Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 9/2018

10-03-2018 | Original Article

Bipedal gait model for precise gait recognition and optimal triggering in foot drop stimulator: a proof of concept

Authors: Muhammad Faraz Shaikh, Zoran Salcic, Kevin I-Kai Wang, Aiguo Patrick Hu

Published in: Medical & Biological Engineering & Computing | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electrical stimulators are often prescribed to correct foot drop walking. However, commercial foot drop stimulators trigger inappropriately under certain non-gait scenarios. Past researches addressed this limitation by defining stimulation control based on automaton of a gait cycle executed by foot drop of affected limb/foot only. Since gait is a collaborative activity of both feet, this research highlights the role of normal foot for robust gait detection and stimulation triggering. A novel bipedal gait model is proposed where gait cycle is realized as an automaton based on concurrent gait sub-phases (states) from each foot. The input for state transition is fused information from feet-worn pressure and inertial sensors. Thereafter, a bipedal gait model-based stimulation control algorithm is developed. As a feasibility study, bipedal gait model and stimulation control are evaluated in real-time simulation manner on normal and simulated foot drop gait measurements from 16 able-bodied participants with three speed variations, under inappropriate triggering scenarios and with foot drop rehabilitation exercises. Also, the stimulation control employed in commercial foot drop stimulators and single foot gait-based foot drop stimulators are compared alongside. Gait detection accuracy (98.9%) and precise triggering under all investigations prove bipedal gait model reliability. This infers that gait detection leveraging bipedal periodicity is a promising strategy to rectify prevalent stimulation triggering deficiencies in commercial foot drop stimulators.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Bejarano NC (2015/2016) Closed-loop neuroprosthesis for spinal cord injured patients. Politecnico Di Milano, Milan Bejarano NC (2015/2016) Closed-loop neuroprosthesis for spinal cord injured patients. Politecnico Di Milano, Milan
2.
go back to reference Benoussaad M, Mombaur K, Azevedo-Coste C Nonlinear model predictive control of joint ankle by electrical stimulation for drop foot correction. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, 2013. IEEE, pp 983–989 Benoussaad M, Mombaur K, Azevedo-Coste C Nonlinear model predictive control of joint ankle by electrical stimulation for drop foot correction. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, 2013. IEEE, pp 983–989
4.
go back to reference Breen PP, O’Keeffe DT, Conway R, Lyons GM (2006) A system for the delivery of programmable, adaptive stimulation intensity envelopes for drop foot correction applications. Med Eng Phys 28:177–186CrossRefPubMed Breen PP, O’Keeffe DT, Conway R, Lyons GM (2006) A system for the delivery of programmable, adaptive stimulation intensity envelopes for drop foot correction applications. Med Eng Phys 28:177–186CrossRefPubMed
5.
go back to reference Broderick BJ, Breen PP, ÓLaighin G (2008) Electronic stimulators for surface neural prosthesis. J Autom Control 18:25–33CrossRef Broderick BJ, Breen PP, ÓLaighin G (2008) Electronic stimulators for surface neural prosthesis. J Autom Control 18:25–33CrossRef
6.
go back to reference Bruni T (2006) Heterogeneous use of models of computation. In: Seminar system/architecture and design methods of embedded systems, Summer Semester Bruni T (2006) Heterogeneous use of models of computation. In: Seminar system/architecture and design methods of embedded systems, Summer Semester
7.
go back to reference Bunt ND, Moreno JC, Müller P, Seel T, Schauer T (2017) Online monitoring of muscle activity during walking for bio-feedback and for observing the effects of transcutaneous electrical stimulation. In: Converging clinical and engineering research on neurorehabilitation II. Springer, Cham, pp 705–709CrossRef Bunt ND, Moreno JC, Müller P, Seel T, Schauer T (2017) Online monitoring of muscle activity during walking for bio-feedback and for observing the effects of transcutaneous electrical stimulation. In: Converging clinical and engineering research on neurorehabilitation II. Springer, Cham, pp 705–709CrossRef
8.
go back to reference Coste CA, Jovic J, Pissard-Gibollet R, Froger J (2014) Continuous gait cycle index estimation for electrical stimulation assisted foot drop correction. J Neuroeng Rehabil 11:1CrossRef Coste CA, Jovic J, Pissard-Gibollet R, Froger J (2014) Continuous gait cycle index estimation for electrical stimulation assisted foot drop correction. J Neuroeng Rehabil 11:1CrossRef
9.
go back to reference Dunning K, O’Dell MW, Kluding P, McBride K (2015) Peroneal stimulation for foot drop after stroke: a systematic review. Am J Phys Med Rehabil 94:649–664CrossRefPubMed Dunning K, O’Dell MW, Kluding P, McBride K (2015) Peroneal stimulation for foot drop after stroke: a systematic review. Am J Phys Med Rehabil 94:649–664CrossRefPubMed
10.
go back to reference Goršič M, Kamnik R, Ambrožič L, Vitiello N, Lefeber D, Pasquini G, Munih M (2014) Online phase detection using wearable sensors for walking with a robotic prosthesis. Sensors 14:2776–2794CrossRefPubMed Goršič M, Kamnik R, Ambrožič L, Vitiello N, Lefeber D, Pasquini G, Munih M (2014) Online phase detection using wearable sensors for walking with a robotic prosthesis. Sensors 14:2776–2794CrossRefPubMed
11.
go back to reference Hanlon M, Anderson R (2009) Real-time gait event detection using wearable sensors. Gait Posture 30:523–527CrossRefPubMed Hanlon M, Anderson R (2009) Real-time gait event detection using wearable sensors. Gait Posture 30:523–527CrossRefPubMed
12.
go back to reference Hsieh SC (2010) Product construction of finite-state machines. In: Proc. of the World Congress on Engineering and Computer Science. Citeseer, pp 141–143 Hsieh SC (2010) Product construction of finite-state machines. In: Proc. of the World Congress on Engineering and Computer Science. Citeseer, pp 141–143
13.
go back to reference Kafri M, Laufer Y (2015) Therapeutic effects of functional electrical stimulation on gait in individuals post-stroke. Ann Biomed Eng 43:451–466CrossRefPubMed Kafri M, Laufer Y (2015) Therapeutic effects of functional electrical stimulation on gait in individuals post-stroke. Ann Biomed Eng 43:451–466CrossRefPubMed
14.
go back to reference Kotiadis D, Hermens HJ, Veltink PH (2010) Inertial gait phase detection for control of a drop foot stimulator: Inertial sensing for gait phase detection. Med Eng Phys 32:287–297CrossRefPubMed Kotiadis D, Hermens HJ, Veltink PH (2010) Inertial gait phase detection for control of a drop foot stimulator: Inertial sensing for gait phase detection. Med Eng Phys 32:287–297CrossRefPubMed
15.
go back to reference Lee Y-S, Ho C-S, Shih Y, Chang S-Y, Róbert FJ, Shiang T-Y (2015) Assessment of walking, running, and jumping movement features by using the inertial measurement unit. Gait Posture 41:877–881CrossRefPubMed Lee Y-S, Ho C-S, Shih Y, Chang S-Y, Róbert FJ, Shiang T-Y (2015) Assessment of walking, running, and jumping movement features by using the inertial measurement unit. Gait Posture 41:877–881CrossRefPubMed
16.
go back to reference Lyons GM, Sinkjær T, Burridge JH, Wilcox DJ (2002) A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Trans Neural Syst Rehabil Eng 10:260–279CrossRefPubMed Lyons GM, Sinkjær T, Burridge JH, Wilcox DJ (2002) A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Trans Neural Syst Rehabil Eng 10:260–279CrossRefPubMed
17.
go back to reference Mansfield A, Lyons GM (2003) The use of accelerometry to detect heel contact events for use as a sensor in FES assisted walking. Med Eng Phys 25:879–885CrossRefPubMed Mansfield A, Lyons GM (2003) The use of accelerometry to detect heel contact events for use as a sensor in FES assisted walking. Med Eng Phys 25:879–885CrossRefPubMed
19.
go back to reference Mecheraoui CA, Swain I, Cobb J (2013) A distributed three-channel wireless functional electrical stimulation system for automated triggering of stimulation to enable coordinated task execution by patients with neurological disease. Biomed Signal Process Control 8:176–183CrossRef Mecheraoui CA, Swain I, Cobb J (2013) A distributed three-channel wireless functional electrical stimulation system for automated triggering of stimulation to enable coordinated task execution by patients with neurological disease. Biomed Signal Process Control 8:176–183CrossRef
20.
go back to reference Melo PL, Silva MT, Martins JM, Newman DJ (2015) Technical developments of functional electrical stimulation to correct drop foot: Sensing, actuation and control strategies. Clin Biomech 30:101–113CrossRef Melo PL, Silva MT, Martins JM, Newman DJ (2015) Technical developments of functional electrical stimulation to correct drop foot: Sensing, actuation and control strategies. Clin Biomech 30:101–113CrossRef
21.
go back to reference Miller L, Rafferty D, Paul L, Mattison P (2015) A comparison of the orthotic effect of the Odstock Dropped Foot Stimulator and the Walkaide functional electrical stimulation systems on energy cost and speed of walking in multiple sclerosis. Disabil Rehabil Assist Technol 10:482–485CrossRef Miller L, Rafferty D, Paul L, Mattison P (2015) A comparison of the orthotic effect of the Odstock Dropped Foot Stimulator and the Walkaide functional electrical stimulation systems on energy cost and speed of walking in multiple sclerosis. Disabil Rehabil Assist Technol 10:482–485CrossRef
24.
go back to reference Pappas IPI, Keller T, Mangold S, Popovic MR, Dietz V, Morari M (2004) A reliable gyroscope-based gait-phase detection sensor embedded in a shoe insole. Sensors J IEEE 4:268–274CrossRef Pappas IPI, Keller T, Mangold S, Popovic MR, Dietz V, Morari M (2004) A reliable gyroscope-based gait-phase detection sensor embedded in a shoe insole. Sensors J IEEE 4:268–274CrossRef
25.
go back to reference Pappas IPI, Popovic MR, Keller T, Dietz V, Morari M (2001) A reliable gait phase detection system. IEEE Trans Neural Syst Rehabil Eng 9:113–125CrossRefPubMed Pappas IPI, Popovic MR, Keller T, Dietz V, Morari M (2001) A reliable gait phase detection system. IEEE Trans Neural Syst Rehabil Eng 9:113–125CrossRefPubMed
26.
go back to reference Perry J, Burnfield JM (2010) Gait analysis: normal and pathological function. In., second edn. Slack Incorporated, Thorofare, NJ, 27. Philipp Muller, Thomas Seel, Schauer T Experimental evaluation of a novel inertial sensor based realtime gait phase detection algorithm. In: Technically Assisted Rehabilitation Conference, 2015 Perry J, Burnfield JM (2010) Gait analysis: normal and pathological function. In., second edn. Slack Incorporated, Thorofare, NJ, 27. Philipp Muller, Thomas Seel, Schauer T Experimental evaluation of a novel inertial sensor based realtime gait phase detection algorithm. In: Technically Assisted Rehabilitation Conference, 2015
29.
go back to reference Seel T, Landgraf L, Escobar VC, Schauer T (2014) Online gait phase detection with automatic adaption to gait velocity changes using accelerometers and gyroscopes. Biomed Eng Biomedizinische technik 59:S795–S798 Seel T, Landgraf L, Escobar VC, Schauer T (2014) Online gait phase detection with automatic adaption to gait velocity changes using accelerometers and gyroscopes. Biomed Eng Biomedizinische technik 59:S795–S798
30.
go back to reference Seel T, Schäperkötter S, Valtin M, Werner C, Schauer T (2013) Design and control of an adaptive peroneal stimulator with inertial sensor-based gait phase detection. In: 18th Annual International FES Society Conference, San Sebastian, Spain, 6–8 Seel T, Schäperkötter S, Valtin M, Werner C, Schauer T (2013) Design and control of an adaptive peroneal stimulator with inertial sensor-based gait phase detection. In: 18th Annual International FES Society Conference, San Sebastian, Spain, 6–8
31.
go back to reference Seel T, Werner C, Raisch J, Schauer T (2016) Iterative learning control of a drop foot neuroprosthesis—generating physiological foot motion in paretic gait by automatic feedback control. Control Eng Pract 48:87–97CrossRef Seel T, Werner C, Raisch J, Schauer T (2016) Iterative learning control of a drop foot neuroprosthesis—generating physiological foot motion in paretic gait by automatic feedback control. Control Eng Pract 48:87–97CrossRef
32.
go back to reference Seel T, Werner C, Schauer T (2016) The adaptive drop foot stimulator—multivariable learning control of foot pitch and roll motion in paretic gait. Med Eng Phys 38:1205–1213CrossRefPubMed Seel T, Werner C, Schauer T (2016) The adaptive drop foot stimulator—multivariable learning control of foot pitch and roll motion in paretic gait. Med Eng Phys 38:1205–1213CrossRefPubMed
33.
go back to reference Shaikh MF, Salcic Z, Wang K (2015) Analysis and selection of the force sensitive resistors for gait characterisation. In: Automation, robotics and applications (ICARA), 2015 6th International Conference on. IEEE, pp 370–375 Shaikh MF, Salcic Z, Wang K (2015) Analysis and selection of the force sensitive resistors for gait characterisation. In: Automation, robotics and applications (ICARA), 2015 6th International Conference on. IEEE, pp 370–375
34.
go back to reference Skelly MM, Chizeck HJ (2001) Real-time gait event detection for paraplegic FES walking. IEEE Transactions Neural Syst Rehabil Eng 9:59–68CrossRef Skelly MM, Chizeck HJ (2001) Real-time gait event detection for paraplegic FES walking. IEEE Transactions Neural Syst Rehabil Eng 9:59–68CrossRef
35.
go back to reference Smith BT, Coiro DJ, Finson R, Betz RR, McCarthy J (2002) Evaluation of force-sensing resistors for gait event detection to trigger electrical stimulation to improve walking in the child with cerebral palsy. IEEE Transactions Neural Syst Rehabil Eng 10:22–29CrossRef Smith BT, Coiro DJ, Finson R, Betz RR, McCarthy J (2002) Evaluation of force-sensing resistors for gait event detection to trigger electrical stimulation to improve walking in the child with cerebral palsy. IEEE Transactions Neural Syst Rehabil Eng 10:22–29CrossRef
37.
go back to reference Stein RB, Rolf R, Everaert DG, Bobet J, Chong S (2008) Surface electrical stimulation for foot drop: control aspects and walking performance. J Autom Control 18:47–52CrossRef Stein RB, Rolf R, Everaert DG, Bobet J, Chong S (2008) Surface electrical stimulation for foot drop: control aspects and walking performance. J Autom Control 18:47–52CrossRef
39.
go back to reference Sweeney PC, Lyons GM, Veltink PH (2000) Finite state control of functional electrical stimulation for the rehabilitation of gait. Med Biol Eng Comput 38:121–126CrossRefPubMed Sweeney PC, Lyons GM, Veltink PH (2000) Finite state control of functional electrical stimulation for the rehabilitation of gait. Med Biol Eng Comput 38:121–126CrossRefPubMed
41.
go back to reference Washabaugh EP, Claflin ES, Gillespie RB, Krishnan C (2016) A novel application of eddy current braking for functional strength training during gait. Annals of Biomedical Engineering:1–14 Washabaugh EP, Claflin ES, Gillespie RB, Krishnan C (2016) A novel application of eddy current braking for functional strength training during gait. Annals of Biomedical Engineering:1–14
Metadata
Title
Bipedal gait model for precise gait recognition and optimal triggering in foot drop stimulator: a proof of concept
Authors
Muhammad Faraz Shaikh
Zoran Salcic
Kevin I-Kai Wang
Aiguo Patrick Hu
Publication date
10-03-2018
Publisher
Springer Berlin Heidelberg
Published in
Medical & Biological Engineering & Computing / Issue 9/2018
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-018-1810-7

Other articles of this Issue 9/2018

Medical & Biological Engineering & Computing 9/2018 Go to the issue

Premium Partner