Skip to main content
Top
Published in: Wireless Personal Communications 2/2024

02-05-2024

Bot-FFX: A Robust and Efficient Framework for Fast Flux Botnet (FFB) Detection

Authors: Femi Emmanuel Ayo, Joseph Bamidele Awotunde, Sakinat Oluwabukonla Folorunso, Ranjit Panigrahi, Amik Garg, Akash Kumar Bhoi

Published in: Wireless Personal Communications | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Fast Flux Botnet (FFB) poses a significant threat as an advanced method employed by cybercriminals for orchestrating distributed malicious attacks. Existing FFB detection systems face challenges such as vulnerability to evasion mechanisms, prolonged detection times, and high dimensionality of the feature set. In response to these issues, this study introduces Bot-FFX, an improved FFB detection architecture designed to enhance the accuracy and efficiency of detection. Bot-FFX comprises four integral modules: extractor, filter, resolver, and detector. The extractor module is dedicated to Domain Name System (DNS) queries on domains, while the filter module classifies incoming domains as denylist or safelist, redirecting unclassified domains to the resolver. The resolver extracts all associated IP addresses within 10 min of the domain's Time-To-Live (TTL). The detector module employs a rule-based Genetic Algorithm (GA) and K-Nearest Neighbor (KNN) for botnet detection. Utilizing metrics such as Standard Deviation of Round Trip Time (SDRTT), Average Google Hits (AGH), and Genetic Threshold Value (GTV), the detector, built on a K-Dimensional (KD) tree KNN algorithm, accurately classifies domains based on their set of IP addresses. To evaluate Bot-FFX, a dataset comprising 2000 benign domains and 1630 botnet domains was utilized, divided into 50% training and testing sets. The results demonstrate the effectiveness of Bot-FFX, achieving an impressive accuracy of 99.178%, with a minimal false positive rate of 0.8% and an equally low false negative rate of 0.8%. This study establishes Bot-FFX as a robust and efficient framework for Fast Flux Botnet detection, contributing to the ongoing efforts in cybersecurity to combat evolving cyber threats.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang, L., Shui, Y., Di, W. & Paul, W. (2011). A Survey on Latest Botnet Attack and Defense. In: Proceedings of International Joint Conference of IEEE Trustcom-11/IEEE ICESS-11/FCST-11. Changsha China, pp. 53–60. Zhang, L., Shui, Y., Di, W. & Paul, W. (2011). A Survey on Latest Botnet Attack and Defense. In: Proceedings of International Joint Conference of IEEE Trustcom-11/IEEE ICESS-11/FCST-11. Changsha China, pp. 53–60.
2.
go back to reference Butt, U. J., Richardson, W., Nouman, A., Agbo, H. M., Eghan, C., & Hashmi, F. (2021). Cloud and Its Security Impacts on Managing a Workforce Remotely: A Reflection to Cover Remote Working Challenges. In Cybersecurity, Privacy and Freedom Protection in the Connected World (pp. 285–311). Springer. Butt, U. J., Richardson, W., Nouman, A., Agbo, H. M., Eghan, C., & Hashmi, F. (2021). Cloud and Its Security Impacts on Managing a Workforce Remotely: A Reflection to Cover Remote Working Challenges. In Cybersecurity, Privacy and Freedom Protection in the Connected World (pp. 285–311). Springer.
3.
go back to reference Awotunde, J. B., Jimoh, R. G., Folorunso, S. O., Adeniyi, E. A., Abiodun, K. M., & Banjo, O. O. (2021). Privacy and security concerns in IoT-based healthcare systems. Internet of Things, 2021, 105–134.CrossRef Awotunde, J. B., Jimoh, R. G., Folorunso, S. O., Adeniyi, E. A., Abiodun, K. M., & Banjo, O. O. (2021). Privacy and security concerns in IoT-based healthcare systems. Internet of Things, 2021, 105–134.CrossRef
4.
go back to reference Lin, H.-T., Lin, Y.-Y., & Chiang, J.-W. (2013). Genetic-based real-time fast-flux service networks detection. Journal of Computer Networks, 57(2), 501–513.CrossRef Lin, H.-T., Lin, Y.-Y., & Chiang, J.-W. (2013). Genetic-based real-time fast-flux service networks detection. Journal of Computer Networks, 57(2), 501–513.CrossRef
5.
go back to reference Holz, T., Gorecki, C., Rieck, K. & Freiling F.C. 2008. Detection and mitigation of fast-flux service networks. In: Proceedings of the 15th Network and Distributed System Security Symposium. San Diego USA. Holz, T., Gorecki, C., Rieck, K. & Freiling F.C. 2008. Detection and mitigation of fast-flux service networks. In: Proceedings of the 15th Network and Distributed System Security Symposium. San Diego USA.
6.
go back to reference Lallie, H. S., Shepherd, L. A., Nurse, J. R., Erola, A., Epiphaniou, G., Maple, C., & Bellekens, X. (2021). Cyber security in the age of covid-19: A timeline and analysis of cyber-crime and cyber-attacks during the pandemic. Computers & Security, 105, 102248.CrossRef Lallie, H. S., Shepherd, L. A., Nurse, J. R., Erola, A., Epiphaniou, G., Maple, C., & Bellekens, X. (2021). Cyber security in the age of covid-19: A timeline and analysis of cyber-crime and cyber-attacks during the pandemic. Computers & Security, 105, 102248.CrossRef
7.
go back to reference Stalmans, E. & Irwin, B. (2011). A framework for DNS based detection and mitigation of malware infections on a network. In: Proceedings of the 10th IEEE International Conference on Information Security. Johannesburg, South Africa, pp. 1–8 Stalmans, E. & Irwin, B. (2011). A framework for DNS based detection and mitigation of malware infections on a network. In: Proceedings of the 10th IEEE International Conference on Information Security. Johannesburg, South Africa, pp. 1–8
8.
go back to reference Khari, M., Dalal, R., & Rohilla, P. (2020). Extended paradigms for botnets with WoT applications: a review. Smart Innovation of Web of Things, pp 105–122. Khari, M., Dalal, R., & Rohilla, P. (2020). Extended paradigms for botnets with WoT applications: a review. Smart Innovation of Web of Things, pp 105–122.
9.
go back to reference Aruna, J., & Shyry, S. P. (2021). Survey on Artificial Intelligence Based Resilient Recovery of Botnet Attack. In 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 1–8). IEEE. Aruna, J., & Shyry, S. P. (2021). Survey on Artificial Intelligence Based Resilient Recovery of Botnet Attack. In 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 1–8). IEEE.
10.
go back to reference Firat, I. (2021). Inevitable Battle Against Botnets. In Research Anthology on Combating Denial-of-Service Attacks (pp. 1–19). IGI Global. Firat, I. (2021). Inevitable Battle Against Botnets. In Research Anthology on Combating Denial-of-Service Attacks (pp. 1–19). IGI Global.
11.
go back to reference Hsu, C-H., Huang, C-Y. & Chen, K-T. (2010). Fast-flux bot detection in real time. In: Proceedings of the 13th International Conference on Recent Advances in Intrusion Detection (RAID). Springer, pp.464–483. Hsu, C-H., Huang, C-Y. & Chen, K-T. (2010). Fast-flux bot detection in real time. In: Proceedings of the 13th International Conference on Recent Advances in Intrusion Detection (RAID). Springer, pp.464–483.
12.
go back to reference Passerini, E., Roberto, P., Lorenzo, M. & Danilo, B. (2008). FluXOR: Detecting and Monitoring Fast-Flux Service Networks. Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, pp.186–206. Passerini, E., Roberto, P., Lorenzo, M. & Danilo, B. (2008). FluXOR: Detecting and Monitoring Fast-Flux Service Networks. Detection of Intrusions and Malware, and Vulnerability Assessment. Springer, pp.186–206.
13.
go back to reference Ahmad, R., & Alsmadi, I. (2021). Machine learning approaches to IoT security: A systematic literature review. Internet of Things, 100365. Ahmad, R., & Alsmadi, I. (2021). Machine learning approaches to IoT security: A systematic literature review. Internet of Things, 100365.
14.
go back to reference Awotunde, J. B., Chakraborty, C., & Adeniyi, A. E. (2021). Intrusion detection in industrial internet of things network-based on deep learning model with rule-based feature selection. Wireless Communications and Mobile Computing, 2021(2021), 7154587. Awotunde, J. B., Chakraborty, C., & Adeniyi, A. E. (2021). Intrusion detection in industrial internet of things network-based on deep learning model with rule-based feature selection. Wireless Communications and Mobile Computing, 2021(2021), 7154587.
15.
go back to reference Ashraf, J., Keshk, M., Moustafa, N., Abdel-Basset, M., Khurshid, H., Bakhshi, A. D., & Mostafa, R. R. (2021.) IoTBoT-IDS: A novel statistical learning-enabled botnet detection framework for protecting networks of smart cities. Sustainable Cities and Society, 103041. Ashraf, J., Keshk, M., Moustafa, N., Abdel-Basset, M., Khurshid, H., Bakhshi, A. D., & Mostafa, R. R. (2021.) IoTBoT-IDS: A novel statistical learning-enabled botnet detection framework for protecting networks of smart cities. Sustainable Cities and Society, 103041.
16.
go back to reference Zhang, J., Ling, Y., Fu, X., Yang, X., Xiong, G., & Zhang, R. (2020). Model of the intrusion detection system based on the integration of spatial-temporal features. Computers & Security, 89, 101681.CrossRef Zhang, J., Ling, Y., Fu, X., Yang, X., Xiong, G., & Zhang, R. (2020). Model of the intrusion detection system based on the integration of spatial-temporal features. Computers & Security, 89, 101681.CrossRef
17.
go back to reference Hsu, F.-H., Wang, C.-S., Hsu, C.-H., Tso, C.-K., Chen, L.-H., & Lin, S.-H. (2014). Detect fast-flux domains through response time differences. IEEE Journal on Selected Areas in Communications, 32(10), 1947–1956.CrossRef Hsu, F.-H., Wang, C.-S., Hsu, C.-H., Tso, C.-K., Chen, L.-H., & Lin, S.-H. (2014). Detect fast-flux domains through response time differences. IEEE Journal on Selected Areas in Communications, 32(10), 1947–1956.CrossRef
18.
go back to reference Knysz, M., Hu, X. & Shin, K. 2011. Good guys vs. bot guise: Disguise attacks against fast-flux detection systems. In: Proceedings of 2011 IEEE INFOCOM. Shanghai China, pp.1844–1852. Knysz, M., Hu, X. & Shin, K. 2011. Good guys vs. bot guise: Disguise attacks against fast-flux detection systems. In: Proceedings of 2011 IEEE INFOCOM. Shanghai China, pp.1844–1852.
19.
go back to reference Zhu, Z., Lu, G., Chen, Y., Fu, Z. J., Roberts, P., & Han, K. (2008). Botnet research survey. In 2008 32nd Annual IEEE International Computer Software and Applications Conference (pp. 967–972). IEEE. Zhu, Z., Lu, G., Chen, Y., Fu, Z. J., Roberts, P., & Han, K. (2008). Botnet research survey. In 2008 32nd Annual IEEE International Computer Software and Applications Conference (pp. 967–972). IEEE.
20.
go back to reference Provos, N. (2004). A virtual honeypot framework. In USENIX Security Symposium (Vol. 173, No. 2004, pp. 1–14). Provos, N. (2004). A virtual honeypot framework. In USENIX Security Symposium (Vol. 173, No. 2004, pp. 1–14).
21.
go back to reference Choo, K. K. R. (2007). Zombies and botnets. Trends and Issues in Crime and Criminal Justice, 333, 1–6. Choo, K. K. R. (2007). Zombies and botnets. Trends and Issues in Crime and Criminal Justice, 333, 1–6.
22.
go back to reference Dagon, D., Zou, C. C., & Lee, W. (2006). Modeling botnet propagation using time zones. In NDSS (Vol. 6, pp. 2–13). Dagon, D., Zou, C. C., & Lee, W. (2006). Modeling botnet propagation using time zones. In NDSS (Vol. 6, pp. 2–13).
23.
go back to reference Zeidanloo, H. R., Shooshtari, M. J. Z., Amoli, P. V., Safari, M., & Zamani, M. (2010). A taxonomy of botnet detection techniques. In 2010 3rd International Conference on Computer Science and Information Technology (Vol. 2, pp. 158–162). IEEE. Zeidanloo, H. R., Shooshtari, M. J. Z., Amoli, P. V., Safari, M., & Zamani, M. (2010). A taxonomy of botnet detection techniques. In 2010 3rd International Conference on Computer Science and Information Technology (Vol. 2, pp. 158–162). IEEE.
24.
go back to reference Wang, T. Z., Wang, H. M., Liu, B., & Shi, P. C. (2012). Some critical problems of botnets. Chinese Journal of Computers, 35(6), 1192–1208.CrossRef Wang, T. Z., Wang, H. M., Liu, B., & Shi, P. C. (2012). Some critical problems of botnets. Chinese Journal of Computers, 35(6), 1192–1208.CrossRef
25.
go back to reference Alparslan, E., Karahoca, A., & Karahoca, D. 2012. BotNet detection: Enhancing analysis by using data mining techniques. In Advances in Data Mining Knowledge Discovery and Applications (Vol. 349). IntechOpen. Alparslan, E., Karahoca, A., & Karahoca, D. 2012. BotNet detection: Enhancing analysis by using data mining techniques. In Advances in Data Mining Knowledge Discovery and Applications (Vol. 349). IntechOpen.
26.
go back to reference Vrable, M., Ma, J., Chen, J., Moore, D., Vandekieft, E., Snoeren, A. C. & Savage, S. (2005). Scalability, fidelity, and containment in the potemkin virtual honeyfarm. In Proceedings of the twentieth ACM symposium on Operating systems principles (pp. 148–162). Vrable, M., Ma, J., Chen, J., Moore, D., Vandekieft, E., Snoeren, A. C. & Savage, S. (2005). Scalability, fidelity, and containment in the potemkin virtual honeyfarm. In Proceedings of the twentieth ACM symposium on Operating systems principles (pp. 148–162).
27.
go back to reference Bajtoš, T., Sokol, P., & Mézešová, T. (2018). Virtual honeypots and detection of telnet botnets. In Proceedings of the Central European Cybersecurity Conference 2018 (pp. 1–6). Bajtoš, T., Sokol, P., & Mézešová, T. (2018). Virtual honeypots and detection of telnet botnets. In Proceedings of the Central European Cybersecurity Conference 2018 (pp. 1–6).
28.
go back to reference Shan, Y., Yao, Y., Zhao, T., & Yang, W. (2023). NeuPot: A neural network-based honeypot for detecting cyber threats in industrial control systems. IEEE Transactions on Industrial Informatics. Shan, Y., Yao, Y., Zhao, T., & Yang, W. (2023). NeuPot: A neural network-based honeypot for detecting cyber threats in industrial control systems. IEEE Transactions on Industrial Informatics.
29.
go back to reference Gu, G., Porras, P. A., Yegneswaran, V., Fong, M. W., & Lee, W. (2007). Bothunter: Detecting malware infection through ids-driven dialog correlation. In USENIX Security Symposium (Vol. 7, pp. 1–16). Gu, G., Porras, P. A., Yegneswaran, V., Fong, M. W., & Lee, W. (2007). Bothunter: Detecting malware infection through ids-driven dialog correlation. In USENIX Security Symposium (Vol. 7, pp. 1–16).
30.
go back to reference Xie, Y., Yu, F., Achan, K., Panigrahy, R., Hulten, G., & Osipkov, I. (2008). Spamming botnets: Signatures and characteristics. ACM SIGCOMM Computer Communication Review, 38(4), 171–182.CrossRef Xie, Y., Yu, F., Achan, K., Panigrahy, R., Hulten, G., & Osipkov, I. (2008). Spamming botnets: Signatures and characteristics. ACM SIGCOMM Computer Communication Review, 38(4), 171–182.CrossRef
31.
go back to reference Behal, S., Brar, A. S., & Kumar, K. (2010). Signature-based botnet detection and prevention. In Proceedings of International Symposium on Computer Engineering and Technology (pp. 127–132). Behal, S., Brar, A. S., & Kumar, K. (2010). Signature-based botnet detection and prevention. In Proceedings of International Symposium on Computer Engineering and Technology (pp. 127–132).
32.
go back to reference Chen, T., Zhou, G., Liu, Z., & Jing, T. (2020). A novel ensemble anomaly based approach for command and control channel detection. In Proceedings of the 2020 4th International Conference on Cryptography, Security and Privacy (pp. 74–78). Chen, T., Zhou, G., Liu, Z., & Jing, T. (2020). A novel ensemble anomaly based approach for command and control channel detection. In Proceedings of the 2020 4th International Conference on Cryptography, Security and Privacy (pp. 74–78).
33.
go back to reference Kirubavathi, G., & Anitha, R. (2016). Botnet detection via mining of traffic flow characteristics. Computers & Electrical Engineering, 50, 91–101.CrossRef Kirubavathi, G., & Anitha, R. (2016). Botnet detection via mining of traffic flow characteristics. Computers & Electrical Engineering, 50, 91–101.CrossRef
34.
go back to reference Tangari, G., Tuncer, D., Charalambides, M., & Pavlou, G. (2017). Decentralized monitoring for large-scale software-defined networks. In 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM) (pp. 289–297). IEEE. Tangari, G., Tuncer, D., Charalambides, M., & Pavlou, G. (2017). Decentralized monitoring for large-scale software-defined networks. In 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM) (pp. 289–297). IEEE.
35.
go back to reference Hoang, X. D., & Nguyen, Q. C. (2018). Botnet detection based on machine learning techniques using DNS query data. Future Internet, 10(5), 43.CrossRef Hoang, X. D., & Nguyen, Q. C. (2018). Botnet detection based on machine learning techniques using DNS query data. Future Internet, 10(5), 43.CrossRef
36.
go back to reference Nõmm, S., & Bahşi, H. (2018). Unsupervised anomaly based botnet detection in IoT networks. In 2018 17th IEEE international conference on machine learning and applications (ICMLA) (pp. 1048–1053). IEEE. Nõmm, S., & Bahşi, H. (2018). Unsupervised anomaly based botnet detection in IoT networks. In 2018 17th IEEE international conference on machine learning and applications (ICMLA) (pp. 1048–1053). IEEE.
37.
go back to reference Shang, Y., Yang, S., & Wang, W. (2018). Botnet detection with hybrid analysis on flow based and graph based features of network traffic. In International Conference on Cloud Computing and Security (pp. 612–621). Springer, Cham. Shang, Y., Yang, S., & Wang, W. (2018). Botnet detection with hybrid analysis on flow based and graph based features of network traffic. In International Conference on Cloud Computing and Security (pp. 612–621). Springer, Cham.
38.
go back to reference Maeda, S., Kanai, A., Tanimoto, S., Hatashima, T., & Ohkubo, K. (2019). A botnet detection method on SDN using deep learning. In 2019 IEEE International Conference on Consumer Electronics (ICCE) (pp. 1–6). IEEE. Maeda, S., Kanai, A., Tanimoto, S., Hatashima, T., & Ohkubo, K. (2019). A botnet detection method on SDN using deep learning. In 2019 IEEE International Conference on Consumer Electronics (ICCE) (pp. 1–6). IEEE.
39.
go back to reference Ayo, F. E., Folorunso, S. O., Abayomi-Alli, A. A., Adekunle, A. O., & Awotunde, J. B. (2020). Network intrusion detection based on deep learning model optimized with rule-based hybrid feature selection. Information Security Journal: A Global Perspective, 29(6), 267–283. Ayo, F. E., Folorunso, S. O., Abayomi-Alli, A. A., Adekunle, A. O., & Awotunde, J. B. (2020). Network intrusion detection based on deep learning model optimized with rule-based hybrid feature selection. Information Security Journal: A Global Perspective, 29(6), 267–283.
40.
go back to reference Awotunde, J. B., & Misra, S. (2022). Feature extraction and artificial intelligence-based intrusion detection model for a secure internet of things networks. Lecture Notes on Data Engineering and Communications Technologies, 2022, 109, pp. 21–44. Springer. Awotunde, J. B., & Misra, S. (2022). Feature extraction and artificial intelligence-based intrusion detection model for a secure internet of things networks. Lecture Notes on Data Engineering and Communications Technologies, 2022, 109, pp. 21–44. Springer.
41.
go back to reference Randhawa, R. H., Aslam, N., Alauthman, M., Khalid, M., & Rafiq, H. (2024). Deep reinforcement learning based Evasion Generative Adversarial Network for botnet detection. Future Generation Computer Systems, 150, 294–302.CrossRef Randhawa, R. H., Aslam, N., Alauthman, M., Khalid, M., & Rafiq, H. (2024). Deep reinforcement learning based Evasion Generative Adversarial Network for botnet detection. Future Generation Computer Systems, 150, 294–302.CrossRef
42.
go back to reference Alieyan, K., Almomani, A., Anbar, M., Alauthman, M., Abdullah, R., & Gupta, B. B. (2021). DNS rule-based schema to botnet detection. Enterprise Information Systems, 15(4), 545–564.CrossRef Alieyan, K., Almomani, A., Anbar, M., Alauthman, M., Abdullah, R., & Gupta, B. B. (2021). DNS rule-based schema to botnet detection. Enterprise Information Systems, 15(4), 545–564.CrossRef
43.
go back to reference Kwon, J., Lee, J., Lee, H., & Perrig, A. (2016). PsyBoG: A scalable botnet detection method for large-scale DNS traffic. Computer Networks, 97, 48–73.CrossRef Kwon, J., Lee, J., Lee, H., & Perrig, A. (2016). PsyBoG: A scalable botnet detection method for large-scale DNS traffic. Computer Networks, 97, 48–73.CrossRef
44.
go back to reference Pomorova, O., Savenko, O., Lysenko, S., Kryshchuk, A., & Bobrovnikova, K. (2016). Anti-evasion technique for the botnets detection based on the passive DNS monitoring and active DNS probing. In International Conference on Computer Networks (pp. 83–95). Springer. Pomorova, O., Savenko, O., Lysenko, S., Kryshchuk, A., & Bobrovnikova, K. (2016). Anti-evasion technique for the botnets detection based on the passive DNS monitoring and active DNS probing. In International Conference on Computer Networks (pp. 83–95). Springer.
45.
go back to reference Wang, T. S., Lin, H. T., Cheng, W. T., & Chen, C. Y. (2017). DBod: Clustering and detecting DGA-based botnets using DNS traffic analysis. Computers & Security, 64, 1–15.CrossRef Wang, T. S., Lin, H. T., Cheng, W. T., & Chen, C. Y. (2017). DBod: Clustering and detecting DGA-based botnets using DNS traffic analysis. Computers & Security, 64, 1–15.CrossRef
46.
go back to reference Dwyer, O. P., Marnerides, A. K., Giotsas, V., & Mursch, T. (2019). Profiling IoT-based Botnet Traffic using DNS. In 2019 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE. Dwyer, O. P., Marnerides, A. K., Giotsas, V., & Mursch, T. (2019). Profiling IoT-based Botnet Traffic using DNS. In 2019 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE.
47.
go back to reference Quezada, V., Astudillo-Salinas, F., Tello-Oquendo, L., & Bernal, P. (2023). Real-time bot infection detection system using DNS fingerprinting and machine-learning. Computer Networks, 228, 109725.CrossRef Quezada, V., Astudillo-Salinas, F., Tello-Oquendo, L., & Bernal, P. (2023). Real-time bot infection detection system using DNS fingerprinting and machine-learning. Computer Networks, 228, 109725.CrossRef
48.
go back to reference Ibrahim, W. N. H., Anuar, S., Selamat, A., Krejcar, O., Crespo, R. G., Herrera-Viedma, E., & Fujita, H. (2021). Multilayer framework for botnet detection using machine learning algorithms. IEEE Access, 9, 48753–48768.CrossRef Ibrahim, W. N. H., Anuar, S., Selamat, A., Krejcar, O., Crespo, R. G., Herrera-Viedma, E., & Fujita, H. (2021). Multilayer framework for botnet detection using machine learning algorithms. IEEE Access, 9, 48753–48768.CrossRef
49.
go back to reference Masud, M. M., Al-Khateeb, T., Khan, L., Thuraisingham, B., & Hamlen, K. W. (2008). Flow-based identification of botnet traffic by mining multiple log files. In 2008 first international conference on distributed framework and applications (pp. 200–206). IEEE. Masud, M. M., Al-Khateeb, T., Khan, L., Thuraisingham, B., & Hamlen, K. W. (2008). Flow-based identification of botnet traffic by mining multiple log files. In 2008 first international conference on distributed framework and applications (pp. 200–206). IEEE.
50.
go back to reference Shahrestani, A., Feily, M., Ahmad, R., & Ramadass, S. (2009). Architecture for applying data mining and visualization on network flow for botnet traffic detection. In 2009 International Conference on Computer Technology and Development (Vol. 1, pp. 33–37). IEEE. Shahrestani, A., Feily, M., Ahmad, R., & Ramadass, S. (2009). Architecture for applying data mining and visualization on network flow for botnet traffic detection. In 2009 International Conference on Computer Technology and Development (Vol. 1, pp. 33–37). IEEE.
51.
go back to reference Liao, W. H., & Chang, C. C. (2010). Peer to peer botnet detection using data mining scheme. In 2010 international conference on internet technology and applications (pp. 1–4). IEEE. Liao, W. H., & Chang, C. C. (2010). Peer to peer botnet detection using data mining scheme. In 2010 international conference on internet technology and applications (pp. 1–4). IEEE.
52.
go back to reference Folorunso, O., Ayo, F. E., & Babalola, Y. E. (2016). Ca-NIDS: A network intrusion detection system using combinatorial algorithm approach. Journal of Information Privacy and Security, 12(4), 181–196.CrossRef Folorunso, O., Ayo, F. E., & Babalola, Y. E. (2016). Ca-NIDS: A network intrusion detection system using combinatorial algorithm approach. Journal of Information Privacy and Security, 12(4), 181–196.CrossRef
53.
go back to reference Ozkan-Ozay, M., Akin, E., Aslan, Ö., Kosunalp, S., Iliev, T., Stoyanov, I., & Beloev, I. (2024). A Comprehensive Survey: Evaluating the Efficiency of Artificial Intelligence and Machine Learning Techniques on Cyber Security Solutions. IEEE Access Ozkan-Ozay, M., Akin, E., Aslan, Ö., Kosunalp, S., Iliev, T., Stoyanov, I., & Beloev, I. (2024). A Comprehensive Survey: Evaluating the Efficiency of Artificial Intelligence and Machine Learning Techniques on Cyber Security Solutions. IEEE Access
54.
go back to reference Dora, V., & Lakshmi, V. N. (2022). Optimal feature selection with CNN-feature learning for DDoS attack detection using meta-heuristic-based LSTM. International Journal of Intelligent Robotics and Applications, pp.1–27. Dora, V., & Lakshmi, V. N. (2022). Optimal feature selection with CNN-feature learning for DDoS attack detection using meta-heuristic-based LSTM. International Journal of Intelligent Robotics and Applications, pp.1–27.
55.
go back to reference Ramachandran, A., Feamster, N., & Dagon, D. (2006). Revealing botnet membership using dnsbl counter-intelligence. Sruti, 6, 49–54. Ramachandran, A., Feamster, N., & Dagon, D. (2006). Revealing botnet membership using dnsbl counter-intelligence. Sruti, 6, 49–54.
56.
go back to reference Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection. MIT. Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection. MIT.
57.
go back to reference Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95–99.CrossRef Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95–99.CrossRef
58.
go back to reference Alcalá, R., Gacto, M. J., Herrera, F., & Alcalá-Fdez, J. (2007). A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems., 15(05), 539–557.CrossRef Alcalá, R., Gacto, M. J., Herrera, F., & Alcalá-Fdez, J. (2007). A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems., 15(05), 539–557.CrossRef
59.
go back to reference Fernandez, A., Lopez, V., del Jesus, M. J., & Herrera, F. (2015). Revisiting evolutionary fuzzy systems: Taxonomy, applications, new trends and challenges. Knowledge-Based Systems, 80, 109–121.CrossRef Fernandez, A., Lopez, V., del Jesus, M. J., & Herrera, F. (2015). Revisiting evolutionary fuzzy systems: Taxonomy, applications, new trends and challenges. Knowledge-Based Systems, 80, 109–121.CrossRef
60.
go back to reference Manocha, S., & Girolami, M. A. (2007). An empirical analysis of the probabilistic Knearest neighbour classifier. Pattern Recognition Letters, 28, 1818–1824.CrossRef Manocha, S., & Girolami, M. A. (2007). An empirical analysis of the probabilistic Knearest neighbour classifier. Pattern Recognition Letters, 28, 1818–1824.CrossRef
61.
go back to reference Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford University. Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford University.
62.
go back to reference Mitchell, T. (1997). Machine learning. McGraw Hill. Mitchell, T. (1997). Machine learning. McGraw Hill.
63.
go back to reference Suganthi, L., Iniyan, S., & Samuel, A. A. (2015). Applications of fuzzy logic in renewable energy systems–a review. Renewable and Sustainable Energy Reviews, 48, 585–607.CrossRef Suganthi, L., Iniyan, S., & Samuel, A. A. (2015). Applications of fuzzy logic in renewable energy systems–a review. Renewable and Sustainable Energy Reviews, 48, 585–607.CrossRef
66.
go back to reference Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-III. Information Sciences, 9(1), 43–80.MathSciNetCrossRef Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-III. Information Sciences, 9(1), 43–80.MathSciNetCrossRef
67.
go back to reference Celik, Z.B. & Oktug, S. (2013). Detection of Fast-Flux Networks Using Various DNS Feature Sets. In: Proceedings of IEEE Symposium on Computers and Communications (ISCC). Split Croatia, pp. 000868–000873. Celik, Z.B. & Oktug, S. (2013). Detection of Fast-Flux Networks Using Various DNS Feature Sets. In: Proceedings of IEEE Symposium on Computers and Communications (ISCC). Split Croatia, pp. 000868–000873.
68.
go back to reference Chang, C.-H., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(27), 27. Chang, C.-H., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2(27), 27.
Metadata
Title
Bot-FFX: A Robust and Efficient Framework for Fast Flux Botnet (FFB) Detection
Authors
Femi Emmanuel Ayo
Joseph Bamidele Awotunde
Sakinat Oluwabukonla Folorunso
Ranjit Panigrahi
Amik Garg
Akash Kumar Bhoi
Publication date
02-05-2024
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2024
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-024-11119-x

Other articles of this Issue 2/2024

Wireless Personal Communications 2/2024 Go to the issue