Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2015

Open Access 01-12-2015 | Research

Bounds for q-integrals of \({}_{r+1}\psi_{r+1}\) with applications

Authors: Zhefei He, Mingjin Wang, Gaowen Xi

Published in: Journal of Inequalities and Applications | Issue 1/2015

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we establish an inequality for the q-integral of the bilateral basic hypergeometric function \({}_{r+1}\psi_{r+1}\). As applications of the inequality, we give some sufficient conditions for the convergence of q-series.
Notes

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors equally have made contributions. All authors read and approved the final manuscript.

1 Introduction and main result

q-series, which are also called basic hypergeometric series, play a very important role in many fields, such as affine root systems, Lie algebras and groups, number theory, orthogonal polynomials, and physics. The inequality technique is one of the useful tools in the study of special functions. There are many papers about the inequalities and the q-integral; see [19]. In this paper, we derive an inequality for the q-integral of the bilateral basic hypergeometric function \({}_{r+1}\psi_{r+1}\). Some applications of the inequality are also given. The main result of this paper is the following inequality for q-integrals.
Theorem 1.1
Let a, b be any real numbers such that \(0< q< b< a<1\), and let \(a_{i}\), \(b_{i}\) be any real numbers such that \(|a_{i}|>q\), \(|b_{i}|<1\) for \(i=1,2,\ldots,r\) with \(r\geq1\) and \(|b_{1}b_{2}\cdots b_{r}|\leq|a_{1}a_{2}\cdots a_{r}|\). Then for any \(c>0\), \(t>0\), such that \(c>b/a\), \(c+t<1\), we have
$$ \biggl\vert \int_{0}^{t}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \leq \frac{Mt(q,b/a;q)_{\infty}}{(c+t,b/ac;q)_{\infty}}, $$
(1.1)
where
$$ M=\max \Biggl\{ \prod_{i=1}^{r} \frac{(-|a_{i}|; q)_{\infty}}{(|b_{i}|; q)_{\infty}},\prod_{i=1}^{r} \frac{(-q/|b_{i}|; q)_{\infty}}{(q/|a_{i}|; q)_{\infty}} \Biggr\} . $$
Before we give the proof of the theorem, we recall some definitions, notation, and well-known results which will be used in this paper. Throughout the whole paper, it is supposed that \(0< q<1\). The q-shifted factorials are defined as
$$ (a; q)_{0}=1, \qquad (a; q)_{n}=\prod _{k=0}^{n-1}\bigl(1-aq^{k}\bigr), \qquad (a; q)_{\infty}=\prod_{k=0}^{\infty}\bigl(1-aq^{k}\bigr). $$
(1.2)
We also adopt the following compact notation for the multiple q-shifted factorial:
$$ (a_{1}, a_{2},\ldots,a_{m};q)_{n}=(a_{1};q)_{n}(a_{2};q)_{n} \cdots (a_{m};q)_{n}, $$
(1.3)
where n is an integer or ∞. We may extend the definition (1.2) of \((a; q)_{n}\) to
$$ (a; q)_{\alpha}=\frac{(a; q)_{\infty}}{(aq^{\alpha}; q)_{\infty}}, $$
(1.4)
for any complex number α. In particular,
$$ (a; q)_{-n}=\frac{(a; q)_{\infty}}{(aq^{-n}; q)_{\infty}} =\frac{1}{(aq^{-n}; q)_{n}}= \frac{(-q/a)^{n}}{(q/a; q)_{n}}q^{n\choose 2}. $$
(1.5)
The following is the well-known Ramanujan \({}_{1}\psi_{1}\) summation formula [10, 11],
$$ \sum_{n=-\infty}^{\infty} \frac{(a;q)_{n}}{(b;q)_{n}}z^{n} =\frac{(q,b/a,az,q/az;q)_{\infty}}{(b,q/a,z,b/az;q)_{\infty}},\quad |b/a|< |z|< 1. $$
(1.6)
The bilateral basic hypergeometric series \({}_{r}\psi_{s}\) is defined by
$$ {}_{r}\psi_{s} \biggl({{a_{1}, a_{2}, \ldots, a_{r}} \atop {b_{1}, b_{2}, \ldots, b_{s}}} ; q, z \biggr) = \sum_{n=-\infty}^{\infty}\frac{(a_{1}, a_{2}, \ldots, a_{r};q)_{n} }{(b_{1}, b_{2}, \ldots, b_{s} ;q)_{n}}(-1)^{(s-r)n}q^{(s-r){n\choose 2}}z^{n}. $$
(1.7)
Jackson defined the q-integral by [12]
$$ \int_{0}^{d}f(t)\, d_{q}t=d(1-q)\sum _{n=0}^{\infty}f\bigl(dq^{n} \bigr)q^{n} $$
(1.8)
and
$$ \int_{c}^{d}f(t)\, d_{q}t= \int_{0}^{d}f(t)\, d_{q}t- \int_{0}^{c}f(t)\, d_{q}t. $$
(1.9)
In [13], the author uses Ramanujan’s \({}_{1}\psi_{1}\) summation formula to give the following inequality: Let a, b be any real numbers such that \(q< b< a<1\) or \(a< b<0\), and let \(a_{i}\), \(b_{i}\) be any real numbers such that \(|a_{i}|>q\), \(|b_{i}|<1\) for \(i=1,2,\ldots,r\) with \(r\geq1\) and \(|b_{1}b_{2}\cdots b_{r}|\leq|a_{1}a_{2}\cdots a_{r}|\). Then for any \(b/a<|z|<1\), we have
$$ \biggl\vert {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, z \biggr)\biggr\vert \leq M\frac{(q,b/a,a|z|,q/a|z|;q)_{\infty}}{(b,q/a,|z|,b/a|z|;q)_{\infty}}, $$
(1.10)
where
$$ M=\max \Biggl\{ \prod_{i=1}^{r} \frac{(-|a_{i}|; q)_{\infty}}{(|b_{i}|; q)_{\infty}},\prod_{i=1}^{r} \frac{(-q/|b_{i}|; q)_{\infty}}{(q/|a_{i}|; q)_{\infty}} \Biggr\} . $$

2 The proof of theorem

In this section, we use (1.10) to prove Theorem 1.1.
Proof
Under the conditions of the theorem 1.1, it is easy to see that
$$ b/a< c+tq^{n}< 1. $$
(2.1)
Letting \(z=c+tq^{n}\) in (1.10) gives
$$\begin{aligned}& \biggl\vert {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+tq^{n} \biggr)\biggr\vert \\& \quad \leq M\frac{(q,b/a,a(c+tq^{n}),q/a(c+tq^{n});q)_{\infty }}{(b,q/a,c+tq^{n},b/a(c+tq^{n});q)_{\infty}},\quad n=0,1,2,\ldots. \end{aligned}$$
(2.2)
Since \(0< b< a(c+tq^{n})< a<1\), we have
$$ \bigl(a\bigl(c+tq^{n}\bigr),q/a\bigl(c+tq^{n} \bigr);q\bigr)_{\infty}< (b,q/a;q)_{\infty} $$
(2.3)
and
$$ \bigl(c+tq^{n},b/a\bigl(c+tq^{n}\bigr);q \bigr)_{\infty}\geq(c+t,b/ac;q)_{\infty}. $$
(2.4)
Combining (2.2), (2.3), and (2.4), we get
$$ \biggl\vert {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+tq^{n} \biggr)\biggr\vert \leq M\frac{(q,b/a,;q)_{\infty}}{(c+t,b/ac;q)_{\infty}}, \quad n=0,1,2,\ldots. $$
(2.5)
By the definition of the q-integral (1.8), we get
$$\begin{aligned}& \int_{0}^{t}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z \\& \quad = t(1-q)\sum_{n=0}^{\infty}q^{n}{}_{r+1} \psi_{r+1} \biggl({{a_{1},a_{2}, \ldots,a_{r+1}} \atop {b_{1},b_{2}, \ldots,b_{r}}} ; q, tq^{n} \biggr). \end{aligned}$$
(2.6)
Consequently,
$$\begin{aligned}& \biggl\vert \int_{0}^{t}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad =\Biggl\vert t(1-q)\sum_{n=0}^{\infty}q^{n}{}_{r+1} \psi_{r+1} \biggl({{a_{1},a_{2}, \ldots,a_{r+1}} \atop {b_{1},b_{2}, \ldots,b_{r}}} ; q, tq^{n} \biggr)\Biggr\vert \\& \quad \leq t(1-q)\sum_{n=0}^{\infty}q^{n} \biggl\vert {}_{r+1}\psi_{r+1} \biggl({{a_{1},a_{2}, \ldots,a_{r+1}} \atop {b_{1},b_{2}, \ldots,b_{r}}} ; q, tq^{n} \biggr)\biggr\vert . \end{aligned}$$
(2.7)
Using (2.5) one gets
$$\begin{aligned}& \biggl\vert \int_{0}^{t}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad \leq t(1-q)M\frac{(q,b/a,;q)_{\infty}}{(c+t,b/ac;q)_{\infty}}\sum_{n=0}^{\infty}q^{n} = \frac{Mt(q,b/a,;q)_{\infty}}{(c+t,b/ac;q)_{\infty}}. \end{aligned}$$
(2.8)
Thus, we complete the proof. □
From (1.1) and the definition of the q-integral (1.9), we can easily get the following result.
Corollary 2.1
Under the conditions of the theorem, we have
$$\begin{aligned}& \biggl\vert \int_{s}^{t} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad \leq \frac{M(q,b/a,;q)_{\infty}}{(c+t,c+s,b/ac;q)_{\infty}}\bigl[t(c+s;q)_{\infty }+s(c+t;q)_{\infty} \bigr], \end{aligned}$$
(2.9)
where \(s>0\) and \(c+s<1\).
Proof
By the definition of the q-integral (1.9), we get
$$\begin{aligned}& \biggl\vert \int_{s}^{t} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad = \biggl\vert \int_{0}^{t} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z \\& \qquad {}- \int_{0}^{s} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad \leq \biggl\vert \int_{0}^{t} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \qquad {}+\biggl\vert \int_{0}^{s} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad \leq \frac{Mt(q,b/a,;q)_{\infty}}{(c+t,b/ac;q)_{\infty}} +\frac{Ms(q,b/a,;q)_{\infty}}{(c+s,b/ac;q)_{\infty}} \\& \quad = \frac{M(q,b/a,;q)_{\infty}}{(c+t,c+s,b/ac;q)_{\infty }}\bigl[t(c+s;q)_{\infty}+s(c+t;q)_{\infty} \bigr]. \end{aligned}$$
(2.10)
Thus, the inequality (2.9) holds. □

3 Some applications of the inequality

In this section, we use the inequality obtained in this paper to give some sufficient conditions for the convergence of the q-series. Convergence is an important problem in the study of q-series. There are some results about it. For example, Ito used an inequality technique to give a sufficient condition for the convergence of a special q-series called the Jackson integral [14].
Theorem 3.1
Suppose that
(1)
a, b, c be any positive real numbers such that \(0< q< b< a<1\), \(c>b/a\);
 
(2)
\(a_{i}\), \(b_{i}\) be any real numbers such that \(|a_{i}|>q\), \(|b_{i}|<1\) for \(i=1,2,\ldots,r\) with \(r\geq1\) and \(|b_{1}b_{2}\cdots b_{r}|\leq|a_{1}a_{2}\cdots a_{r}|\);
 
(3)
\(\{t_{n}\}\) be any positive number series, such that \(c+t_{n}<1\) and \(\sum_{n=1}^{\infty}t_{n}\) converges.
 
Then the q-series
$$ \sum_{n=0}^{\infty} \int_{0}^{t_{n}}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z $$
(3.1)
converges absolutely.
Proof
Since \(\sum_{n=1}^{\infty}t_{n}\) converges, we get
$$ \lim_{n\rightarrow\infty}t_{n}=0. $$
(3.2)
So, there exists an integer \(N_{0}\) such that, when \(n>N_{0}\),
$$ c+t_{n}\leq d< 1. $$
(3.3)
When \(n>N_{0}\), letting \(t=t_{n}\) in (1.1) gives
$$\begin{aligned}& \biggl\vert \int_{0}^{t_{n}}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad \leq \frac{Mt_{n}(q,b/a;q)_{\infty}}{(c+t_{n},b/ac;q)_{\infty}}\leq \frac{M(q,b/a;q)_{\infty}}{(d,b/ac;q)_{\infty}}t_{n}. \end{aligned}$$
(3.4)
From (3.4) and the convergence of \(\sum_{n=1}^{\infty}t_{n}\), it is sufficient to establish that (3.1) is absolutely convergent. □
Corollary 3.2
Let \(\{s_{n}\}\) be any positive number series such that \(c+s_{n}<1\) and \(\sum_{n=1}^{\infty}s_{n}\) converges. Under the conditions of Theorem  3.1, then the q-series
$$ \sum_{n=0}^{\infty} \int_{s_{n}}^{t_{n}}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z $$
(3.5)
converges absolutely.
Proof
By the definition of the q-integral (1.9), we get
$$\begin{aligned}& \int_{s_{n}}^{t_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z \\& \quad = \int_{0}^{t_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z \\& \qquad {}- \int_{0}^{s_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z. \end{aligned}$$
(3.6)
Since both
$$ \int_{0}^{t_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z $$
(3.7)
and
$$ \int_{0}^{s_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z $$
(3.8)
are absolutely convergent, so (3.5) is absolutely convergent. □
Theorem 3.3
Suppose that
(1)
a, b, c, d be any positive real numbers such that \(0< q< b< a<1\), \(c>b/a\), \(c+d<1\);
 
(2)
\(a_{i}\), \(b_{i}\) be any real numbers such that \(|a_{i}|>q\), \(|b_{i}|<1\) for \(i=1,2,\ldots,r\) with \(r\geq1\) and \(|b_{1}b_{2}\cdots b_{r}|\leq|a_{1}a_{2}\cdots a_{r}|\);
 
(3)
\(\{t_{n}\}\) be any positive number series, such that \(t_{n}\leq d\) and \(c+d<1\);
 
(4)
\(\sum_{n=1}^{\infty}e_{n}\) converges absolutely.
 
Then the q-series
$$ \sum_{n=0}^{\infty}e_{n} \int_{0}^{t_{n}}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z $$
(3.9)
converges absolutely.
Proof
Using (1.1) gives
$$\begin{aligned}& \biggl\vert e_{n} \int_{0}^{t_{n}}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad \leq \frac{Mt_{n}(q,b/a;q)_{\infty}}{(c+t_{n},b/ac;q)_{\infty}}|e_{n}| \leq\frac{Md(q,b/a;q)_{\infty}}{(c+d,b/ac;q)_{\infty}}|e_{n}|. \end{aligned}$$
(3.10)
Because \(\sum_{n=1}^{\infty}e_{n}\) converges absolutely, (3.10) is sufficient to establish that (3.9) is absolutely convergent. □
Corollary 3.4
Suppose that
(1)
a, b, c, d be any positive real numbers such that \(0< q< b< a<1\), \(c>b/a\), \(c+d<1\);
 
(2)
\(a_{i}\), \(b_{i}\) be any real numbers such that \(|a_{i}|>q\), \(|b_{i}|<1\) for \(i=1,2,\ldots,r\) with \(r\geq1\) and \(|b_{1}b_{2}\cdots b_{r}|\leq|a_{1}a_{2}\cdots a_{r}|\);
 
(3)
\(\{t_{n}\}\), \(\{s_{n}\}\) be any positive number series, such that \(t_{n}\leq d\), \(s_{n}\leq d\), and \(c+d<1\);
 
(4)
\(\sum_{n=1}^{\infty}e_{n}\) converges absolutely.
 
Then the q-series
$$ \sum_{n=0}^{\infty}e_{n} \int_{s_{n}}^{t_{n}}{}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z $$
(3.11)
converges absolutely.
Proof
By the definition of the q-integral (1.9), we get
$$\begin{aligned}& \biggl\vert e_{n} \int_{s_{n}}^{t_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad = \biggl\vert e_{n} \int_{0}^{t_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z \\& \qquad {}-e_{n} \int_{0}^{s_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad \leq \biggl\vert e_{n} \int_{0}^{t_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \qquad {}+\biggl\vert e_{n} \int_{0}^{s_{n}} {}_{r+1}\psi_{r+1} \biggl({{a,a_{1},\ldots,a_{r}} \atop {b,b_{1}, \ldots,b_{r}}} ; q, c+z \biggr)\, d_{q}z\biggr\vert \\& \quad \leq \frac{Mt_{n}(q,b/a;q)_{\infty}}{(c+t_{n},b/ac;q)_{\infty}}|e_{n}| +\frac{Ms_{n}(q,b/a;q)_{\infty}}{(c+s_{n},b/ac;q)_{\infty}}|e_{n}| \\& \quad \leq \frac{2Md(q,b/a;q)_{\infty}}{(c+d,b/ac;q)_{\infty}}|e_{n}|. \end{aligned}$$
(3.12)
Since \(\sum_{n=1}^{\infty}e_{n}\) converges absolutely, (3.11) converges absolutely. □

Acknowledgements

This work was supported by the National Natural Science Foundation (grant No. 11271057) of China.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors equally have made contributions. All authors read and approved the final manuscript.
Literature
1.
go back to reference Anderson, GD, Barnard, RW, Vamanamurthy, KC, Vuorinen, M: Inequalities for zero-balanced hypergeometric functions. Trans. Am. Math. Soc. 347(5), 1713-1723 (1995) MATHMathSciNetCrossRef Anderson, GD, Barnard, RW, Vamanamurthy, KC, Vuorinen, M: Inequalities for zero-balanced hypergeometric functions. Trans. Am. Math. Soc. 347(5), 1713-1723 (1995) MATHMathSciNetCrossRef
2.
go back to reference Giordano, C, Laforgia, A, Pečarić, J: Supplements to known inequalities for some special functions. J. Math. Anal. Appl. 200, 34-41 (1996) MATHMathSciNetCrossRef Giordano, C, Laforgia, A, Pečarić, J: Supplements to known inequalities for some special functions. J. Math. Anal. Appl. 200, 34-41 (1996) MATHMathSciNetCrossRef
3.
go back to reference Giordano, C, Laforgia, A, Pečarić, J: Unified treatment of Gautschi-Kershaw type inequalities for the gamma function. J. Comput. Appl. Math. 99, 167-175 (1998) MATHMathSciNetCrossRef Giordano, C, Laforgia, A, Pečarić, J: Unified treatment of Gautschi-Kershaw type inequalities for the gamma function. J. Comput. Appl. Math. 99, 167-175 (1998) MATHMathSciNetCrossRef
4.
go back to reference Giordano, C, Laforgia, A: Inequalities and monotonicity properties for the gamma function. J. Comput. Appl. Math. 133, 387-396 (2001) MATHMathSciNetCrossRef Giordano, C, Laforgia, A: Inequalities and monotonicity properties for the gamma function. J. Comput. Appl. Math. 133, 387-396 (2001) MATHMathSciNetCrossRef
5.
go back to reference Giordano, C, Laforgia, A: On the Bernstein-type inequalities for ultraspherical polynomials. J. Comput. Appl. Math. 153, 243-284 (2003) MATHMathSciNetCrossRef Giordano, C, Laforgia, A: On the Bernstein-type inequalities for ultraspherical polynomials. J. Comput. Appl. Math. 153, 243-284 (2003) MATHMathSciNetCrossRef
6.
go back to reference Örkcü, M: Approximation properties of bivariate extension of q-Szász-Mirakjan-Kantorovich operators. J. Inequal. Appl. 2013, 324 (2013) CrossRef Örkcü, M: Approximation properties of bivariate extension of q-Szász-Mirakjan-Kantorovich operators. J. Inequal. Appl. 2013, 324 (2013) CrossRef
7.
go back to reference Tariboon, J, Ntouyas, SK: Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 121 (2014) CrossRef Tariboon, J, Ntouyas, SK: Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 121 (2014) CrossRef
8.
go back to reference Araci, S, Acikgoz, M, Seo, J-J: A new family of q-analogue of Genocchi numbers and polynomials of higher order. Kyungpook Math. J. 54(1), 131-141 (2014) MATHMathSciNetCrossRef Araci, S, Acikgoz, M, Seo, J-J: A new family of q-analogue of Genocchi numbers and polynomials of higher order. Kyungpook Math. J. 54(1), 131-141 (2014) MATHMathSciNetCrossRef
9.
10.
go back to reference Andrews, GE: The Theory of Partitions. Encyclopedia of Mathematics and Applications, vol. 2. Addison-Wesley, Reading (1976) MATH Andrews, GE: The Theory of Partitions. Encyclopedia of Mathematics and Applications, vol. 2. Addison-Wesley, Reading (1976) MATH
11.
go back to reference Gasper, G, Rahman, M: Basic Hypergeometric Series. Cambridge University Press, Cambridge (1990) MATH Gasper, G, Rahman, M: Basic Hypergeometric Series. Cambridge University Press, Cambridge (1990) MATH
12.
go back to reference Jackson, FH: On q-definite integrals. Q. J. Pure Appl. Math. 50, 101-112 (1910) Jackson, FH: On q-definite integrals. Q. J. Pure Appl. Math. 50, 101-112 (1910)
13.
go back to reference Wang, M: Some convergence theorems for the q-integral. Publ. Math. (Debr.) 82(2), 399-406 (2013) MATHCrossRef Wang, M: Some convergence theorems for the q-integral. Publ. Math. (Debr.) 82(2), 399-406 (2013) MATHCrossRef
14.
go back to reference Ito, M: Convergence and asymptotic behavior of Jackson integrals associated with irreducible reduced root systems. J. Approx. Theory 124, 154-180 (2003) MATHMathSciNetCrossRef Ito, M: Convergence and asymptotic behavior of Jackson integrals associated with irreducible reduced root systems. J. Approx. Theory 124, 154-180 (2003) MATHMathSciNetCrossRef
Metadata
Title
Bounds for q-integrals of with applications
Authors
Zhefei He
Mingjin Wang
Gaowen Xi
Publication date
01-12-2015
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2015
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-015-0946-3

Other articles of this Issue 1/2015

Journal of Inequalities and Applications 1/2015 Go to the issue

Premium Partner