Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2018

Open Access 01-12-2018 | Research

Blending type approximation by \(GBS\) operators of bivariate tensor product of λ-Bernstein–Kantorovich type

Authors: Qing-Bo Cai, Guorong Zhou

Published in: Journal of Inequalities and Applications | Issue 1/2018

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we introduce a family of \(GBS\) operators of bivariate tensor product of λ-Bernstein–Kantorovich type. We estimate the rate of convergence of such operators for B-continuous and B-differentiable functions by using the mixed modulus of smoothness, establish the Voronovskaja type asymptotic formula for the bivariate λ-Bernstein–Kantorovich operators, as well as give some examples and their graphs to show the effect of convergence.
Notes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

In 1912, Bernstein [1] constructed a sequence of polynomials to prove the Weierstrass approximation theorem as follows:
$$\begin{aligned} B_{n}(f;x)=\sum_{k=0}^{n}f \biggl( \frac{k}{n} \biggr) b_{n,k}(x), \end{aligned}$$
(1)
for any continuous function \(f\in C[0,1]\), where \(x\in [0,1]\), \(n=1,2,\dots \), and Bernstein basis functions \(b_{n,k}(x)\) are defined by
b n , k ( x ) = ( n k ) x k ( 1 x ) n k .
(2)
The polynomials in (1), called Bernstein polynomials, possess many remarkable properties.
Recently, Cai et al. [2] proposed a new type λ-Bernstein operators with parameter \(\lambda \in [-1,1]\), they obtained some approximation properties and gave some graphs and numerical examples to show that these operators converge to continuous functions f. These operators, which they called λ-Bernstein operators, are defined as follows:
$$\begin{aligned} B_{n,\lambda }(f;x)=\sum_{k=0}^{n} \widetilde{b}_{n,k}(\lambda;x)f \biggl( \frac{k}{n} \biggr), \end{aligned}$$
(3)
where
$$\begin{aligned} \textstyle\begin{cases} \widetilde{b}_{n,0}(\lambda;x)=b_{n,0}(x)-\frac{\lambda }{n+1}b_{n+1,1}(x), \\ \widetilde{b}_{n,i}(\lambda;x)=b_{n,i}(x)+\lambda ( \frac{n-2i+1}{n ^{2}-1}b_{n+1,i}(x)-\frac{n-2i-1}{n^{2}-1}b_{n+1,i+1}(x) ), \\ \widetilde{b}_{n,n}(\lambda;x)=b_{n,n}(x)-\frac{\lambda }{n+1}b_{n+1,n}(x), \end{cases}\displaystyle \end{aligned}$$
(4)
\(1\leq i\leq n-1\), \({b}_{n,k}(x)\) (\(k=0,1,\dots,n\)) are defined in (2) and \(\lambda \in [-1,1]\).
In [3], Cai introduced the λ-Bernstein–Kantorovich operators as
$$\begin{aligned} K_{n,\lambda }(f;x)=(n+1)\sum_{k=0}^{n} \widetilde{b}_{n,k}(\lambda;x) \int_{\frac{k}{n+1}}^{\frac{k+1}{n+1}}f(t)\,dt, \end{aligned}$$
(5)
where \(\widetilde{b}_{n,k}(\lambda,x)\) (\(k=0,1,\dots,n\)) are defined in (2) and \(\lambda \in [-1,1]\). He established a global approximation theorem in terms of second order modulus of continuity, obtained a direct approximation theorem by means of the Ditzian–Totik modulus of smoothness and derived an asymptotically estimate on the rate of convergence for certain absolutely continuous functions. Very recently, Acu et al. provided a quantitative Voronovskaja type theorem, a Grüss–Voronovskaja type theorem, and also gave some numerical examples of the operators defined in (5) in [4].
As we know, the generalized Boolean sum operators (abbreviated by \(GBS\) operators) were first studied by Dobrescu and Matei in [5]. The Korovkin theorem for B-continuous functions was established by Badea et al. in [6, 7]. In 2013, Miclăuş [8] studied the approximation by the \(GBS\) operators of Bernstein–Stancu type. In 2016, Agrawal et al. [9] considered the bivariate generalization of Lupaş–Durrmeyer type operators based on Pólya distribution and studied the degree of approximation for the associated \(GBS\) operators. In 2017, Bărbosu et al. [10] introduced the \(GBS\) operators of Durrmeyer type based on q-integers, studied the uniform convergence theorem and the degree of approximation of these operators. Very recently, Kajla and Miclăuş [11] introduced the \(GBS\) operators of generalized Bernstein–Durrmeyer type and estimated the degree of approximation in terms of the mixed modulus of smoothness.
Motivated by the above research, the aims of this paper are to propose the bivariate tensor product of λ-Bernstein–Kantorovich operators and the \(GBS\) operators of bivariate tensor product of λ-Bernstein–Kantorovich type. We use the mixed modulus of smoothness to estimate the rate of convergence of GBS operators of bivariate tensor product of λ-Bernstein–Kantorovich type for B-continuous and B-differentiable functions, and establish a Voronovskaja type asymptotic formula for the bivariate λ-Bernstein–Kantorovich operators. In order to show the effect of convergence, we also give some examples and graphs.
This paper is mainly organized as follows: In Sect. 2, we introduce the bivariate tensor product of λ-Bernstein–Kantorovich operators \(K_{m,n}^{\lambda_{1},\lambda_{2}}(f;x,y)\) and the \(GBS\) operators \(UK_{m,n}^{\lambda_{1},\lambda_{2}}(f;x,y)\). In Sect. 3, some lemmas are given to prove the main results. In Sect. 4, the rate of convergence for B-continuous and B-differentiable functions of \(GBS\) operators \(UK_{m,n}^{\lambda_{1},\lambda_{2}}(f;x,y)\) is proved. In Sect. 5, we investigate the Voronovskaja type asymptotic formula for bivariate operators \(K_{m,n}^{\lambda_{1},\lambda_{2}}(f;x,y)\).

2 Construction of operators

For \(f\in C(I^{2})\), \(I^{2}=[0,1]\times [0,1]\), \(\lambda_{1}, \lambda _{2}\in [-1,1]\), we introduce the bivariate tensor product of λ-Bernstein–Kantorovich operators as
$$\begin{aligned}& K_{m,n}^{\lambda_{1},\lambda_{2}}(f;x,y) \\& \quad =(m+1) (n+1)\sum_{i=0}^{m}\sum _{j=0}^{n}\widetilde{b}_{m,i}( \lambda _{1};x)\widetilde{b}_{n,j}(\lambda_{2};y) \int_{\frac{i}{m+1}}^{ \frac{i+1}{m+1}} \int_{\frac{j}{n+1}}^{\frac{j+1}{n+1}}f(t,s)\,dt\,ds, \end{aligned}$$
(6)
where \(\widetilde{b}_{m,i}(\lambda_{1};x)\) (\(i=0,1,\dots,n\)) and \(\widetilde{b}_{n,j}(\lambda_{2};y)\) (\(j=0,1,\dots,n\)) are defined in (4), \(\lambda_{1}, \lambda_{2}\in [-1,1]\). Obviously, when \(\lambda_{1}=\lambda_{2}=0\), \(B_{m,n}^{0,0}(f;x,y)\) reduce to the bivariate tensor product of classical Bernstein–Kantorovich operators.
The \(GBS\) operators of the bivariate tensor product of λ-Bernstein–Kantorovich type are defined as
$$\begin{aligned}& UK_{m,n}^{\lambda_{1},\lambda_{2}} \bigl( f(t,s);x,y \bigr) \\& \quad =K_{m,n}^{\lambda_{1},\lambda_{2}} \bigl( f(x,s)+f(t,y)-f(t,s);x,y \bigr) \\& \quad =(m+1) (n+1)\sum_{i=0}^{m}\sum _{j=0}^{n}\widetilde{b}_{m,i}( \lambda _{1};x)\widetilde{b}_{n,j}(\lambda_{2};y) \int_{\frac{i}{m+1}}^{ \frac{i+1}{m+1}} \int_{\frac{j}{n+1}}^{\frac{j+1}{n+1}}\bigl[ f(x,s)+f(t,y) \\& \qquad{}-f(t,s)\bigr]\,ds\,dt, \end{aligned}$$
(7)
for \(f\in C_{b}(I^{2})\). Obviously, the operators \(UK_{m,n}^{\lambda _{1},\lambda_{2}}(f;x,y)\) are positive linear operators.

3 Auxiliary results

In order to obtain the main results, we need the following lemmas.
Lemma 3.1
([4])
For λ-Bernstein–Kantorovich operators \(K_{n,\lambda }(f;x)\) and \(n>1\), we have the following equalities:
$$\begin{aligned}& K_{n,\lambda }(1;x) =1; \\& K_{n,\lambda }(t;x) =x+\frac{1-2x}{2(n+1)}+\frac{1-2x+x^{n+1}-(1-x)^{n+1}}{n ^{2}-1}\lambda; \\& K_{n,\lambda }\bigl(t^{2};x\bigr) =x^{2}- \frac{9nx^{2}-6nx+3x^{2}-1}{3(n+1)^{2}}+\frac{2(-2x^{2}n+x^{n+1}n+xn+x ^{n+1}-x)\lambda }{(n-1)(n+1)^{2}}; \\& K_{n,\lambda }\bigl(t^{3};x\bigr) =x^{3}- \frac{24n^{2}x^{3}-18n^{2}x^{2}+4nx ^{3}+18nx^{2}+4x^{3}-14nx-1}{4(n+1)^{3}} \\& \hphantom{K_{n,\lambda }(t^{3};x) =}{}+\frac{\lambda }{2(n+1)^{3}(n-1)}\bigl[ -12n^{2}x^{3}+6n^{2}x^{2}+12x ^{3}n+6x^{n+1}n^{2}-30x^{2}n \\& \hphantom{K_{n,\lambda }(t^{3};x) =}{} +12x^{n+1}n+6xn+7x^{n+1}-(1-x)^{n+1}-8x+1 \bigr] ; \\& K_{n,\lambda }\bigl(t^{4};x\bigr) =\frac{1}{5(n+1)^{4}} \bigl( 5n^{5}x^{4}-30n ^{3}x^{4}+40n^{3}x^{3}+55n^{2}x^{4}-120n^{2}x^{3}-30nx^{4} \\& \hphantom{K_{n,\lambda }(t^{4};x)=}{} +75n^{2}x^{2}+80nx^{3}-75nx^{2}+30nx+1 \bigr) +\frac{2\lambda }{(n-1)(n+1)^{4}}\bigl( -4n^{3}x^{4} \\& \hphantom{K_{n,\lambda }(t^{4};x)=}{} +2n^{3}x^{3}+12n^{2}x^{4}-24n^{2}x^{3} -8x^{4}n+2x^{n+1}n^{3}+6n ^{2}x^{2}+22x^{3}n \\& \hphantom{K_{n,\lambda }(t^{4};x)=}{} +6x^{n+1}n^{2}-24x^{2}n+3xn+3x^{n+1}-3x \bigr). \end{aligned}$$
Lemma 3.2
([4])
For λ-Bernstein–Kantorovich operators \(K_{n,\lambda }(f;x)\) and \(n>1\), we have
$$\begin{aligned}& K_{n,\lambda }(t-x;x) =\frac{1-2x}{2(n+1)}+\frac{1-2x+x^{n+1}-(1-x)^{n+1}}{n ^{2}-1}\lambda; \\& K_{n,\lambda } \bigl( (t-x)^{2};x \bigr) =\frac{x(1-x)}{n+1}+ \frac{1-6x+6x ^{2}}{3(n+1)^{2}}+\frac{2\lambda [ x^{n+1}(1-x)+x(1-x)^{n+1} ] }{n ^{2}-1} \\& \hphantom{K_{n,\lambda } ( (t-x)^{2};x )=}{}-\frac{4x(1-x)\lambda }{(n+1)^{2}(n-1)}. \end{aligned}$$
Lemma 3.3
(See [4, Lemma 2.4])
We have
$$\begin{aligned}& \lim_{n\rightarrow \infty }nK_{n,\lambda }(t-x;x)=\frac{1}{2}-x; \\& \lim_{n\rightarrow \infty }nK_{n,\lambda } \bigl( (t-x)^{2};x \bigr) =x(1-x),\quad x\in (0,1), \\& \lim_{n\rightarrow \infty }n^{2}K_{n,\lambda } \bigl( (t-x)^{4};x \bigr) =O(1),\quad x\in (0,1). \end{aligned}$$
Lemma 3.4
For the bivariate tensor product of λ-Bernstein–Kantorovich operators \(K_{m,n}^{\lambda_{1},\lambda_{2}}(f;x,y)\), we have the following inequalities:
$$\begin{aligned}& K_{m,n}^{\lambda_{1},\lambda_{2}} \bigl( (t-x)^{2};x,y \bigr) \leq \frac{2}{m+1}; \\& K_{m,n}^{\lambda_{1},\lambda_{2}} \bigl( (s-y)^{2};x,y \bigr) \leq \frac{2}{n+1}; \\& K_{m,n}^{\lambda_{1},\lambda_{2}} \bigl( (t-x)^{2}(s-y)^{2};x,y \bigr) \leq \frac{4}{(m+1)(n+1)}; \\& K_{m,n}^{\lambda_{1},\lambda_{2}} \bigl( (t-x)^{4}(s-y)^{2};x,y \bigr) \leq \frac{C}{(m+1)^{2}(n+1)}; \\& K_{m,n}^{\lambda_{1},\lambda_{2}} \bigl( (t-x)^{2}(s-y)^{4};x,y \bigr) \leq \frac{C}{(m+1)(n+1)^{2}}, \end{aligned}$$
where C is a positive constant.

4 Rate of convergence

We first introduce the definitions of B-continuity and B-differentiability, details can be found in [12] and [13]. Let X and Y be compact real intervals. A function f: \(X\times Y\rightarrow \mathbb{R}\) is called a B-continuous function at \((x_{0}, y_{0})\in X\times Y\) if
$$\begin{aligned} \lim_{(x,y)\rightarrow (x_{0},y_{0})}\triangle f\bigl((x,y),(x_{0},y_{0}) \bigr)=0, \end{aligned}$$
where \(\triangle f((x,y),(x_{0},y_{0}))=f(x,y)-f(x_{0},y)-f(x,y_{0})+f(x _{0},y_{0})\) denotes the mixed difference of f. A function \(f: X\times Y\rightarrow \mathbb{R}\) is a B-differentiable function at \((x_{0},y_{0})\in X\times Y\) if the following limit exists and is finite:
$$\begin{aligned} \lim_{(x,y)\rightarrow (x_{0},y_{0})}\frac{\triangle f((x,y),(x_{0},y _{0}))}{(x-x_{0})(y-y_{0})}. \end{aligned}$$
The limit is named the B-differential of f at the point \((x_{0},y_{0})\) and denoted by \(D_{B}f(x_{0},y_{0})\).
The function \(f: X\times Y\rightarrow \mathbb{R}\) is B-bounded on \(X\times Y\) if there exists a \(k>0\) such that \(|\triangle f((x,y),(t,s))| \leq K\) for any \((x,y), (t,s)\in X\times Y\).
Let \(B(X\times Y)\), \(C(X\times Y)\) denote the spaces of all bounded functions and of all continuous functions on \(X\times Y\) endowed with the sup-norm \(\|\cdot \|_{\infty }\), respectively. We also define the following function sets:
$$ B_{b}(X\times Y)=\{f: X\times Y\rightarrow \mathbb{R}|f \text{ is } B \text{-bounded on } X \times Y\} $$
with the norm \(\|f\|_{B}=\sup_{(x,y),(t,s)\in X\times Y}|\triangle f((x,y),(t,s))|\),
$$ C_{b}(X\times Y)=\{f: X\times Y\rightarrow \mathbb{R}|f \text{ is } B \text{-continuous on } X\times Y\}, $$
and \(D_{b}(X\times Y)=\{f: X\times Y\rightarrow \mathbb{R}|f \text{ is } B\text{-differentiable on } X\times Y\}\). It is known that \(C(X\times Y)\subset C_{b}(X\times Y)\).
Let \(f\in B_{b}(X\times Y)\). Then the mixed modulus of smoothness \(\omega_{\mathrm{mixed}}(f;\cdot,\cdot)\) is defined by
$$\begin{aligned} \omega_{\mathrm{mixed}}(f;\delta_{1},\delta_{2})=\sup \bigl\{ \bigl\vert \triangle f\bigl((x,y),(t,s)\bigr) \bigr\vert : \vert x-t \vert \leq \delta_{1}, \vert y-s \vert \leq \delta_{2} \bigr\} , \end{aligned}$$
for any \(\delta_{1},\delta_{2}\geq 0\).
Let \(L: C_{b}(X\times Y)\rightarrow B(X\times Y)\) be a linear positive operator. The operator \(UL: C_{b}(X\times Y)\rightarrow B(X\times Y)\) defined for any function \(f\in C_{b}(X\times Y)\) and any \((x,y)\in X \times Y\) by \(UL ( f(t,s);x,y ) =L ( f(t,y)+f(x,s)-f(t,s);x,y ) \) is called the \(GBS\) operator associated to the operator L.
In the sequel, we will consider functions \(e_{ij}: X\times Y\rightarrow \mathbb{R}\), \(e_{ij}(x,y)=x^{i}y^{j}\) for any \((x,y)\in X\times Y\), and \(i,j\in \mathbb{N}\). In order to estimate the rate of convergence of \(UK_{m,n}^{\lambda_{1},\lambda_{2}}(f;x,y)\), we need the following two theorems.
Theorem 4.1
([7])
Let \(L: C_{b}(X\times Y)\rightarrow B(X\times Y)\) be a linear positive operator and \(UL: C_{b}(X\times Y)\rightarrow B(X\times Y)\) the associated GBS operator. Then for any \(f\in C_{b}(X\times Y)\), any \((x,y)\in (X\times Y)\) and \(\delta_{1},\delta_{2}>0\), we have
$$\begin{aligned}& \bigl\vert UL \bigl( f(t,s);x,y \bigr) -f(x,y) \bigr\vert \\& \quad \leq \bigl\vert f(x,y) \bigr\vert \bigl\vert 1-L ( e_{00};x,y ) \bigr\vert + \bigl[ L ( e_{00};x,y ) + \delta_{1}^{-1}\sqrt{L \bigl( (t-x)^{2};x,y \bigr) } \\& \qquad {} +\delta_{2}^{-1}\sqrt{L \bigl( (s-y)^{2};x,y \bigr) }+\delta _{1}^{-1}\delta_{2}^{-1} \sqrt{L \bigl( (t-x)^{2}(s-y)^{2};x,y \bigr) }\bigr] \omega_{\mathrm{mixed}}(f;\delta_{1},\delta_{2}). \end{aligned}$$
Theorem 4.2
([14])
Let \(L: C_{b}(X\times Y)\rightarrow B(X\times Y)\) be a linear positive operator and \(UL: C_{b}(X\times Y)\rightarrow B(X\times Y)\) the associated GBS operator. Then for any \(f\in D_{b}(X\times Y)\) with \(D_{B}f\in B(X\times Y)\), any \((x,y)\in (X\times Y)\) and \(\delta_{1}, \delta_{2}>0\), we have
$$\begin{aligned}& \bigl\vert UL \bigl( f(t,s);x,y \bigr) -f(x,y) \bigr\vert \\& \quad \leq \bigl\vert f(x,y) \bigr\vert \bigl\vert 1-L ( e_{00};x,y ) \bigr\vert +3 \Vert D_{B}f \Vert _{ \infty }\sqrt{L \bigl( (t-x)^{2}(s-y)^{2};x,y \bigr) } \\& \qquad {}+ \bigl[ \sqrt{L \bigl( (t-x)^{2}(s-y)^{2};x,y \bigr) }+\delta_{1}^{-1}\sqrt{L \bigl( (t-x)^{4}(s-y)^{2};x,y \bigr) } \\& \qquad {}+\delta_{2}^{-1}\sqrt{L \bigl( (t-x)^{2}(s-y)^{4};x,y \bigr) }+ \delta_{1}^{-1} \delta_{2}^{-1}L \bigl( (t-x)^{2}(s-y)^{2};x,y \bigr) \bigr] \\& \qquad {}\times \omega_{\mathrm{mixed}} ( D_{B}f;\delta_{1}, \delta_{2} ). \end{aligned}$$
First, we will use B-continuous functions to estimate the rate of convergence of \(UK_{m,n}^{\lambda_{1},\lambda_{2}}(f;x,y)\) to \(f\in C_{b}(I^{2})\) by using the mixed modulus of smoothness. We have
Theorem 4.3
For \(f\in C_{b}(I^{2})\), \((x,y)\in I^{2}\) and \(m,n>1\), we have the following inequality:
$$\begin{aligned} \bigl\vert UK_{m,n}^{\lambda_{1},\lambda_{2}}(f;x,y)-f(x,y) \bigr\vert \leq ( 3+2\sqrt{2} ) \omega_{\mathrm{mixed}} \biggl( f; \frac{1}{\sqrt{m+1}}, \frac{1}{\sqrt{n+1}} \biggr). \end{aligned}$$
(8)
Proof
Applying Theorem 4.1 and using Lemma 3.4, we get
$$\begin{aligned}& \bigl\vert UK_{m,n}^{\lambda_{1},\lambda_{2}}(f;x,y)-f(x,y) \bigr\vert \\& \quad \leq \biggl[ 1+\frac{1}{\delta_{1}}\sqrt{\frac{2}{m+1}}+ \frac{1}{ \delta_{2}}\sqrt{\frac{2}{n+1}}+\frac{2}{\delta_{1}\delta_{2} \sqrt{(m+1)(n+1)}} \biggr] \omega_{\mathrm{mixed}}(f;\delta_{1},\delta_{2}). \end{aligned}$$
Therefore, (8) can be obtained from the above inequality by choosing \(\delta_{1}=\frac{1}{\sqrt{m+1}}\) and \(\delta_{2}=\frac{1}{ \sqrt{n+1}}\). □
Next, we will give the rate of convergence to the B-differentiable functions for \(UK_{m,n}^{\lambda_{1},\lambda_{2}}(f;x,y)\).
Theorem 4.4
Let \(f\in D_{b}(I^{2})\), \(D_{B}f\in B(I^{2})\), \((x,y)\in I^{2}\) and \(m,n>1\), we have the following inequality:
$$\begin{aligned}& \bigl\vert UK_{m,n}^{\lambda_{1},\lambda_{2}}(f;x,y)-f(x,y) \bigr\vert \\& \quad \leq \frac{M}{\sqrt{(m+1)(n+1)}} \biggl[ \Vert D_{B}f \Vert _{\infty }+ \omega_{\mathrm{mixed}} \biggl( D_{B}f; \frac{1}{\sqrt{m+1}},\frac{1}{ \sqrt{n+1}} \biggr) \biggr] , \end{aligned}$$
(9)
where C and M are positive constants.
Proof
Using Theorem 4.2 and Lemma 3.4, we have
$$\begin{aligned}& \bigl\vert UK_{m,n}^{\lambda_{1},\lambda_{2}}(f;x,y)-f(x,y) \bigr\vert \\& \quad \leq \frac{6 \Vert D_{B}f \Vert _{\infty }}{\sqrt{(m+1)(n+1)}}+ \biggl[ \frac{2}{ \sqrt{(m+1)(n+1)}}+\frac{1}{\delta_{1}(m+1)} \sqrt{\frac{C}{n+1}} \\& \qquad {} +\frac{1}{\delta_{2}(n+1)}\sqrt{\frac{C}{m+1}}+\frac{4}{ \delta_{1}\delta_{2}(m+1)(n+1)} \biggr] \omega_{\mathrm{mixed}} ( D_{B}f; \delta_{1}, \delta_{2} ). \end{aligned}$$
Hence, taking \(\delta_{1}=\frac{1}{\sqrt{m+1}}\), \(\delta_{2}=\frac{1}{ \sqrt{n+1}}\) and using the above inequality, we get the desired result (9). □
Example 4.5
Let \(f(x,y) = xy+x^{2}\), \(x,y\in [0,1]\), the graphs of \(f(x,y)\) and \(UK_{10,10}^{1,1}(f(s,t);x,y)\) are shown in Fig. 1. Figure 2 shows the partially enlarged graphs of \(f(x,y)\) and \(UK_{10,10}^{1,1}(f(s,t);x,y)\).

5 Voronovskaja type asymptotic formulas for \(K_{m,n}^{\lambda _{1},\lambda _{2}}(f;x,y)\)

In this section, we will give a Voronovskaja type asymptotic formula for \(K_{m,n}^{\lambda_{1},\lambda_{2}}(f;x,y)\).
Theorem 5.1
Consider an \(f\in C(I^{2})\). Then for any \(x,y\in (0,1)\) and \(\lambda_{1},\lambda_{2}\in [-1,1]\), we have
$$\begin{aligned}& \lim_{n\rightarrow \infty }n \bigl[ K_{n,n}^{\lambda_{1},\lambda_{2}}(f;x,y)-f(x,y) \bigr] \\& \quad =\frac{f^{\prime}_{x}(x,y)}{2}(1-2x)+\frac{f^{\prime}_{y}(x,y)}{2}(1-2y)+ \frac{1}{2} \bigl[ f^{\prime\prime }_{x^{2}}(x,y)x(1-x)+f^{\prime\prime }_{y^{2}}(x,y)y(1-y) \bigr] . \end{aligned}$$
Proof
For \((x,y), (t,s)\in I^{2}\), by Taylor’s expansion, we have
$$\begin{aligned}& f(t,s) \\& \quad =f(x,y)+f^{\prime}_{x}(x,y) (t-x)+f^{\prime}_{y}(x,y) (s-y)+\frac{1}{2} \bigl[ f ^{\prime\prime }_{x^{2}}(x,y) (t-x)^{2}+2f^{\prime\prime }_{xy}(x,y) \\& \qquad {}\times (t-x) (s-y)+f^{\prime\prime }_{y^{2}}(x,y) (s-y)^{2} \bigr] +\rho (t,s;x,y) \sqrt{(t-x)^{4}+(s-y)^{4}}, \end{aligned}$$
(10)
where \(\rho (t,s;x,y)\in C(I^{2})\) and \(\lim_{(t,s)\rightarrow (x,y)} \rho (t,s;x,y)=0\).
Applying \(K_{n,n}^{\lambda_{1},\lambda_{2}}(f;x)\) to (10), we obtain
$$\begin{aligned} K_{n,n}^{\lambda_{1},\lambda_{2}}(f;x,y) =&f(x,y)+f^{\prime}_{x}(x,y)K _{n,\lambda_{1}}(t-x;x)+f^{\prime}_{y}(x,y)K_{n,\lambda_{2}}(s-y;y) \\ &{}+\frac{1}{2} \bigl[ f^{\prime\prime }_{x^{2}}(x,y)K_{n,\lambda_{1}} \bigl( (t-x)^{2};x \bigr) +f ^{\prime\prime }_{y^{2}}(x,y)K_{n,\lambda_{2}} \bigl( (s-y)^{2};y \bigr) \\ &{} +2f^{\prime\prime }_{xy}(x,y)K_{n,n}^{\lambda_{1},\lambda_{2}} \bigl( (t-x) (s-y);x,y \bigr) \bigr] \\ &{}+K_{n,n}^{\lambda_{1},\lambda_{2}} \bigl( \rho (t,s;x,y) \sqrt{(t-x)^{4}+(s-y)^{4}};x,y \bigr). \end{aligned}$$
Taking the limit on both sides of the above equality, we have
$$\begin{aligned}& \lim_{n\rightarrow \infty }n \bigl[ K_{n,n}^{\lambda_{1},\lambda_{2}}(f;x,y)-f(x,y) \bigr] \\& \quad =f^{\prime}_{x}(x,y)\lim_{n\rightarrow \infty }nK_{n,\lambda_{1}}(t-x;x)+f ^{\prime}_{y}(x,y)\lim_{n\rightarrow \infty }nK_{n,\lambda_{2}}(s-y;y) \\& \qquad {}+\frac{1}{2} \Bigl[ f^{\prime\prime }_{x^{2}}(x,y)\lim _{n\rightarrow \infty }nK _{n,\lambda_{1}} \bigl( (t-x)^{2};x \bigr) \\& \qquad {}+f^{\prime\prime }_{y^{2}}(x,y)\lim_{n\rightarrow \infty }nK_{n,\lambda_{2}} \bigl( (s-y)^{2};y \bigr) \\& \qquad {}+ 2f^{\prime\prime }_{xy}(x,y)\lim_{n\rightarrow \infty }nK_{n,n}^{\lambda _{1},\lambda_{2}} \bigl( (t-x) (s-y);x,y \bigr) \Bigr] \\& \qquad {}+\lim_{n\rightarrow \infty }nK_{n,n}^{\lambda_{1},\lambda_{2}} \bigl( \rho (t,s;x,y) \sqrt{(t-x)^{4}+(s-y)^{4}};x,y \bigr). \end{aligned}$$
(11)
Using Lemma 3.2, we have
$$\begin{aligned}& \lim_{n\rightarrow \infty }nK_{n,n}^{\lambda_{1},\lambda_{2}} \bigl( (t-x) (s-y);x,y \bigr) =\lim_{n\rightarrow \infty }n \bigl[ K_{n,\lambda_{1}}(t-x;x)K_{n, \lambda_{2}}(s-y;y) \bigr] =0. \end{aligned}$$
(12)
By Cauchy–Schwarz inequality, we have
$$\begin{aligned}& nK_{n,n}^{\lambda_{1},\lambda_{2}} \bigl( \rho (t,s;x,y) \sqrt{(t-x)^{4}+(s-y)^{4}};x,y \bigr) \\& \quad \leq \sqrt{K_{n,n}^{\lambda_{1},\lambda_{2}} \bigl( \rho^{2}(t,s;x,y);x,y \bigr) }\sqrt{n ^{2}K_{n,n}^{\lambda_{1},\lambda_{2}} \bigl( (t-x)^{4}+(s-y)^{4};x,y \bigr) } \\& \quad \leq \sqrt{K_{n,n}^{\lambda_{1},\lambda_{2}} \bigl( \rho^{2}(t,s;x,y);x,y \bigr) } \\& \qquad {}\times \sqrt{n^{2}K_{n,\lambda_{1}} \bigl( (t-x)^{4};x \bigr) +n^{2}K _{n,\lambda_{2}} \bigl( (s-y)^{4};y \bigr) }. \end{aligned}$$
Since \(\lim_{(t,s)\rightarrow (x,y)}\rho (t,s;x,y)=0\), using Lemma 3.3, we obtain
$$\begin{aligned} \lim_{n\rightarrow \infty }nK_{n,n}^{\lambda_{1},\lambda_{2}} \bigl( \rho (t,s;x,y) \sqrt{(t-x)^{4}+(s-y)^{4}};x,y \bigr) =0. \end{aligned}$$
(13)
Therefore, by (11), (12), (13) and Lemma 3.3, we have
$$\begin{aligned}& \lim_{n\rightarrow \infty }n \bigl[ K_{n,n}^{\lambda_{1},\lambda_{2}}(f;x,y)-f(x,y) \bigr] \\& \quad =\frac{f^{\prime}_{x}(x,y)}{2}(1-2x)+\frac{f^{\prime}_{y}(x,y)}{2}(1-2y)+ \frac{1}{2} \bigl[ f^{\prime\prime }_{x^{2}}(x,y)x(1-x)+f^{\prime\prime }_{y^{2}}(x,y)y(1-y) \bigr] . \end{aligned}$$
Thus we have obtained the desired result. □
Example 5.2
Consider the function \(f(x,y) = xy+x^{2}\), \(x,y\in [0,1]\). The graphs of \(f(x,y)\) and \(K_{20,20}^{1,1}(f;x,y)\) are shown in Fig. 3. We also give the graphs of \(K_{10,10}^{1,1}(f;x,y)\) and \(UK_{10,10}^{1,1}(f(s,t);x,y)\) in Fig. 4 to compare the bivariate λ-Bernstein–Kantorovich operators with GBS operators.

6 Conclusion

In this paper, we deduce the rate of convergence of GBS operators of bivariate tensor product of λ-Bernstein–Kantorovich type for B-continuous and B-differentiable functions by using the mixed modulus of smoothness, as well as obtain the Voronovskaja type asymptotic formula for bivariate λ-Bernstein–Kantorovich operators.

Acknowledgements

We thank Fujian Provincial Key Laboratory of Data Intensive Computing and Key Laboratory of Intelligent Computing and Information Processing of Fujian Province University.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literature
1.
go back to reference Bernstein, S.N.: Démonstration du théorème de Weierstrass fondée sur la calcul des probabilités. Comm. Soc. Math. Charkow Sér. 13, 1–2 (1912) MATH Bernstein, S.N.: Démonstration du théorème de Weierstrass fondée sur la calcul des probabilités. Comm. Soc. Math. Charkow Sér. 13, 1–2 (1912) MATH
5.
go back to reference Dobrescu, E., Matei, I.: The approximation by Bernstein type polynomials of bidimensional continuous functions. An. Univ. Timişoara Ser. Şti. Mat.-Fiz. 4, 85–90 (1966) MathSciNetMATH Dobrescu, E., Matei, I.: The approximation by Bernstein type polynomials of bidimensional continuous functions. An. Univ. Timişoara Ser. Şti. Mat.-Fiz. 4, 85–90 (1966) MathSciNetMATH
6.
go back to reference Badea, C., Badea, I., Gonska, H.H.: A test function theorem and approximation by pseudopolynomials. Bull. Aust. Math. Soc. 34, 53–64 (1986) MathSciNetCrossRef Badea, C., Badea, I., Gonska, H.H.: A test function theorem and approximation by pseudopolynomials. Bull. Aust. Math. Soc. 34, 53–64 (1986) MathSciNetCrossRef
7.
go back to reference Badea, C., Cottin, C.: Korovkin-type theorems for generalized Boolean sum operators. Colloq. Math. Soc. János Bolyai 58, 51–68 (1990) MathSciNetMATH Badea, C., Cottin, C.: Korovkin-type theorems for generalized Boolean sum operators. Colloq. Math. Soc. János Bolyai 58, 51–68 (1990) MathSciNetMATH
8.
go back to reference Miclăuş, D.: On the GBS Bernstein–Stancu’s type operators. Creative Math. Inform. 22, 73–80 (2013) MathSciNetMATH Miclăuş, D.: On the GBS Bernstein–Stancu’s type operators. Creative Math. Inform. 22, 73–80 (2013) MathSciNetMATH
9.
go back to reference Agrawal, P.N., Ispir, N., Kajla, A.: GBS operators of Lupaş–Durrmeyer type based on Pólya distribution. Results Math. 69, 397–418 (2016) MathSciNetCrossRef Agrawal, P.N., Ispir, N., Kajla, A.: GBS operators of Lupaş–Durrmeyer type based on Pólya distribution. Results Math. 69, 397–418 (2016) MathSciNetCrossRef
10.
go back to reference Bărbosu, D., Acu, A.M., Muraru, C.V.: On certain GBS-Durrmeyer operators based on q-integers. Turk. J. Math. 41(2), 368–380 (2017) MathSciNetCrossRef Bărbosu, D., Acu, A.M., Muraru, C.V.: On certain GBS-Durrmeyer operators based on q-integers. Turk. J. Math. 41(2), 368–380 (2017) MathSciNetCrossRef
11.
go back to reference Kajla, A., Miclăuş, D.: Blending type approximation by GBS operators of generalized Bernstein–Durrmeyer type. Results Math. 73(1), 1–21 (2018) MathSciNetCrossRef Kajla, A., Miclăuş, D.: Blending type approximation by GBS operators of generalized Bernstein–Durrmeyer type. Results Math. 73(1), 1–21 (2018) MathSciNetCrossRef
12.
go back to reference Bögel, K.: Mehrdimensionale differentiation von funktionen mehrerer veränderlicher. J. Reine Angew. Math. 170, 197–217 (1934) MathSciNetMATH Bögel, K.: Mehrdimensionale differentiation von funktionen mehrerer veränderlicher. J. Reine Angew. Math. 170, 197–217 (1934) MathSciNetMATH
13.
14.
go back to reference Pop, O.T.: Approximation of B-differentiable functions by GBS operators. An. Univ. Oradea, Fasc. Mat. 14, 15–31 (2007) MathSciNetMATH Pop, O.T.: Approximation of B-differentiable functions by GBS operators. An. Univ. Oradea, Fasc. Mat. 14, 15–31 (2007) MathSciNetMATH
15.
go back to reference Gonska, H.H.: Quantitative approximation in \(C(X)\), Habilitationsschrift, Universität Duisburg (1985) Gonska, H.H.: Quantitative approximation in \(C(X)\), Habilitationsschrift, Universität Duisburg (1985)
Metadata
Title
Blending type approximation by operators of bivariate tensor product of λ-Bernstein–Kantorovich type
Authors
Qing-Bo Cai
Guorong Zhou
Publication date
01-12-2018
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2018
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1862-0

Other articles of this Issue 1/2018

Journal of Inequalities and Applications 1/2018 Go to the issue

Premium Partner