Skip to main content
Top
Published in: Medical & Biological Engineering & Computing 3/2024

23-11-2023 | Original Article

Brain fiber structure estimation based on principal component analysis and RINLM filter

Authors: Yuemin Zhu, Yuanjun Wang

Published in: Medical & Biological Engineering & Computing | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Diffusion magnetic resonance imaging is a technique for non-invasive detection of microstructure in the white matter of the human brain, which is widely used in neuroscience research of the brain. However, diffusion-weighted images(DWI) are sensitive to noise, which affects the subsequent reconstruction of fiber orientation direction, microstructural parameter estimation and fiber tracking. In order to better eliminate the noise in diffusion-weighted images, this study proposes a noise reduction method combining Marchenko-Pastur principal component analysis(MPPCA) and rotation-invariant non-local means filter(RINLM) to further remove residual noise and preserve the image texture detail information. In this study, the algorithm is applied to the fiber structure and the prevailing microstructural models within the human brain voxels based on simulated and real human brain datasets. Experimental comparisons between the proposed method and the state-of-the-art methods are performed in single-fiber, multi-fiber, crossed and curved-fiber regions as well as in different microstructure estimation models. Results demonstrated the superior performance of the proposed method in denoising DWI data, which can reduce the angular error in fiber orientation reconstruction to obtain more valid fiber structure estimation and enable more complete fiber tracking trajectories with higher coverage. Meanwhile, the method reduces the estimation errors of various white matter microstructural parameters and verifies the performance of the method in white matter microstructure estimation.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Jeurissen B, Descoteaux M, Mori S et al (2019) Diffusion MRI fiber tractography of the brain. NMR Biomed 32(4):e3785CrossRefPubMed Jeurissen B, Descoteaux M, Mori S et al (2019) Diffusion MRI fiber tractography of the brain. NMR Biomed 32(4):e3785CrossRefPubMed
4.
go back to reference Tournier JD, Calamante F, Connelly A (2013) Determination of the appropriate b value and number of gradient directions for high angular resolution diffusion weighted imaging. NMR Biomed 26(12):1775–1786CrossRefPubMed Tournier JD, Calamante F, Connelly A (2013) Determination of the appropriate b value and number of gradient directions for high angular resolution diffusion weighted imaging. NMR Biomed 26(12):1775–1786CrossRefPubMed
5.
go back to reference Tuch DS, Reese TG, Wiegell MR et al (2002) High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 48(4):577–582CrossRefPubMed Tuch DS, Reese TG, Wiegell MR et al (2002) High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 48(4):577–582CrossRefPubMed
6.
go back to reference Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4):1459–1472CrossRefPubMed Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4):1459–1472CrossRefPubMed
7.
go back to reference Thanh DNH, Kalavathi P, Prasath VBS (2020) Chest X-ray image denoising using Nesterov optimization method with total variation regularization. Procedia Comput Sci 171:1961–1969CrossRef Thanh DNH, Kalavathi P, Prasath VBS (2020) Chest X-ray image denoising using Nesterov optimization method with total variation regularization. Procedia Comput Sci 171:1961–1969CrossRef
8.
go back to reference Tavakoli A, Mousavi P, Zarmehi F et al (2018) Modified algorithms for image inpainting in Fourier transform domain. Comput Appl Math 37(4):5239–5252MathSciNetCrossRef Tavakoli A, Mousavi P, Zarmehi F et al (2018) Modified algorithms for image inpainting in Fourier transform domain. Comput Appl Math 37(4):5239–5252MathSciNetCrossRef
9.
go back to reference Lu W, Duan J, Qiu Z et al (2016) Implementation of high-order variational models made easy for image processing. Math Methods Appl Sci 39(14):4208–4233MathSciNetCrossRef Lu W, Duan J, Qiu Z et al (2016) Implementation of high-order variational models made easy for image processing. Math Methods Appl Sci 39(14):4208–4233MathSciNetCrossRef
10.
go back to reference Tian C, Zheng M, Zuo W et al (2023) Multi-stage image denoising with the wavelet transform. Pattern Recogn 134:109050CrossRef Tian C, Zheng M, Zuo W et al (2023) Multi-stage image denoising with the wavelet transform. Pattern Recogn 134:109050CrossRef
11.
go back to reference Göreke V (2023) A novel method based on Wiener filter for denoising Poisson noise from medical X-Ray images. Biomed Signal Process Control 79:104031CrossRef Göreke V (2023) A novel method based on Wiener filter for denoising Poisson noise from medical X-Ray images. Biomed Signal Process Control 79:104031CrossRef
12.
go back to reference Lahmiri S (2017) An iterative denoising system based on Wiener filtering with application to biomedical images. Opt Laser Technol 90:128–132ADSCrossRef Lahmiri S (2017) An iterative denoising system based on Wiener filtering with application to biomedical images. Opt Laser Technol 90:128–132ADSCrossRef
13.
go back to reference Muresan DD, Parks TW (2003) Adaptive principal components and image denoising. IEEE Int Conf Image Process 1:101–104 Muresan DD, Parks TW (2003) Adaptive principal components and image denoising. IEEE Int Conf Image Process 1:101–104
14.
go back to reference Zhang L, Dong W, Zhanga D, Shib G (2010) Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recogn 43(4):1531–1549ADSCrossRef Zhang L, Dong W, Zhanga D, Shib G (2010) Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recogn 43(4):1531–1549ADSCrossRef
15.
go back to reference Phophalia A, Mitra SK (2017) 3D MR image denoising using rough set and kernel PCA method. Magn Reson Imaging 36:135–145CrossRefPubMed Phophalia A, Mitra SK (2017) 3D MR image denoising using rough set and kernel PCA method. Magn Reson Imaging 36:135–145CrossRefPubMed
16.
go back to reference Veraart J, Novikov DS, Novikov DS et al (2016a) Denoising of diffusion MRI using random matrix theory. Neuroimage 142:394–406CrossRefPubMed Veraart J, Novikov DS, Novikov DS et al (2016a) Denoising of diffusion MRI using random matrix theory. Neuroimage 142:394–406CrossRefPubMed
17.
go back to reference Zhang XY, Peng J, Xu M et al (2017) Denoise diffusion-weighted images using higher-order singular value decomposition. Neuroimage 156:128–145CrossRefPubMed Zhang XY, Peng J, Xu M et al (2017) Denoise diffusion-weighted images using higher-order singular value decomposition. Neuroimage 156:128–145CrossRefPubMed
18.
go back to reference Wu ZX, Potter T, Wu DN et al (2018) Denoising high angular resolution diffusion imaging data by combining singular value decomposition and non-local means filter. J Neurosci Methods 312:105–113CrossRefPubMed Wu ZX, Potter T, Wu DN et al (2018) Denoising high angular resolution diffusion imaging data by combining singular value decomposition and non-local means filter. J Neurosci Methods 312:105–113CrossRefPubMed
19.
go back to reference Veraart J, Fieremans E et al (2016b) Diffusion MRI noise mapping using random matrix theory. Magn Reson Med 76(5):1582–1593 Veraart J, Fieremans E et al (2016b) Diffusion MRI noise mapping using random matrix theory. Magn Reson Med 76(5):1582–1593
20.
go back to reference Manjon JV, Coupé P, Concha L et al (2013) Diffusion weighted image denoising using overcomplete local PCA. PLoS ONE 8(9):12CrossRef Manjon JV, Coupé P, Concha L et al (2013) Diffusion weighted image denoising using overcomplete local PCA. PLoS ONE 8(9):12CrossRef
21.
go back to reference Manjón JV, Coupé P, Buades A (2015) MRI noise estimation and denoising using non-local PCA. Med Image Anal 22(1):35–47CrossRefPubMed Manjón JV, Coupé P, Buades A (2015) MRI noise estimation and denoising using non-local PCA. Med Image Anal 22(1):35–47CrossRefPubMed
22.
go back to reference Priya US, Nair JJ (2015) Denoising of DT-MR images with an iterative PCA. Procedia Comput Sci 58:603–613CrossRef Priya US, Nair JJ (2015) Denoising of DT-MR images with an iterative PCA. Procedia Comput Sci 58:603–613CrossRef
23.
go back to reference Marchenko VA, Pastur LA (1967) Distribution of eigenvalues for some sets of random matrices. Mat Sb 114:507–536 Marchenko VA, Pastur LA (1967) Distribution of eigenvalues for some sets of random matrices. Mat Sb 114:507–536
24.
go back to reference Moeller S, Pisharady PK, Ramanna S et al (2021) NOise reduction with DIstribution Corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing. Neuroimage 226:117539CrossRefPubMed Moeller S, Pisharady PK, Ramanna S et al (2021) NOise reduction with DIstribution Corrected (NORDIC) PCA in dMRI with complex-valued parameter-free locally low-rank processing. Neuroimage 226:117539CrossRefPubMed
25.
go back to reference Manjón JV, Coupé P, Buades A, Collins DL, Robles M (2012) New methods for MRI denoising based on sparseness and self-similarity. Med Image Anal 16(1):18–27CrossRefPubMed Manjón JV, Coupé P, Buades A, Collins DL, Robles M (2012) New methods for MRI denoising based on sparseness and self-similarity. Med Image Anal 16(1):18–27CrossRefPubMed
26.
go back to reference Fadnavis S, Batson J, Garyfallidis E (2020) Patch2Self: denoising diffusion MRI with self-supervised learning. Adv Neural Inf Process Syst 33:16293–16303 Fadnavis S, Batson J, Garyfallidis E (2020) Patch2Self: denoising diffusion MRI with self-supervised learning. Adv Neural Inf Process Syst 33:16293–16303
27.
go back to reference Rajan J, Veraart J, Van Audekerke J et al (2012) Nonlocal maximum likelihood estimation method for denoising multiple coil magnetic resonance images. Magn Reson Imaging 30(10):1512–1518CrossRefPubMed Rajan J, Veraart J, Van Audekerke J et al (2012) Nonlocal maximum likelihood estimation method for denoising multiple coil magnetic resonance images. Magn Reson Imaging 30(10):1512–1518CrossRefPubMed
28.
go back to reference Zhang Y, Liu J, Li M et al (2014) Joint image denoising using adaptive principal component analysis and self-similarity. Inform Sci 259:128–141CrossRef Zhang Y, Liu J, Li M et al (2014) Joint image denoising using adaptive principal component analysis and self-similarity. Inform Sci 259:128–141CrossRef
29.
go back to reference Zhu H, Zhang J, Wang Z (2018) Arterial spin labeling perfusion MRI signal denoising using robust principal component analysis. Neurosci Meth 295:10–19CrossRef Zhu H, Zhang J, Wang Z (2018) Arterial spin labeling perfusion MRI signal denoising using robust principal component analysis. Neurosci Meth 295:10–19CrossRef
30.
31.
go back to reference Hansen PC (1994) Regularization tools: a MATLAB package for analysis and solution of discrete ill-posed problems. Numer Algorithms 6:1–35ADSMathSciNetCrossRef Hansen PC (1994) Regularization tools: a MATLAB package for analysis and solution of discrete ill-posed problems. Numer Algorithms 6:1–35ADSMathSciNetCrossRef
32.
go back to reference Smith RE, Tournier JD, Calamante F et al (2012) Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62(3):1924–1938CrossRefPubMed Smith RE, Tournier JD, Calamante F et al (2012) Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage 62(3):1924–1938CrossRefPubMed
33.
go back to reference Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219CrossRefPubMed Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219CrossRefPubMed
34.
go back to reference Tournier JD, Calamante F, Connelly A (2010) Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. Proceedings of the international society for magnetic resonance in medicine, 1670 Tournier JD, Calamante F, Connelly A (2010) Improved probabilistic streamlines tractography by 2nd order integration over fibre orientation distributions. Proceedings of the international society for magnetic resonance in medicine, 1670
35.
go back to reference Jensen JH, Helpern JA, Ramani A et al (2005) Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53(6):1432–1440CrossRefPubMed Jensen JH, Helpern JA, Ramani A et al (2005) Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53(6):1432–1440CrossRefPubMed
36.
go back to reference Zhang H, Schneider T, Wheeler-Kinshott CA et al (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4):1000–1016CrossRefPubMed Zhang H, Schneider T, Wheeler-Kinshott CA et al (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4):1000–1016CrossRefPubMed
37.
go back to reference Fillard P, Descoteaux M, Goh A et al (2011) Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. Neuroimage 56(1):220–234CrossRefPubMed Fillard P, Descoteaux M, Goh A et al (2011) Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom. Neuroimage 56(1):220–234CrossRefPubMed
38.
go back to reference Close TG, Tournier JD, Calamante F et al (2009) A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms. Neuroimage 47(4):1288–1300CrossRefPubMed Close TG, Tournier JD, Calamante F et al (2009) A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms. Neuroimage 47(4):1288–1300CrossRefPubMed
39.
go back to reference Tournier JD, Smith R, Raffelt D et al (2019) MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202:116137CrossRefPubMed Tournier JD, Smith R, Raffelt D et al (2019) MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202:116137CrossRefPubMed
40.
go back to reference Pizzolato M, Gilbert G, Thiran JP et al (2020) Adaptive phase correction of diffusion-weighted images. Neuroimage 206:116274CrossRefPubMed Pizzolato M, Gilbert G, Thiran JP et al (2020) Adaptive phase correction of diffusion-weighted images. Neuroimage 206:116274CrossRefPubMed
41.
go back to reference Liu F, Feng J, Chen G et al (2021) Gaussianization of diffusion MRI data using spatially adaptive filtering. Med Image Anal 68:101828CrossRefPubMed Liu F, Feng J, Chen G et al (2021) Gaussianization of diffusion MRI data using spatially adaptive filtering. Med Image Anal 68:101828CrossRefPubMed
42.
go back to reference Liu F, Yang J, Feng M et al (2023) Does perfect filtering really guarantee perfect phase correction for diffusion MRI data? Comput Med Imaging Graph 103:102160CrossRefPubMed Liu F, Yang J, Feng M et al (2023) Does perfect filtering really guarantee perfect phase correction for diffusion MRI data? Comput Med Imaging Graph 103:102160CrossRefPubMed
Metadata
Title
Brain fiber structure estimation based on principal component analysis and RINLM filter
Authors
Yuemin Zhu
Yuanjun Wang
Publication date
23-11-2023
Publisher
Springer Berlin Heidelberg
Published in
Medical & Biological Engineering & Computing / Issue 3/2024
Print ISSN: 0140-0118
Electronic ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-023-02972-2

Other articles of this Issue 3/2024

Medical & Biological Engineering & Computing 3/2024 Go to the issue

Premium Partner