Skip to main content
Top
Published in: Wireless Personal Communications 1/2021

11-08-2020

Blind Digital Modulation Identification Using an Efficient Method-of-Moments Estimator

Authors: Hamid Amiri Ara, M. R. Zahabi, Ataollah Ebrahimzadeh

Published in: Wireless Personal Communications | Issue 1/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The automatic identification of the modulation format of a detected signal is a major task of an intelligent receiver in both military and civilian applications. It is well known that the maximum likelihood (ML) classifier requires a priori knowledge of the incoming signal and channel (including amplitude, timing information, noise power, and the roll-off factor of the pulse-shaping filter). To relax this requirement, we introduce a novel estimator to estimate the parameters required by the ML classifier which is blind to the modulation scheme of the received signal, and this gives rise to a new blind modulation classifier for digital amplitude-phase modulated signals. While the proposed classifier is completely blind, the simulation results show that the performance of this classifier is very close to the optimal non-blind classifier.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In this paper, we assume a block fading channel in which the channel amplitude and phase are constant over the N symbol observation interval.
 
2
k=−∞ +∞ x(t − kT) = (1/T) ∑ k=−∞ +∞ X(k/T) exp (j2πkt/T), where X(f) is the Fourier transform of a function x(t).
 
Literature
1.
go back to reference Wang, F., Yang, C., Huang, S., & Wang, H. (2019). Automatic modulation classification based on joint feature map and convolutional neural network. IET Radar, 13(6), 998–1003.CrossRef Wang, F., Yang, C., Huang, S., & Wang, H. (2019). Automatic modulation classification based on joint feature map and convolutional neural network. IET Radar, 13(6), 998–1003.CrossRef
2.
go back to reference Li, W., Dou, Z., Qi, L., & Shi, C. (2019). Wavelet transform based modulation classification for 5G and UAV communication in multipath fading channel. Physical Communication, 34, 272–282.CrossRef Li, W., Dou, Z., Qi, L., & Shi, C. (2019). Wavelet transform based modulation classification for 5G and UAV communication in multipath fading channel. Physical Communication, 34, 272–282.CrossRef
3.
go back to reference Mihandoost, S., & Azimzadeh, E. (2020). Introducing an efficient statistical model for automatic modulation classification. Journal of Signal Processing Systems, 92, 123–134.CrossRef Mihandoost, S., & Azimzadeh, E. (2020). Introducing an efficient statistical model for automatic modulation classification. Journal of Signal Processing Systems, 92, 123–134.CrossRef
4.
go back to reference Zhang, J., & Lv, Y. (2018). Likelihood-based automatic modulation classification in OFDM with index modulation. IEEE Transactions on Vehicular Technology, 67(9), 8192–8204.CrossRef Zhang, J., & Lv, Y. (2018). Likelihood-based automatic modulation classification in OFDM with index modulation. IEEE Transactions on Vehicular Technology, 67(9), 8192–8204.CrossRef
5.
go back to reference Xu, J. L., Su, W., & Zhou, M. (2010). Likelihood-ratio approaches to automatic modulation classification. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 41(4), 455–469.CrossRef Xu, J. L., Su, W., & Zhou, M. (2010). Likelihood-ratio approaches to automatic modulation classification. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 41(4), 455–469.CrossRef
6.
go back to reference Chavali, V., & DaSilva, C. (2011). Maximum-likelihood classification of digital amplitude-phase modulated signals in flat fading non-Gaussian channels. IEEE Transactions on Communications, 59(8), 2051–2056.CrossRef Chavali, V., & DaSilva, C. (2011). Maximum-likelihood classification of digital amplitude-phase modulated signals in flat fading non-Gaussian channels. IEEE Transactions on Communications, 59(8), 2051–2056.CrossRef
7.
go back to reference Panagiotou, P., Anastasopoulos, A., & Polydoros, A. (2000). Likelihood ratio tests for modulation classification. Proceedings of IEEE MILCOM, 2000, 670–674. Panagiotou, P., Anastasopoulos, A., & Polydoros, A. (2000). Likelihood ratio tests for modulation classification. Proceedings of IEEE MILCOM, 2000, 670–674.
8.
go back to reference Dobre, O. A. et al. (2004). On the classification of linearly modulated signals in fading channels. In Proceedings of conference on information sciences and systems (CISS). Princeton University. Dobre, O. A. et al. (2004). On the classification of linearly modulated signals in fading channels. In Proceedings of conference on information sciences and systems (CISS). Princeton University.
9.
go back to reference Kay, S. M. (2013). Fundamentals of statistical signal processing (Vol. 1). London: Pearson Education. Kay, S. M. (2013). Fundamentals of statistical signal processing (Vol. 1). London: Pearson Education.
10.
go back to reference Dobre, O. A., & Hameed, F. (2006). Likelihood-based algorithms for linear digital modulation classification in fading channels. In Canadian conference on electrical and computer engineering. CCECE’06 (pp. 1347–1350). Dobre, O. A., & Hameed, F. (2006). Likelihood-based algorithms for linear digital modulation classification in fading channels. In Canadian conference on electrical and computer engineering. CCECE’06 (pp. 1347–1350).
11.
go back to reference Headley, W. C., & da Silva, C. R. (2011). Asynchronous classification of digital amplitude-phase modulated signals in flat-fading channels. IEEE Transactions on Communications, 59(1), 7–12.CrossRef Headley, W. C., & da Silva, C. R. (2011). Asynchronous classification of digital amplitude-phase modulated signals in flat-fading channels. IEEE Transactions on Communications, 59(1), 7–12.CrossRef
12.
go back to reference Wei, W., & Mendel, J. M. (2000). Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Transactions on Communications, 48(2), 189–193.CrossRef Wei, W., & Mendel, J. M. (2000). Maximum-likelihood classification for digital amplitude-phase modulations. IEEE Transactions on Communications, 48(2), 189–193.CrossRef
13.
go back to reference Zhu, Z., & Nandi, A. (2014). Blind digital modulation classification using minimum distance centroid estimator and non-parametric likelihood function. IEEE Transactions on Wireless Communications, 13(8), 4483–4494.CrossRef Zhu, Z., & Nandi, A. (2014). Blind digital modulation classification using minimum distance centroid estimator and non-parametric likelihood function. IEEE Transactions on Wireless Communications, 13(8), 4483–4494.CrossRef
14.
go back to reference Van Trees, H. L. (2004). Detection, estimation, and modulation theory. London: Wiley.MATH Van Trees, H. L. (2004). Detection, estimation, and modulation theory. London: Wiley.MATH
15.
go back to reference Xu, J. L., Su, W., & Zhou, M. (2010). Software-defined radio equipped with rapid modulation recognition. IEEE Transactions on Vehicular Technology, 59(4), 1659–1667.CrossRef Xu, J. L., Su, W., & Zhou, M. (2010). Software-defined radio equipped with rapid modulation recognition. IEEE Transactions on Vehicular Technology, 59(4), 1659–1667.CrossRef
16.
go back to reference Lay, N., & Polydoros, A. (1995). Per-survivor processing for channel acquisition, data detection and modulation classification. In Proceedings of ASILOMAR (pp. 170–174). Lay, N., & Polydoros, A. (1995). Per-survivor processing for channel acquisition, data detection and modulation classification. In Proceedings of ASILOMAR (pp. 170–174).
17.
go back to reference Hameed, F., Dobre, O. A., & Popescu, D. C. (2009). On the likelihood-based approach to modulation classification. IEEE Transactions on Wireless Communications, 8(12), 5884–5892.CrossRef Hameed, F., Dobre, O. A., & Popescu, D. C. (2009). On the likelihood-based approach to modulation classification. IEEE Transactions on Wireless Communications, 8(12), 5884–5892.CrossRef
18.
go back to reference Mengali, U., & D’Andrea, A. N. (1997). Synchronization techniques for digital receivers. New York: Plenum Press.CrossRef Mengali, U., & D’Andrea, A. N. (1997). Synchronization techniques for digital receivers. New York: Plenum Press.CrossRef
19.
go back to reference Salehi, M., & Proakis, J. G. (2008). Digital communications. New York: McGraw-Hill. Salehi, M., & Proakis, J. G. (2008). Digital communications. New York: McGraw-Hill.
20.
go back to reference Huang, S., Jiang, Y., Gao, Y., Feng, Z., & Zhang, P. (2019). Automatic modulation classification using contrastive fully convolutional network. IEEE Wireless Communications Letters, 8(4), 1044–1047.CrossRef Huang, S., Jiang, Y., Gao, Y., Feng, Z., & Zhang, P. (2019). Automatic modulation classification using contrastive fully convolutional network. IEEE Wireless Communications Letters, 8(4), 1044–1047.CrossRef
Metadata
Title
Blind Digital Modulation Identification Using an Efficient Method-of-Moments Estimator
Authors
Hamid Amiri Ara
M. R. Zahabi
Ataollah Ebrahimzadeh
Publication date
11-08-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 1/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07715-2

Other articles of this Issue 1/2021

Wireless Personal Communications 1/2021 Go to the issue