Skip to main content
Top

2017 | OriginalPaper | Chapter

Brain Programming and the Random Search in Object Categorization

Authors : Gustavo Olague, Eddie Clemente, Daniel E. Hernández, Aaron Barrera

Published in: Applications of Evolutionary Computation

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Computational neuroscience lays the foundations of intelligent behavior through the application of machine learning approaches. Brain programming, which derives from such approaches, is emerging as a new evolutionary computing paradigm for solving computer vision and pattern recognition problems. Primate brains have several distinctive features that are obtained by a complex arrangement of highly interconnected and numerous cortical visual areas. This paper describes a virtual system that mimics the complex structure of primate brains composed of an artificial dorsal pathway – or “where” stream – and an artificial ventral pathway – or “what” stream – that are fused to recreate an artificial visual cortex. The goal is to show that brain programming is able to discover numerous heterogeneous functions that are applied within a hierarchical structure of our virtual brain. Thus, the proposal applies two key ideas: first, object recognition can be achieved by a hierarchical structure in combination with the concept of function composition; second, the functions can be discovered through multiple random runs of the search process. This last point is important since is the first step in any evolutionary algorithm; in this way, enhancing the possibilities for solving hard optimization problems.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Olague, G.: Evolutionary Computer Vision: The First Footprints. Springer, Heidelberg (2016)CrossRef Olague, G.: Evolutionary Computer Vision: The First Footprints. Springer, Heidelberg (2016)CrossRef
2.
go back to reference Logothetis, N.K., Sheinberg, D.L.: Visual object recognition. Ann. Rev. Neurosci. 19, 577–621 (1996)CrossRef Logothetis, N.K., Sheinberg, D.L.: Visual object recognition. Ann. Rev. Neurosci. 19, 577–621 (1996)CrossRef
3.
go back to reference DiCarlo, J.J., Zoccolan, D., Rust, N.C.: How does the brain solve visual object recognition? Neuron 73(3), 415–434 (2012)CrossRef DiCarlo, J.J., Zoccolan, D., Rust, N.C.: How does the brain solve visual object recognition? Neuron 73(3), 415–434 (2012)CrossRef
4.
go back to reference Riesenhuber, M., Poggio, T.: Models of object recognition. Nat. Neurosci. 3, 1199–1204 (2000)CrossRef Riesenhuber, M., Poggio, T.: Models of object recognition. Nat. Neurosci. 3, 1199–1204 (2000)CrossRef
5.
go back to reference Rees, G., Frackowiak, R., Frith, C.: Two modulatory effects of attention that mediate object categorization in human cortex. Science. 275(5301), 835–8 (1997)CrossRef Rees, G., Frackowiak, R., Frith, C.: Two modulatory effects of attention that mediate object categorization in human cortex. Science. 275(5301), 835–8 (1997)CrossRef
6.
go back to reference Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Ann. Rev. Neurosci. 18, 193–222 (1995)CrossRef Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Ann. Rev. Neurosci. 18, 193–222 (1995)CrossRef
7.
go back to reference Kastner, S., Ungerleider, L.G.: Mechanisms of visual attention in the human cortex. Ann. Rev. Neurosci. 23, 315–341 (2000)CrossRef Kastner, S., Ungerleider, L.G.: Mechanisms of visual attention in the human cortex. Ann. Rev. Neurosci. 23, 315–341 (2000)CrossRef
8.
go back to reference Milner, A.D., Goodale, M.A.: The Visual Brain in Action, 2nd edn. Oxford University Press, Oxford (2006)CrossRef Milner, A.D., Goodale, M.A.: The Visual Brain in Action, 2nd edn. Oxford University Press, Oxford (2006)CrossRef
9.
go back to reference Creem, S.H., Proffitt, D.R.: Defining the cortical visual systems: “what”, “where”, and “how”. Acta Psychol. 107(1–3), 43–68 (2001)CrossRef Creem, S.H., Proffitt, D.R.: Defining the cortical visual systems: “what”, “where”, and “how”. Acta Psychol. 107(1–3), 43–68 (2001)CrossRef
10.
go back to reference Farivar, R.: Dorsal-ventral integration in object recognition. Brain Res. Rev. 61(2), 144–153 (2009)CrossRef Farivar, R.: Dorsal-ventral integration in object recognition. Brain Res. Rev. 61(2), 144–153 (2009)CrossRef
11.
go back to reference Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)MathSciNetCrossRefMATH Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)MathSciNetCrossRefMATH
12.
go back to reference Serre, T., Kouh, C., Cadieu, M., Knoblich, G., Kreiman, U., Poggio, T.: Theory of object recognition: computations and circuits in the feedforward path of the ventral stream in primate visual cortex. Technical report, Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory (2005) Serre, T., Kouh, C., Cadieu, M., Knoblich, G., Kreiman, U., Poggio, T.: Theory of object recognition: computations and circuits in the feedforward path of the ventral stream in primate visual cortex. Technical report, Massachusetts Institute of Technology Computer Science and Artificial Intelligence Laboratory (2005)
13.
go back to reference Mutch, J., Lowe, D.G.: Object class recognition and localization using sparse features with limited receptive fields. Int. J. Comput. Vis. 80(1), 45–57 (2008)CrossRef Mutch, J., Lowe, D.G.: Object class recognition and localization using sparse features with limited receptive fields. Int. J. Comput. Vis. 80(1), 45–57 (2008)CrossRef
14.
go back to reference Mel, B.W.: Seemore: combining color, shape, and texture histogramming in a neurally inspired approach to visual object recognition. Neural Comput. 9(4), 777–804 (1997)CrossRef Mel, B.W.: Seemore: combining color, shape, and texture histogramming in a neurally inspired approach to visual object recognition. Neural Comput. 9(4), 777–804 (1997)CrossRef
15.
go back to reference Itti, L., Koch, C.: Computational modeling of visual attention. Nat. Rev. Neurosci. 2(3), 194–203 (2001)CrossRef Itti, L., Koch, C.: Computational modeling of visual attention. Nat. Rev. Neurosci. 2(3), 194–203 (2001)CrossRef
16.
go back to reference Clemente, E., Olague, G., Dozal, L., Mancilla, M.: Object recognition with an optimized ventral stream model using genetic programming. In: Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 315–325. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29178-4_32CrossRef Clemente, E., Olague, G., Dozal, L., Mancilla, M.: Object recognition with an optimized ventral stream model using genetic programming. In: Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 315–325. Springer, Heidelberg (2012). doi:10.​1007/​978-3-642-29178-4_​32CrossRef
17.
go back to reference Clemente, E., Olague, G., Dozal, L.: Purposive evolution for object recognition using an artificial visual cortex. In: Schuetze, O., Coello, C.A.C., Tantar, A.-A., Tantar, E., Bouvry, P., Del Moral, P., Legrand, P. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II, pp. 355–370. Springer, Heidelberg (2013)CrossRef Clemente, E., Olague, G., Dozal, L.: Purposive evolution for object recognition using an artificial visual cortex. In: Schuetze, O., Coello, C.A.C., Tantar, A.-A., Tantar, E., Bouvry, P., Del Moral, P., Legrand, P. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II, pp. 355–370. Springer, Heidelberg (2013)CrossRef
18.
go back to reference Olague, G., Clemente, E., Dozal, L., Hernádez, D.E.: Evolving an artificial visual cortex for object recognition with brain programming. In: Schuetze, O., Coello, C.A.C., Tantar, A.-A., Tantar, E., Bouvry, P., Del Moral, P., Legrand, P., et al. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III. Springer, Heidelberg (2014) Olague, G., Clemente, E., Dozal, L., Hernádez, D.E.: Evolving an artificial visual cortex for object recognition with brain programming. In: Schuetze, O., Coello, C.A.C., Tantar, A.-A., Tantar, E., Bouvry, P., Del Moral, P., Legrand, P., et al. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III. Springer, Heidelberg (2014)
19.
go back to reference Dozal, L., Olague, G., Clemente, E., Hernandez, D.E.: Brain programming for the evolution of an articial dorsal stream. Cognit. Comput. 6(3), 528–557 (2014)CrossRef Dozal, L., Olague, G., Clemente, E., Hernandez, D.E.: Brain programming for the evolution of an articial dorsal stream. Cognit. Comput. 6(3), 528–557 (2014)CrossRef
20.
go back to reference Hernandez, D.E., Clemente, E., Olague, G., Briseño, J.L.: Evolutionary multi-objective visual cortex for object classification in natural images. J. Comput. Sci. 17(1), 216–233 (2016) Hernandez, D.E., Clemente, E., Olague, G., Briseño, J.L.: Evolutionary multi-objective visual cortex for object classification in natural images. J. Comput. Sci. 17(1), 216–233 (2016)
21.
go back to reference Clemente, E., Chavez, F., Fernandez de Vega, F., Olague, G.: Self-adjusting focus of attention in combination with a genetic fuzzy system for improving a laser environment control device system. Appl. Soft Comput. 32, 250–265 (2015)CrossRef Clemente, E., Chavez, F., Fernandez de Vega, F., Olague, G.: Self-adjusting focus of attention in combination with a genetic fuzzy system for improving a laser environment control device system. Appl. Soft Comput. 32, 250–265 (2015)CrossRef
22.
go back to reference Fukushima, K.: Neural network model for selective attention in visual pattern recognition and associative recall. Appl. Opt. 26(23), 4985–4992 (1987)CrossRef Fukushima, K.: Neural network model for selective attention in visual pattern recognition and associative recall. Appl. Opt. 26(23), 4985–4992 (1987)CrossRef
23.
go back to reference Olshausen, B.A., Anderson, C.H., Van Essen, D.C.: A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J. Neurosci. 13(11), 4700–4719 (1993)CrossRef Olshausen, B.A., Anderson, C.H., Van Essen, D.C.: A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J. Neurosci. 13(11), 4700–4719 (1993)CrossRef
24.
go back to reference Walther, D., Itti, L., Riesenhuber, M., Poggio, T., Koch, C.: Attentional selection for object recognition — a gentle way. In: Bülthoff, H.H., Wallraven, C., Lee, S.-W., Poggio, T.A. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 472–479. Springer, Heidelberg (2002). doi:10.1007/3-540-36181-2_47CrossRef Walther, D., Itti, L., Riesenhuber, M., Poggio, T., Koch, C.: Attentional selection for object recognition — a gentle way. In: Bülthoff, H.H., Wallraven, C., Lee, S.-W., Poggio, T.A. (eds.) BMCV 2002. LNCS, vol. 2525, pp. 472–479. Springer, Heidelberg (2002). doi:10.​1007/​3-540-36181-2_​47CrossRef
25.
go back to reference Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2(11), 1019–1025 (1999)CrossRef Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2(11), 1019–1025 (1999)CrossRef
26.
go back to reference Walther, D., Koch, C.: Attention in hierarchical models of object recognition. Progr. Brain Res. 165, 57–78 (2007)CrossRef Walther, D., Koch, C.: Attention in hierarchical models of object recognition. Progr. Brain Res. 165, 57–78 (2007)CrossRef
27.
go back to reference Heinke, D., Humphteys, G.W.: Attention, spatial representation, and visual neglect: simulating emergent attention and spatial memory in the selective attention for identification model (SAIM). Psychol. Rev. 110(1), 29–87 (2003)CrossRef Heinke, D., Humphteys, G.W.: Attention, spatial representation, and visual neglect: simulating emergent attention and spatial memory in the selective attention for identification model (SAIM). Psychol. Rev. 110(1), 29–87 (2003)CrossRef
28.
go back to reference Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cogn. Psychol. 12(1), 97–136 (1980)CrossRef Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cogn. Psychol. 12(1), 97–136 (1980)CrossRef
29.
go back to reference Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Netw. 19(9), 1395–407 (2006)CrossRefMATH Walther, D., Koch, C.: Modeling attention to salient proto-objects. Neural Netw. 19(9), 1395–407 (2006)CrossRefMATH
30.
go back to reference Pinto, N., Cox, D.D., DiCarlo, J.J.: Why is real-world visual object recognition hard? PLoS Comput. Biol. 4(1), 151–156 (2008)MathSciNetCrossRef Pinto, N., Cox, D.D., DiCarlo, J.J.: Why is real-world visual object recognition hard? PLoS Comput. Biol. 4(1), 151–156 (2008)MathSciNetCrossRef
31.
go back to reference Ponce, J., et al.: Dataset issues in object recognition. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 29–48. Springer, Heidelberg (2006). doi:10.1007/11957959_2CrossRef Ponce, J., et al.: Dataset issues in object recognition. In: Ponce, J., Hebert, M., Schmid, C., Zisserman, A. (eds.) Toward Category-Level Object Recognition. LNCS, vol. 4170, pp. 29–48. Springer, Heidelberg (2006). doi:10.​1007/​11957959_​2CrossRef
32.
go back to reference Wang, Z., Feng, J.: Multi-class learning from class proportions. Neurocomputing 119, 273–280 (2013)CrossRef Wang, Z., Feng, J.: Multi-class learning from class proportions. Neurocomputing 119, 273–280 (2013)CrossRef
33.
go back to reference Ji, Z., Wang, J., Su, Y., Song, Z., Xing, S.: Balance between object and background: object-enhanced features for scene image classification. Neurocomputing 120, 15–23 (2013)CrossRef Ji, Z., Wang, J., Su, Y., Song, Z., Xing, S.: Balance between object and background: object-enhanced features for scene image classification. Neurocomputing 120, 15–23 (2013)CrossRef
34.
go back to reference Chen, B., Polatkan, G., Sapiro, G., Blei, D., Dunson, D., Carin, L.: Deep learning with hierarchical convolutional factor analysis. IEEE Trans. Pattern Anal. Mach. Intell. 8(35), 1887–1901 (2013)CrossRef Chen, B., Polatkan, G., Sapiro, G., Blei, D., Dunson, D., Carin, L.: Deep learning with hierarchical convolutional factor analysis. IEEE Trans. Pattern Anal. Mach. Intell. 8(35), 1887–1901 (2013)CrossRef
35.
go back to reference Xu, B., Hu, R., Guo, P.: Combining affinity propagation with supervised dictionary learning for image classification. Neural Comput. Appl. 22(7–8), 1301–1308 (2013)CrossRef Xu, B., Hu, R., Guo, P.: Combining affinity propagation with supervised dictionary learning for image classification. Neural Comput. Appl. 22(7–8), 1301–1308 (2013)CrossRef
36.
go back to reference Chandra, S., Kumar, S., Jawahar, C.V.: Learning hierarchical bag of words using naive bayes clustering. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 382–395. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37331-2_29CrossRef Chandra, S., Kumar, S., Jawahar, C.V.: Learning hierarchical bag of words using naive bayes clustering. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 382–395. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-37331-2_​29CrossRef
37.
go back to reference Wilcoxon, F.: Individual comparison by ranking methods. Biometr. Bull. 1(6), 80–83 (1945)CrossRef Wilcoxon, F.: Individual comparison by ranking methods. Biometr. Bull. 1(6), 80–83 (1945)CrossRef
38.
go back to reference Massey, F.J.: The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46(253), 68–78 (1951)CrossRefMATH Massey, F.J.: The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46(253), 68–78 (1951)CrossRefMATH
39.
go back to reference Hernandez, D.E., Olague, G., Hernandez, B., Clemente, E.: CUDA-based parallelization of a bio-inspired model for fast object classification. Neural Comput. Appl. (2017). doi:10.1007/s00521-017-2873-3 Hernandez, D.E., Olague, G., Hernandez, B., Clemente, E.: CUDA-based parallelization of a bio-inspired model for fast object classification. Neural Comput. Appl. (2017). doi:10.​1007/​s00521-017-2873-3
Metadata
Title
Brain Programming and the Random Search in Object Categorization
Authors
Gustavo Olague
Eddie Clemente
Daniel E. Hernández
Aaron Barrera
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-55849-3_34

Premium Partner