sikron, V. Portnoy, R. Davidovich-Rikanati, J. Burger, A.A. Schaffer, Y. Tadmor, J.J. Giovannonni, M. Huang, Z. Fei, N. Katzir, A. Fait, E. Lewinsohn: Catabolism of L-methionine in the formation of sulfur and other volatiles in melon (Cucumis melo L.) fruit, Plant J. Cell Mol. Biol. 74(3), 458–472 (2013)CrossRef I. Gonda, S. Lev, E. Bar, N. Sikron, V. Portnoy, R. Davidovich-Rikanati, J. Burger, A.A. Schaffer, Y. Tadmor, J.J. Giovannonni, M. Huang, Z. Fei, N. Katzir, A. Fait, E. Lewinsohn: Catabolism of L-methionine in the formation of sulfur and other volatiles in melon (Cucumis melo L.) fruit, Plant J. Cell Mol. Biol. 74(3), 458–472 (2013)CrossRef
[71]
go back to reference A. Kochevenko, W.L. Araújo, G.S. Maloney, D.M. Tieman, P.T. Do, M.G. Taylor, H.J. Klee, A.R. Fernie: Catabolism of branched chain amino acids supports respiration but not volatile synthesis in tomato fruits, Mol. Plant 5(2), 366–375 (2012)CrossRef A. Kochevenko, W.L. Araújo, G.S. Maloney, D.M. Tieman, P.T. Do, M.G. Taylor, H.J. Klee, A.R. Fernie: Catabolism of branched chain amino acids supports respiration but not volatile synthesis in tomato fruits, Mol. Plant 5(2), 366–375 (2012)CrossRef
[72]
go back to reference W. Silberzahn, R. Tressl: Studies on the isoleucine metabolism of hazelnuts – Transformation of deuterated precursors into aroma compounds. In: Progress in Flavour Precursor Studies, ed. by P. Schreier, P. Winterhalter (Allured, Carol Stream 1993) W. Silberzahn, R. Tressl: Studies on the isoleucine metabolism of hazelnuts – Transformation of deuterated precursors into aroma compounds. In: Progress in Flavour Precursor Studies, ed. by P. Schreier, P. Winterhalter (Allured, Carol Stream 1993)
[73]
go back to reference B. Fedrizzi, G. Guella, D. Perenzoni, M. Gasperotti, D. Masuero, U. Vrhovsek, F. Mattivi: Identification of intermediates involved in the biosynthetic pathway of 3-mercaptohexan-1-ol conjugates in yellow passion fruit (Passiflora edulis f. flavicarpa), Phytochemistry 77, 287–293 (2012)CrossRef B. Fedrizzi, G. Guella, D. Perenzoni, M. Gasperotti, D. Masuero, U. Vrhovsek, F. Mattivi: Identification of intermediates involved in the biosynthetic pathway of 3-mercaptohexan-1-ol conjugates in yellow passion fruit (Passiflora edulis f. flavicarpa), Phytochemistry 77, 287–293 (2012)CrossRef
[74]
go back to reference A. Roland, R. Schneider, A. Razungles, F. Cavelier: Varietal thiols in wine: Discovery, analysis and applications, Chem. Rev. 111(11), 7355–7376 (2011)CrossRef A. Roland, R. Schneider, A. Razungles, F. Cavelier: Varietal thiols in wine: Discovery, analysis and applications, Chem. Rev. 111(11), 7355–7376 (2011)CrossRef
[75]
go back to reference D.L. Capone, M.A. Sefton, D.W. Jeffery: Analytical investigations of wine odorant 3-mercaptohexan-1-ol and its precursors. In: Flavor Chemistry of Wine and Other Alcoholic Beverages, Vol. 1104, ed. by M.C. Qian, T.H. Shellhammer (American Chemical Society, Washington 2012)CrossRef D.L. Capone, M.A. Sefton, D.W. Jeffery: Analytical investigations of wine odorant 3-mercaptohexan-1-ol and its precursors. In: Flavor Chemistry of Wine and Other Alcoholic Beverages, Vol. 1104, ed. by M.C. Qian, T.H. Shellhammer (American Chemical Society, Washington 2012)CrossRef
[76]
go back to reference H. Kobayashi, H. Takase, Y. Suzuki, F. Tanzawa, R. Takata, K. Fujita, M. Kohno, M. Mochizuki, S. Suzuki, T. Konno: Environmental stress enhances biosynthesis of flavor precursors, S-3-(hexan-1-ol)-glutathione and S-3-(hexan-1-ol)-L-cysteine, in grapevine through glutathione S-transferase activation, J. Exp. Bot. 62(3), 1325–1336 (2010)CrossRef H. Kobayashi, H. Takase, Y. Suzuki, F. Tanzawa, R. Takata, K. Fujita, M. Kohno, M. Mochizuki, S. Suzuki, T. Konno: Environmental stress enhances biosynthesis of flavor precursors, S-3-(hexan-1-ol)-glutathione and S-3-(hexan-1-ol)-L-cysteine, in grapevine through glutathione S-transferase activation, J. Exp. Bot. 62(3), 1325–1336 (2010)CrossRef
[77]
go back to reference H. Maeda, N. Dudareva: The shikimate pathway and aromatic amino acid biosynthesis in plants, Annu. Rev. Plant Biol. 63(1), 73–105 (2012)CrossRef H. Maeda, N. Dudareva: The shikimate pathway and aromatic amino acid biosynthesis in plants, Annu. Rev. Plant Biol. 63(1), 73–105 (2012)CrossRef
[78]
go back to reference A.V. Qualley, J.R. Widhalm, F. Adebesin, C.M. Kish, N. Dudareva: Completion of the core -oxidative pathway of benzoic acid biosynthesis in plants, Proc. Natl. Acad. Sci. 109(40), 16383–16388 (2012)CrossRef A.V. Qualley, J.R. Widhalm, F. Adebesin, C.M. Kish, N. Dudareva: Completion of the core -oxidative pathway of benzoic acid biosynthesis in plants, Proc. Natl. Acad. Sci. 109(40), 16383–16388 (2012)CrossRef
[79]
go back to reference N.R. Mustafa, R. Verpoorte: Chorismate derived C6C1 compounds in plants, Planta 222(1), 1–5 (2005)CrossRef N.R. Mustafa, R. Verpoorte: Chorismate derived C6C1 compounds in plants, Planta 222(1), 1–5 (2005)CrossRef
[80]
go back to reference J. Wang, V. De Luca: The biosynthesis and regulation of biosynthesis of Concord grape fruit esters, including ’foxy’ methylanthranilate, Plant J. Cell Mol. Biol. 44(4), 606–619 (2005)CrossRef J. Wang, V. De Luca: The biosynthesis and regulation of biosynthesis of Concord grape fruit esters, including ’foxy’ methylanthranilate, Plant J. Cell Mol. Biol. 44(4), 606–619 (2005)CrossRef
[81]
go back to reference T.G. Köllner, C. Lenk, N. Zhao, I. Seidl-Adams, J. Gershenzon, F. Chen, J. Degenhardt: Herbivore-induced SABATH methyltransferases of maize that methylate anthranilic acid using s-adenosyl-L-methionine, Plant Physiol. 153(4), 1795–1807 (2010)CrossRef T.G. Köllner, C. Lenk, N. Zhao, I. Seidl-Adams, J. Gershenzon, F. Chen, J. Degenhardt: Herbivore-induced SABATH methyltransferases of maize that methylate anthranilic acid using s-adenosyl-L-methionine, Plant Physiol. 153(4), 1795–1807 (2010)CrossRef
[82]
go back to reference O. Negishi, K. Sugiura, Y. Negishi: Biosynthesis of vanillin via ferulic acid in vanilla planifolia, J. Agric. Food Chem. 57(21), 9956–9961 (2009)CrossRef O. Negishi, K. Sugiura, Y. Negishi: Biosynthesis of vanillin via ferulic acid in vanilla planifolia, J. Agric. Food Chem. 57(21), 9956–9961 (2009)CrossRef
[83]
go back to reference J.D. Dunlevy, E.G. Dennis, K.L. Soole, M.V. Perkins, C. Davies, P.K. Boss: A methyltransferase essential for the methoxypyrazine-derived flavour of wine, Plant J. Cell Mol. Biol. 75(4), 606–617 (2013)CrossRef J.D. Dunlevy, E.G. Dennis, K.L. Soole, M.V. Perkins, C. Davies, P.K. Boss: A methyltransferase essential for the methoxypyrazine-derived flavour of wine, Plant J. Cell Mol. Biol. 75(4), 606–617 (2013)CrossRef
[84]
go back to reference M.S. Allen, M.J. Lacey, R.L.N. Harris, W.V. Brown: Contribution of methoxypyrazines to sauvignon blanc wine aroma, Am. J. Enol. Vitic. 42(2), 109–112 (1991) M.S. Allen, M.J. Lacey, R.L.N. Harris, W.V. Brown: Contribution of methoxypyrazines to sauvignon blanc wine aroma, Am. J. Enol. Vitic. 42(2), 109–112 (1991)
[85]
go back to reference J.D. Dunlevy, K.L. Soole, M.V. Perkins, E.G. Dennis, R.A. Keyzers, C.M. Kalua, P.K. Boss: Two O-methyltransferases involved in the biosynthesis of methoxypyrazines: Grape-derived aroma compounds important to wine flavour, Plant Mol. Biol. 74(1/2), 77–89 (2010)CrossRef J.D. Dunlevy, K.L. Soole, M.V. Perkins, E.G. Dennis, R.A. Keyzers, C.M. Kalua, P.K. Boss: Two O-methyltransferases involved in the biosynthesis of methoxypyrazines: Grape-derived aroma compounds important to wine flavour, Plant Mol. Biol. 74(1/2), 77–89 (2010)CrossRef
[86]
go back to reference J.G. Vallarino, X.A. Lopez-Cortes, J.D. Dunlevy, P.K. Boss, F.D. Gonzalez-Nilo, Y.M. Moreno: Biosynthesis of methoxypyrazines: Elucidating the structural/functional relationship of two Vitis viniferaO-methyltransferases capable of catalyzing the putative final step of the biosynthesis of 3-alkyl-2-methoxypyrazine, J. Agric. Food Chem. 59(13), 7310–7316 (2011)CrossRef J.G. Vallarino, X.A. Lopez-Cortes, J.D. Dunlevy, P.K. Boss, F.D. Gonzalez-Nilo, Y.M. Moreno: Biosynthesis of methoxypyrazines: Elucidating the structural/functional relationship of two Vitis viniferaO-methyltransferases capable of catalyzing the putative final step of the biosynthesis of 3-alkyl-2-methoxypyrazine, J. Agric. Food Chem. 59(13), 7310–7316 (2011)CrossRef
[87]
go back to reference L.M.T. Bradbury, S.A. Gillies, D.J. Brushett, D.L.E. Waters, R.J. Henry: Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice, Plant Mol. Biol. 68(4/5), 439–449 (2008)CrossRef L.M.T. Bradbury, S.A. Gillies, D.J. Brushett, D.L.E. Waters, R.J. Henry: Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice, Plant Mol. Biol. 68(4/5), 439–449 (2008)CrossRef
[88]
go back to reference S. Guillaumie, A. Ilg, S. Réty, M. Brette, C. Trossat-Magnin, S. Decroocq, C. Léon, C. Keime, T. Ye, R. Baltenweck-Guyot, P. Claudel, L. Bordenave, S. Vanbrabant, E. Duchêne, S. Delrot, P. Darriet, P. Hugueney, E. Gomès: Genetic analysis of the biosynthesis of 2-methoxy-3-isobutylpyrazine, a major grape-derived aroma compound impacting wine quality, Plant Physiol. 162(2), 604–615 (2013)CrossRef S. Guillaumie, A. Ilg, S. Réty, M. Brette, C. Trossat-Magnin, S. Decroocq, C. Léon, C. Keime, T. Ye, R. Baltenweck-Guyot, P. Claudel, L. Bordenave, S. Vanbrabant, E. Duchêne, S. Delrot, P. Darriet, P. Hugueney, E. Gomès: Genetic analysis of the biosynthesis of 2-methoxy-3-isobutylpyrazine, a major grape-derived aroma compound impacting wine quality, Plant Physiol. 162(2), 604–615 (2013)CrossRef
[89]
go back to reference H.-D. Belitz, W. Grosch, P. Schieberle: Food chemistry (Springer, Berlin, Heidelberg 2009) H.-D. Belitz, W. Grosch, P. Schieberle: Food chemistry (Springer, Berlin, Heidelberg 2009)
[90]
go back to reference A. Adams, N. De Kimpe: Chemistry of 2-Acetyl-1-pyrroline, 6-Acetyl-1,2,3,4-tetrahydropyridine, 2-Acetyl-2-thiazoline, and 5-Acetyl-2,3-dihydro-4H-thiazine: Extraordinary maillard flavor compounds, Chem. Rev. 106(6), 2299–2319 (2006)CrossRef A. Adams, N. De Kimpe: Chemistry of 2-Acetyl-1-pyrroline, 6-Acetyl-1,2,3,4-tetrahydropyridine, 2-Acetyl-2-thiazoline, and 5-Acetyl-2,3-dihydro-4H-thiazine: Extraordinary maillard flavor compounds, Chem. Rev. 106(6), 2299–2319 (2006)CrossRef
[91]
go back to reference T. Yoshihashi, N.T.T. Huong, H. Inatomi: Precursors of 2-acetyl-1-pyrroline, a potent flavor compound of an aromatic rice variety, J. Agric. Food Chem. 50(7), 2001–2004 (2002)CrossRef T. Yoshihashi, N.T.T. Huong, H. Inatomi: Precursors of 2-acetyl-1-pyrroline, a potent flavor compound of an aromatic rice variety, J. Agric. Food Chem. 50(7), 2001–2004 (2002)CrossRef
[92]
go back to reference M. Petro-Turza: Flavor of tomato and tomato products, Food Rev. Int. 2(3), 309–351 (1986)CrossRef M. Petro-Turza: Flavor of tomato and tomato products, Food Rev. Int. 2(3), 309–351 (1986)CrossRef
[93]
go back to reference P. Rose, M. Whiteman, P.K. Moore, Y.Z. Zhu: Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: The chemistry of potential therapeutic agents, Nat. Prod. Rep. 22(3), 351–368 (2005)CrossRef P. Rose, M. Whiteman, P.K. Moore, Y.Z. Zhu: Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: The chemistry of potential therapeutic agents, Nat. Prod. Rep. 22(3), 351–368 (2005)CrossRef
[94]
go back to reference M.G. Jones, J. Hughes, A. Tregova, J. Milne, A.B. Tomsett, H.A. Collin: Biosynthesis of the flavour precursors of onion and garlic, J. Exp. Bot. 55(404), 1903–1918 (2004)CrossRef M.G. Jones, J. Hughes, A. Tregova, J. Milne, A.B. Tomsett, H.A. Collin: Biosynthesis of the flavour precursors of onion and garlic, J. Exp. Bot. 55(404), 1903–1918 (2004)CrossRef
[95]
go back to reference M.G. Jones: The biosynthesis of volatile sulfur flavour compounds. In: The Chemistry and Biology of Volatiles, ed. by A. Herrmann (Wiley, Hoboken 2010) M.G. Jones: The biosynthesis of volatile sulfur flavour compounds. In: The Chemistry and Biology of Volatiles, ed. by A. Herrmann (Wiley, Hoboken 2010)
[96]
go back to reference D.B. Clarke: Glucosinolates, structures and analysis in food, Anal. Methods 2(4), 310–325 (2010)CrossRef D.B. Clarke: Glucosinolates, structures and analysis in food, Anal. Methods 2(4), 310–325 (2010)CrossRef
[97]
go back to reference A.P. Vig, G. Rampal, T.S. Thind, S. Arora: Bio-protective effects of glucosinolates – A review, LWT Food Sci. Technol. 42(10), 1561–1572 (2009)CrossRef A.P. Vig, G. Rampal, T.S. Thind, S. Arora: Bio-protective effects of glucosinolates – A review, LWT Food Sci. Technol. 42(10), 1561–1572 (2009)CrossRef
[98]
go back to reference I.E. Sønderby, F. Geu-Flores, B.A. Halkier: Biosynthesis of glucosinolates – Gene discovery and beyond, Trends Plant Sci. 15(5), 283–290 (2010)CrossRef I.E. Sønderby, F. Geu-Flores, B.A. Halkier: Biosynthesis of glucosinolates – Gene discovery and beyond, Trends Plant Sci. 15(5), 283–290 (2010)CrossRef
[99]
go back to reference C.D. Grubb, S. Abel: Glucosinolate metabolism and its control, Trends Plant Sci. 11(2), 89–100 (2006)CrossRef C.D. Grubb, S. Abel: Glucosinolate metabolism and its control, Trends Plant Sci. 11(2), 89–100 (2006)CrossRef
[100]
go back to reference D. Goodspeed, J.D. Liu, E.W. Chehab, Z. Sheng, M. Francisco, D.J. Kliebenstein, J. Braam: Postharvest circadian entrainment enhances crop pest resistance and phytochemical cycling, Curr. Biol. 23(13), 1235–1241 (2013)CrossRef D. Goodspeed, J.D. Liu, E.W. Chehab, Z. Sheng, M. Francisco, D.J. Kliebenstein, J. Braam: Postharvest circadian entrainment enhances crop pest resistance and phytochemical cycling, Curr. Biol. 23(13), 1235–1241 (2013)CrossRef
[101]
go back to reference L. Caputi, M. Malnoy, V. Goremykin, S. Nikiforova, S. Martens: A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land, Plant J. 69(6), 1030–1042 (2012)CrossRef L. Caputi, M. Malnoy, V. Goremykin, S. Nikiforova, S. Martens: A genome-wide phylogenetic reconstruction of family 1 UDP-glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land, Plant J. 69(6), 1030–1042 (2012)CrossRef
[102]
go back to reference S.A. Osmani, S. Bak, B.L. Møller: Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling, Phytochemistry 70(3), 325–347 (2009)CrossRef S.A. Osmani, S. Bak, B.L. Møller: Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling, Phytochemistry 70(3), 325–347 (2009)CrossRef
[103]
go back to reference J. Wirth, W. Guo, R. Baumes, Z. Günata: Volatile compounds released by enzymatic hydrolysis of glycoconjugates of leaves and grape berries from Vitis vinifera Muscat of Alexandria and Shiraz Cultivars, J. Agric. Food Chem. 49(6), 2917–2923 (2001)CrossRef J. Wirth, W. Guo, R. Baumes, Z. Günata: Volatile compounds released by enzymatic hydrolysis of glycoconjugates of leaves and grape berries from Vitis vinifera Muscat of Alexandria and Shiraz Cultivars, J. Agric. Food Chem. 49(6), 2917–2923 (2001)CrossRef
[104]
go back to reference M.A. Sefton, I.L. Francis, P.J. Williams: Free and bound volatile secondary metabolites of Vitis Vhifera Grape cv. Sauvignon Blanc, J. Food Sci. 59(1), 142–147 (1994)CrossRef M.A. Sefton, I.L. Francis, P.J. Williams: Free and bound volatile secondary metabolites of Vitis Vhifera Grape cv. Sauvignon Blanc, J. Food Sci. 59(1), 142–147 (1994)CrossRef
[105]
go back to reference J.-E. Sarry, Z. Günata: Plant and microbial glycoside hydrolases: Volatile release from glycosidic aroma precursors, Food Chem. 87(4), 509–521 (2004)CrossRef J.-E. Sarry, Z. Günata: Plant and microbial glycoside hydrolases: Volatile release from glycosidic aroma precursors, Food Chem. 87(4), 509–521 (2004)CrossRef
[106]
go back to reference D. Tholl, R. Sohrabi, J.-H. Huh, S. Lee: The biochemistry of homoterpenes – Common constituents of floral and herbivore-induced plant volatile bouquets, Phytochemistry 72(13), 1635–1646 (2011)CrossRef D. Tholl, R. Sohrabi, J.-H. Huh, S. Lee: The biochemistry of homoterpenes – Common constituents of floral and herbivore-induced plant volatile bouquets, Phytochemistry 72(13), 1635–1646 (2011)CrossRef
Metadata
Title
Biosynthesis of Plant-Derived Odorants
Author
Matthias Wüst
Copyright Year
2017
Publisher
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-26932-0_2

Premium Partners