Skip to main content
Top
Published in: Computational Mechanics 6/2014

01-06-2014 | Original Paper

Blending moving least squares techniques with NURBS basis functions for nonlinear isogeometric analysis

Authors: Rui P. R. Cardoso, J. M. A. Cesar de Sa

Published in: Computational Mechanics | Issue 6/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

IsoGeometric Analysis (IGA) is increasing its popularity as a new numerical tool for the analysis of structures. IGA provides: (i) the possibility of using higher order polynomials for the basis functions; (ii) the smoothness for contact analysis; (iii) the possibility to operate directly on CAD geometry. The major drawback of IGA is the non-interpolatory characteristic of the basis functions, which adds a difficulty in handling essential boundary conditions. Nevertheless, IGA suffers from the same problems depicted by other methods when it comes to reproduce isochoric and transverse shear strain deformations, especially for low order basis functions. In this work, projection techniques based on the moving least square (MLS) approximations are used to alleviate both the volumetric and the transverse shear lockings in IGA. The main objective is to project the isochoric and transverse shear deformations from lower order subspaces by using the MLS, alleviating in this way the volumetric and the transverse shear locking on the fully-integrated space. Because in IGA different degrees in the approximation functions can be used, different Gauss integration rules can also be employed, making the procedures for locking treatment in IGA very dependent on the degree of the approximation functions used. The blending of MLS with Non-Uniform Rational B-Splines (NURBS) basis functions is a methodology to overcome different locking pathologies in IGA which can be also used for enrichment procedures. Numerical examples for three-dimensional NURBS with only translational degrees of freedom are presented for both shell-type and plane strain structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Hughes TJR, Cottrel JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195CrossRefMATH Hughes TJR, Cottrel JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195CrossRefMATH
2.
go back to reference Cottrell JA, Hughes TJR, Reali A (2007) Studies of refinement and continuity in isogeometric structural analysis. Comput Methods Appl Mech Eng 196:4160–4183CrossRefMATHMathSciNet Cottrell JA, Hughes TJR, Reali A (2007) Studies of refinement and continuity in isogeometric structural analysis. Comput Methods Appl Mech Eng 196:4160–4183CrossRefMATHMathSciNet
3.
go back to reference Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195:5257–5296CrossRefMATHMathSciNet Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195:5257–5296CrossRefMATHMathSciNet
4.
go back to reference Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS. Comput Methods Appl Mech Eng 197:4104–4124CrossRefMATHMathSciNet Hughes TJR, Reali A, Sangalli G (2008) Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS. Comput Methods Appl Mech Eng 197:4104–4124CrossRefMATHMathSciNet
5.
go back to reference Hughes TJR, Reali A, Sangalli G (2010) Efficient quadrature for NURBS-based isogeometric analysis. Comput Methods Appl Mech Eng 199:301–313CrossRefMATHMathSciNet Hughes TJR, Reali A, Sangalli G (2010) Efficient quadrature for NURBS-based isogeometric analysis. Comput Methods Appl Mech Eng 199:301–313CrossRefMATHMathSciNet
6.
go back to reference Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199:276–289CrossRefMATHMathSciNet Benson DJ, Bazilevs Y, Hsu MC, Hughes TJR (2010) Isogeometric shell analysis: the Reissner–Mindlin shell. Comput Methods Appl Mech Eng 199:276–289CrossRefMATHMathSciNet
7.
go back to reference Echter R, Bischoff M (2010) Numerical efficiency, locking and unlocking of NURBS finite elements. Comput Methods Appl Mech Eng 199:374–382CrossRefMATH Echter R, Bischoff M (2010) Numerical efficiency, locking and unlocking of NURBS finite elements. Comput Methods Appl Mech Eng 199:374–382CrossRefMATH
8.
go back to reference Hughes TJR, Cohen M, Haroun M (1978) Reduced and selective integration techniques in finite element analysis of plates. Nucl Eng Des 46:203–222CrossRef Hughes TJR, Cohen M, Haroun M (1978) Reduced and selective integration techniques in finite element analysis of plates. Nucl Eng Des 46:203–222CrossRef
9.
go back to reference Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis, 2nd edn. Dover Editions, New Jersey Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis, 2nd edn. Dover Editions, New Jersey
10.
go back to reference Liu WK, Guo Y, Tang S, Belytschko T (1998) A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis. Comput Methods Appl Mech Eng 154:69–132CrossRefMATHMathSciNet Liu WK, Guo Y, Tang S, Belytschko T (1998) A multiple-quadrature eight-node hexahedral finite element for large deformation elastoplastic analysis. Comput Methods Appl Mech Eng 154:69–132CrossRefMATHMathSciNet
11.
go back to reference Cesar de Sa JMA, Owen DRJ (1986) The imposition of the incompressible constraints in finite elements - a review of approaches with a new insight to the locking phenomenon. In: Taylor C, Hinton E, Owen DRJ (eds) Numerical methods for non-linear problems, Pineridge Press, Yugoslavia Cesar de Sa JMA, Owen DRJ (1986) The imposition of the incompressible constraints in finite elements - a review of approaches with a new insight to the locking phenomenon. In: Taylor C, Hinton E, Owen DRJ (eds) Numerical methods for non-linear problems, Pineridge Press, Yugoslavia
12.
go back to reference Bathe KJ (1996) Finite element procedures, 2nd edn. Prentice-Hall, New Jersey Bathe KJ (1996) Finite element procedures, 2nd edn. Prentice-Hall, New Jersey
14.
go back to reference Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638 Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638
15.
go back to reference Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33:1413–1449CrossRefMATHMathSciNet Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33:1413–1449CrossRefMATHMathSciNet
16.
go back to reference Andelfinger U, Ramm E, Roehl D (1992) 2d and 3d-enhanced assumed strain elements and their application in plasticity. In: Proceedings of the 4th International Conference on Computational Plasticity, Swansea, pp 1997–2007 Andelfinger U, Ramm E, Roehl D (1992) 2d and 3d-enhanced assumed strain elements and their application in plasticity. In: Proceedings of the 4th International Conference on Computational Plasticity, Swansea, pp 1997–2007
17.
go back to reference Simo JC, Armero F, Taylor RL (1993) Improved versions of assumed enhanced strain tri-linear elements for 3d finite deformation problems. Comput Methods Appl Mech Eng 110:359–386CrossRefMATHMathSciNet Simo JC, Armero F, Taylor RL (1993) Improved versions of assumed enhanced strain tri-linear elements for 3d finite deformation problems. Comput Methods Appl Mech Eng 110:359–386CrossRefMATHMathSciNet
18.
go back to reference Roehl D, Ramm E (1996) Large elasto-plastic finite element analysis of solids and shells with the enhanced assumed strain concept. Int J Solids Struct 33:3215–3237CrossRefMATHMathSciNet Roehl D, Ramm E (1996) Large elasto-plastic finite element analysis of solids and shells with the enhanced assumed strain concept. Int J Solids Struct 33:3215–3237CrossRefMATHMathSciNet
19.
go back to reference de Souza Neto EA, Peric D, Dutko M, Owen DRJ (1996) Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int J Solids Struct 33:3277–3296CrossRefMATH de Souza Neto EA, Peric D, Dutko M, Owen DRJ (1996) Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int J Solids Struct 33:3277–3296CrossRefMATH
20.
go back to reference Korelc J, Wriggers P (1996) Consistent gradient formulation for a stable enhanced strain method for large deformation. Eng Comput 13:103–123CrossRef Korelc J, Wriggers P (1996) Consistent gradient formulation for a stable enhanced strain method for large deformation. Eng Comput 13:103–123CrossRef
21.
go back to reference Glaser S, Armero F (1996) On the formulation of enhanced strain finite elements in finite deformation. Eng Comput 14:759–791CrossRef Glaser S, Armero F (1996) On the formulation of enhanced strain finite elements in finite deformation. Eng Comput 14:759–791CrossRef
22.
go back to reference Bischoff M, Ramm E, Braess D (1999) A class of equivalent enhanced assumed strain and hybrid stress finite elements. Comput Mech 22:443–449CrossRefMATH Bischoff M, Ramm E, Braess D (1999) A class of equivalent enhanced assumed strain and hybrid stress finite elements. Comput Mech 22:443–449CrossRefMATH
23.
go back to reference Cesar de Sa JMA, Natal Jorge RM (1999) New enhanced strain elements for incompressible problems. Int J Numer Methods Eng 44:229–248CrossRefMATH Cesar de Sa JMA, Natal Jorge RM (1999) New enhanced strain elements for incompressible problems. Int J Numer Methods Eng 44:229–248CrossRefMATH
24.
go back to reference Kasper EP, Taylor RL (2000) A mixed enhanced strain method: part 2. Geometrically non-linear problems. Comput Struct 75:251–260CrossRef Kasper EP, Taylor RL (2000) A mixed enhanced strain method: part 2. Geometrically non-linear problems. Comput Struct 75:251–260CrossRef
25.
go back to reference Reese S, Kussner M, Reddy BD (1999) A new stabilization technique for finite elements in non-linear elasticity. Int J Numer Methods Eng 44:1617–1652CrossRefMATHMathSciNet Reese S, Kussner M, Reddy BD (1999) A new stabilization technique for finite elements in non-linear elasticity. Int J Numer Methods Eng 44:1617–1652CrossRefMATHMathSciNet
26.
go back to reference Reese S, Wriggers P, Reddy BD (2000) A new locking-free brick element technique for large deformation problems in elasticity. Comput Struct 75:291–304CrossRefMathSciNet Reese S, Wriggers P, Reddy BD (2000) A new locking-free brick element technique for large deformation problems in elasticity. Comput Struct 75:291–304CrossRefMathSciNet
27.
go back to reference Areias PMA, Cesar de Sa JMA, Conceicao Antonio CA, Fernandes AA (2003) Analysis of 3D problems using a new enhanced strain hexahedral element. Int J Numer Methods Eng 58:1637–1682CrossRefMATH Areias PMA, Cesar de Sa JMA, Conceicao Antonio CA, Fernandes AA (2003) Analysis of 3D problems using a new enhanced strain hexahedral element. Int J Numer Methods Eng 58:1637–1682CrossRefMATH
28.
go back to reference Belytschko T, Tsay CS (1983) A stabilization procedure for the quadrilateral plate element with one-point quadrature. Int J Numer Methods Eng 19:405–419CrossRefMATH Belytschko T, Tsay CS (1983) A stabilization procedure for the quadrilateral plate element with one-point quadrature. Int J Numer Methods Eng 19:405–419CrossRefMATH
29.
go back to reference Belytschko T, Lin JI, Tsay C (1984) Explicit algorithms for the nonlinear dynamics of shells. Comput Methods Appl Mech Eng 42:225–251CrossRef Belytschko T, Lin JI, Tsay C (1984) Explicit algorithms for the nonlinear dynamics of shells. Comput Methods Appl Mech Eng 42:225–251CrossRef
30.
go back to reference Belytschko T, Bachrach W (1986) Efficient implementation of quadrilaterals with high coarse-mesh accuracy. Comput Methods Appl Mech Eng 54:279–301 Belytschko T, Bachrach W (1986) Efficient implementation of quadrilaterals with high coarse-mesh accuracy. Comput Methods Appl Mech Eng 54:279–301
31.
go back to reference Cardoso RPR, Yoon JW (2005) One point quadrature shell elements for sheet metal forming analysis. Arch Comput Methods Eng 12:3–66CrossRefMATH Cardoso RPR, Yoon JW (2005) One point quadrature shell elements for sheet metal forming analysis. Arch Comput Methods Eng 12:3–66CrossRefMATH
32.
go back to reference Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput 1:77–88CrossRef Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput 1:77–88CrossRef
33.
go back to reference Cardoso RPR, Yoon JW, Gracio JJ, Barlat F, Cesar de Sa JMA (2002) Development of a one point quadrature shell element for nonlinear applications with contact and anisotropy. Comput Methods Appl Mech Eng 191:5177–5206CrossRefMATH Cardoso RPR, Yoon JW, Gracio JJ, Barlat F, Cesar de Sa JMA (2002) Development of a one point quadrature shell element for nonlinear applications with contact and anisotropy. Comput Methods Appl Mech Eng 191:5177–5206CrossRefMATH
34.
go back to reference Cardoso RPR, Yoon JW (2005) One point quadrature shell element with through-thickness stretch. Comput Methods Appl Mech Eng 194:1161–1199CrossRefMATH Cardoso RPR, Yoon JW (2005) One point quadrature shell element with through-thickness stretch. Comput Methods Appl Mech Eng 194:1161–1199CrossRefMATH
35.
go back to reference Piegl L, Tiller W (1996) The NURBS book. Springer, Berlin Piegl L, Tiller W (1996) The NURBS book. Springer, Berlin
36.
go back to reference Austin Cottrell J, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis, toward integration of CAD and FEA. Wiley, United Kingdom Austin Cottrell J, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis, toward integration of CAD and FEA. Wiley, United Kingdom
37.
go back to reference Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-Splines. Comput Methods Appl Mech Eng 199:229–263CrossRefMATHMathSciNet Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-Splines. Comput Methods Appl Mech Eng 199:229–263CrossRefMATHMathSciNet
38.
go back to reference Liu GR (2003) Mesh free methods, moving beyond the finite element method. CRC Press, New YorkMATH Liu GR (2003) Mesh free methods, moving beyond the finite element method. CRC Press, New YorkMATH
39.
go back to reference Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47CrossRefMATH Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47CrossRefMATH
40.
go back to reference Cardoso RPR, Yoon JW (2007) One point quadrature shell elements: a study on convergence and patch tests. Comput Mech 40:871–883CrossRefMATH Cardoso RPR, Yoon JW (2007) One point quadrature shell elements: a study on convergence and patch tests. Comput Mech 40:871–883CrossRefMATH
41.
go back to reference Cardoso RPR, Yoon JW, Mahardika M, Choudhry S, Alves de Sousa RJ, Fontes Valente RA (2008) Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements. Int J Numer Methods Eng 75:156–187CrossRefMATHMathSciNet Cardoso RPR, Yoon JW, Mahardika M, Choudhry S, Alves de Sousa RJ, Fontes Valente RA (2008) Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid-shell elements. Int J Numer Methods Eng 75:156–187CrossRefMATHMathSciNet
42.
go back to reference Cardoso RPR, Cesar de Sa JMA (2012) The enhanced assumed strain method for the isogeometric analysis of nearly incompressible deformation of solids. Int J Numer Methods Eng 92:56–78CrossRefMathSciNet Cardoso RPR, Cesar de Sa JMA (2012) The enhanced assumed strain method for the isogeometric analysis of nearly incompressible deformation of solids. Int J Numer Methods Eng 92:56–78CrossRefMathSciNet
43.
go back to reference Cook RD, Malkus DS, Plesha ME (1989) Concepts and applications of finite element analysis. Wiley, New YorkMATH Cook RD, Malkus DS, Plesha ME (1989) Concepts and applications of finite element analysis. Wiley, New YorkMATH
44.
go back to reference Morley LSD (1963) Skew plates and structures. Pergamon Press, LondonMATH Morley LSD (1963) Skew plates and structures. Pergamon Press, LondonMATH
45.
go back to reference Hughes TJR, Tezduyar TE (1981) Finite elements based upon mindlin plate theory with particular reference to the four-node bilinear isoparametric element. J Appl Mech 48:587–596CrossRefMATH Hughes TJR, Tezduyar TE (1981) Finite elements based upon mindlin plate theory with particular reference to the four-node bilinear isoparametric element. J Appl Mech 48:587–596CrossRefMATH
Metadata
Title
Blending moving least squares techniques with NURBS basis functions for nonlinear isogeometric analysis
Authors
Rui P. R. Cardoso
J. M. A. Cesar de Sa
Publication date
01-06-2014
Publisher
Springer Berlin Heidelberg
Published in
Computational Mechanics / Issue 6/2014
Print ISSN: 0178-7675
Electronic ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-014-0977-5

Other articles of this Issue 6/2014

Computational Mechanics 6/2014 Go to the issue