Skip to main content
Top

2020 | OriginalPaper | Chapter

Boosting Verifiable Computation on Encrypted Data

Authors : Dario Fiore, Anca Nitulescu, David Pointcheval

Published in: Public-Key Cryptography – PKC 2020

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We consider the setting in which an untrusted server stores a collection of data and is asked to compute a function over it. In this scenario, we aim for solutions where the untrusted server does not learn information about the data and is prevented from cheating. This problem is addressed by verifiable and private delegation of computation, proposed by Gennaro, Gentry and Parno (CRYPTO’10), a notion that is close to both the active areas of homomorphic encryption and verifiable computation (VC). However, in spite of the efficiency advances in the respective areas, VC protocols that guarantee privacy of the inputs are still expensive. The only exception is a protocol by Fiore, Gennaro and Pastro (CCS’14) that supports arithmetic circuits of degree at most 2. In this paper we propose new efficient protocols for VC on encrypted data that improve over the state of the art solution of Fiore et al. in multiple aspects. First, we can support computations of degree higher than 2. Second, we achieve public delegatability and public verifiability whereas Fiore et al. need the same secret key to encode inputs and verify outputs. Third, we achieve a new property that guarantees that verifiers can be convinced about the correctness of the outputs without learning information on the inputs. The key tool to obtain our new protocols is a new SNARK that can efficiently handle computations over a quotient polynomial ring, such as the one used by Ring-LWE somewhat homomorphic encryption schemes. This SNARK in turn relies on a new commit-and-prove SNARK for proving evaluations on the same point of several committed polynomials. We propose a construction of this scheme under an extractability assumption over bilinear groups in the random oracle model.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
In particular, relevant to our work is the compiler that shows that commit-and-prove SNARKs for Pedersen-like commitments can be made compatible with one another.
 
2
We consider linearly homomorphic commitment schemes \(\mathsf{MPoly\text {-}}{\mathcal Com}\) and we commit in \(C_T\) and C to vectors of \(n+1 \leqslant \ell \) polynomials \((C_{T}, \tau ) \leftarrow \mathsf{MPoly.}\mathsf{Com}(T, 0, 0 \dots 0)\) and https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-45388-6_5/498015_1_En_5_IEq209_HTML.gif with an appropriate number of 0’s, i.e., \((T, \{P_j\}) = (T, \{0\}) + (0, \{P_j\})\), such that computing \(C_{T} \times C\) results in a commitment \((C_{T} \times C, \tau +\rho ) \leftarrow \mathsf{MPoly.}\mathsf{Com}(T, \{P_j\}_{j=1}^{n})\) to the concatenation of T, \(\{P_j\}\).
 
3
The commitment key \(\mathsf{ck}\) can have some special property for optimization, for example, it may consist of two keys, one for committing to polynomials \(P_j \in {\mathbb R_q}\) of degrees \(\leqslant d\) and another longer key to commit to polynomials \(T\in {\mathbb Z}_q [X]\) of degree \( \nu \).
 
4
Note that, although Q is a uni-variate polynomial in Y, it can also be seen as a bivariate polynomial.
 
5
Note that W can be computed by aggregating the results of \(\ell \) polynomial divisions of degree d.
 
Literature
[AHIV17]
go back to reference Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press, October/November 2017 Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: lightweight sublinear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press, October/November 2017
[AS92]
go back to reference Arora, S., Safra, S.: Probabilistic checking of proofs; a new characterization of NP. In: 33rd FOCS, pp. 2–13. IEEE Computer Society Press, October 1992 Arora, S., Safra, S.: Probabilistic checking of proofs; a new characterization of NP. In: 33rd FOCS, pp. 2–13. IEEE Computer Society Press, October 1992
[BB08]
go back to reference Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)MathSciNetCrossRef Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)MathSciNetCrossRef
[BBC+18]
[BGV12]
go back to reference Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309–325. ACM, January 2012 Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, pp. 309–325. ACM, January 2012
[CFQ19]
go back to reference Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and composition of succinct zero-knowledge proofs. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds) ACM CCS 2019, pp. 2075–2092. ACM Press, November 2019 Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: modular design and composition of succinct zero-knowledge proofs. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds) ACM CCS 2019, pp. 2075–2092. ACM Press, November 2019
[CMT12]
go back to reference Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with streaming interactive proofs. In: Goldwasser, S., (ed.) ITCS 2012, pp. 90–112. ACM, January 2012 Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with streaming interactive proofs. In: Goldwasser, S., (ed.) ITCS 2012, pp. 90–112. ACM, January 2012
[FGP14]
go back to reference Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted data. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 844–855. ACM Press, November 2014 Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted data. In: Ahn, G.-J., Yung, M., Li, N. (eds.) ACM CCS 2014, pp. 844–855. ACM Press, November 2014
[Gen09]
go back to reference Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009 Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May/June 2009
[GKR08]
go back to reference Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 113–122. ACM Press, May 2008 Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC, pp. 113–122. ACM Press, May 2008
[GMR85]
go back to reference Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304. ACM Press, May 1985 Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems (extended abstract). In: 17th ACM STOC, pp. 291–304. ACM Press, May 1985
[GW11]
go back to reference Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 99–108. ACM Press, June 2011 Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 99–108. ACM Press, June 2011
[Kil92]
go back to reference Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: 24th ACM STOC, pp. 723–732. ACM Press, May 1992 Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: 24th ACM STOC, pp. 723–732. ACM Press, May 1992
[MBKM19]
go back to reference Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge SNARKs from linear-size universal and updatable structured reference strings. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2111–2128. ACM Press, November 2019 Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: zero-knowledge SNARKs from linear-size universal and updatable structured reference strings. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2111–2128. ACM Press, November 2019
[PHGR13]
go back to reference Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252. IEEE Computer Society Press, May 2013 Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: 2013 IEEE Symposium on Security and Privacy, pp. 238–252. IEEE Computer Society Press, May 2013
[PS00]
go back to reference Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)CrossRef Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)CrossRef
[RAD78]
go back to reference Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. Found. Secur. Comput. 4, 169–177 (1978) Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. Found. Secur. Comput. 4, 169–177 (1978)
[WJB+17]
go back to reference Wahby, R.S., et al.: Full accounting for verifiable outsourcing. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2071–2086. ACM Press, October/November 2017 Wahby, R.S., et al.: Full accounting for verifiable outsourcing. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2071–2086. ACM Press, October/November 2017
[WTs+18]
go back to reference Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and Privacy, pp. 926–943. IEEE Computer Society Press, May 2018 Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup. In: 2018 IEEE Symposium on Security and Privacy, pp. 926–943. IEEE Computer Society Press, May 2018
[ZGK+17]
go back to reference Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: verifying arbitrary SQL queries over dynamic outsourced databases. In: 2017 IEEE Symposium on Security and Privacy, pp. 863–880. IEEE Computer Society Press, May 2017 Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: verifying arbitrary SQL queries over dynamic outsourced databases. In: 2017 IEEE Symposium on Security and Privacy, pp. 863–880. IEEE Computer Society Press, May 2017
Metadata
Title
Boosting Verifiable Computation on Encrypted Data
Authors
Dario Fiore
Anca Nitulescu
David Pointcheval
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-45388-6_5

Premium Partner