Skip to main content
Top
Published in: International Journal of Machine Learning and Cybernetics 9/2022

31-03-2022 | Original Article

Brain tumor segmentation based on region of interest-aided localization and segmentation U-Net

Authors: Shidong Li, Jianwei Liu, Zhanjie Song

Published in: International Journal of Machine Learning and Cybernetics | Issue 9/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Since magnetic resonance imaging (MRI) has superior soft tissue contrast, contouring (brain) tumor accurately by MRI images is essential in medical image processing. Segmenting tumor accurately is immensely challenging, since tumor and normal tissues are often inextricably intertwined in the brain. It is also extremely time consuming manually. Late deep learning techniques start to show reasonable success in brain tumor segmentation automatically. The purpose of this study is to develop a new region-of-interest-aided (ROI-aided) deep learning technique for automatic brain tumor MRI segmentation. The method consists of two major steps. Step one is to use a 2D network with U-Net architecture to localize the tumor ROI, which is to reduce the impact of normal tissue’s disturbance. Then a 3D U-Net is performed in step 2 for tumor segmentation within identified ROI. The proposed method is validated on MICCAI BraTS 2015 Challenge with 220 high Gliomas grade (HGG) and 54 low Gliomas grade (LGG) patients’ data. The Dice similarity coefficient and the Hausdorff distance between the manual tumor contour and that segmented by the proposed method are 0.876 ±0.068 and 3.594±1.347 mm, respectively. These numbers are indications that our proposed method is an effective ROI-aided deep learning strategy for brain MRI tumor segmentation, and a valid and useful tool in medical image processing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Show more products
Literature
1.
go back to reference Jemal A, Ward Elizabeth M, Johnson Christopher J et al (2017) Annual report to the nation on the status of cancer, 1975–2007, Featuring tumors of the brain and other nervous system. J Natl Cancer Inst 103(9):714–736 Jemal A, Ward Elizabeth M, Johnson Christopher J et al (2017) Annual report to the nation on the status of cancer, 1975–2007, Featuring tumors of the brain and other nervous system. J Natl Cancer Inst 103(9):714–736
2.
go back to reference Ray S, Bonafede MM, Mohile NA (2014) Treatment patterns, survival, and healthcare costs of patients with malignant gliomas in a large us commercially insured population. Am Health Drug Benefits 7(3):140–149 Ray S, Bonafede MM, Mohile NA (2014) Treatment patterns, survival, and healthcare costs of patients with malignant gliomas in a large us commercially insured population. Am Health Drug Benefits 7(3):140–149
3.
go back to reference Ostrom Quinn T, Gittleman H, Truitt G et al (2018) CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015. Neuro-Oncol 20(4):1–86CrossRef Ostrom Quinn T, Gittleman H, Truitt G et al (2018) CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015. Neuro-Oncol 20(4):1–86CrossRef
4.
go back to reference Urbanska K, Sokolowska J, Szmidt M et al (2014) Glioblastoma multiforme—an overview. Contemporary Oncol-Termedia 18(5):307–312 Urbanska K, Sokolowska J, Szmidt M et al (2014) Glioblastoma multiforme—an overview. Contemporary Oncol-Termedia 18(5):307–312
5.
go back to reference Menze BH, Jakab A, Bauer S et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024CrossRef Menze BH, Jakab A, Bauer S et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024CrossRef
6.
go back to reference Angulakshmi M, Lakshmi Priya GG (2017) Automated brain tumour segmentation techniques–a review. Int J Imaging Syst Technol 27(1):66–77CrossRef Angulakshmi M, Lakshmi Priya GG (2017) Automated brain tumour segmentation techniques–a review. Int J Imaging Syst Technol 27(1):66–77CrossRef
7.
go back to reference Işιn A, Direkoğlu C, Şah M, (2016) Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput Sci 102:317–324 Işιn A, Direkoğlu C, Şah M, (2016) Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput Sci 102:317–324
8.
go back to reference Saman S, Jamjala Narayanan S (2018) Survey on brain tumor segmentation and feature extraction of MR images. Int J Multimed Inf Retriev 8:79–99CrossRef Saman S, Jamjala Narayanan S (2018) Survey on brain tumor segmentation and feature extraction of MR images. Int J Multimed Inf Retriev 8:79–99CrossRef
9.
go back to reference Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging 31(8):1426–1438CrossRef Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging 31(8):1426–1438CrossRef
11.
go back to reference Ilhan U, Ilhan A (2017) Brain tumor segmentation based on a new threshold approach. Procedia Comput Sci 120:580–587CrossRef Ilhan U, Ilhan A (2017) Brain tumor segmentation based on a new threshold approach. Procedia Comput Sci 120:580–587CrossRef
12.
go back to reference Zotin A, Simonov K, Kurako M et al (2018) Edge detection in MRI brain tumor images based on fuzzy C-means clustering. Procedia Comput Sci 126:1261–1270CrossRef Zotin A, Simonov K, Kurako M et al (2018) Edge detection in MRI brain tumor images based on fuzzy C-means clustering. Procedia Comput Sci 126:1261–1270CrossRef
13.
go back to reference Aslam A, Khan E, Beg MMS (2015) Improved edge detection algorithm for brain tumor segmentation. Procedia Comput Sci 58:430–437CrossRef Aslam A, Khan E, Beg MMS (2015) Improved edge detection algorithm for brain tumor segmentation. Procedia Comput Sci 58:430–437CrossRef
14.
go back to reference Wȩgliński T, Fabijańska A (2011) Brain tumor segmentation from MRI data sets using region growing approach, Perspective Technologies and Methods in MEMS Design, pp 185–188 Wȩgliński T, Fabijańska A (2011) Brain tumor segmentation from MRI data sets using region growing approach, Perspective Technologies and Methods in MEMS Design, pp 185–188
15.
go back to reference Charutha S, Jayashree MJ (2014) An efficient brain tumor detection by integrating modified texture based region growing and cellular automata edge detection. In: 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp 1193–1199. https://doi.org/10.1109/ICCICCT.2014.6993142 Charutha S, Jayashree MJ (2014) An efficient brain tumor detection by integrating modified texture based region growing and cellular automata edge detection. In: 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp 1193–1199. https://​doi.​org/​10.​1109/​ICCICCT.​2014.​6993142
16.
go back to reference Shanthakumar P, Kumar PG (2015) Computer aided brain tumor detection system using watershed segmentation techniques. Int J Imaging Syst Technol 25(4):297–301CrossRef Shanthakumar P, Kumar PG (2015) Computer aided brain tumor detection system using watershed segmentation techniques. Int J Imaging Syst Technol 25(4):297–301CrossRef
17.
go back to reference Khan MA, Lali IU, Rehman A et al (2019) Brain tumor detection and classification: a framework of marker-based watershed algorithm and multilevel priority features selection. Microsc Res Tech 82(6):909–922CrossRef Khan MA, Lali IU, Rehman A et al (2019) Brain tumor detection and classification: a framework of marker-based watershed algorithm and multilevel priority features selection. Microsc Res Tech 82(6):909–922CrossRef
18.
go back to reference Bauer S, Nolte L, Reyes M (2011) Segmentation of brain tumor images based on atlas-registration combined with a Markov-Random-Field lesion growth model. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp 2018–2021. https://doi.org/10.1109/ISBI.2011.5872808 Bauer S, Nolte L, Reyes M (2011) Segmentation of brain tumor images based on atlas-registration combined with a Markov-Random-Field lesion growth model. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp 2018–2021. https://​doi.​org/​10.​1109/​ISBI.​2011.​5872808
19.
go back to reference Arakeri MP, Reddy GRM (2011) Efficient fuzzy clustering based approach to brain tumor segmentation on MR images. Comput Intell Inf Technol 250:790–795 Arakeri MP, Reddy GRM (2011) Efficient fuzzy clustering based approach to brain tumor segmentation on MR images. Comput Intell Inf Technol 250:790–795
21.
go back to reference Hotelling H (1933) Analysis of a complex of statistical variables into principal components. Br J Educ Psychol 24(6):417–520CrossRef Hotelling H (1933) Analysis of a complex of statistical variables into principal components. Br J Educ Psychol 24(6):417–520CrossRef
22.
go back to reference Yang L, Xu Z (2019) Feature extraction by PCA and diagnosis of breast tumors using SVM with DE-based parameter tuning. Int J Mach Learn Cybernet 10:591–601CrossRef Yang L, Xu Z (2019) Feature extraction by PCA and diagnosis of breast tumors using SVM with DE-based parameter tuning. Int J Mach Learn Cybernet 10:591–601CrossRef
23.
go back to reference Kapas Z, Lefkovits L, Szilagyi L (2016) Automatic detection and segmentation of brain tumor using random forest approach. Model Decis Artif Intell 9880:301–312 Kapas Z, Lefkovits L, Szilagyi L (2016) Automatic detection and segmentation of brain tumor using random forest approach. Model Decis Artif Intell 9880:301–312
26.
go back to reference Luo Y, Yang B, Xu L et al (2018) Segmentation of the left ventricle in cardiac MRI using a hierarchical extreme learning machine model. Int J Mach Learn Cybernet 9:1741–1751CrossRef Luo Y, Yang B, Xu L et al (2018) Segmentation of the left ventricle in cardiac MRI using a hierarchical extreme learning machine model. Int J Mach Learn Cybernet 9:1741–1751CrossRef
27.
go back to reference Liu X, Zhu T, Zhai L et al (2019) Mass classification of benign and malignant with a new twin support vector machine joint \(l_{2,1}\)-norm. Int J Mach Learn Cybernet 10:155–171CrossRef Liu X, Zhu T, Zhai L et al (2019) Mass classification of benign and malignant with a new twin support vector machine joint \(l_{2,1}\)-norm. Int J Mach Learn Cybernet 10:155–171CrossRef
29.
go back to reference Zhang J, Shen X, Zhuo T et al (2017) Brain tumor segmentation based on refined fully convolutional neural networks with a hierarchical dice loss. arXiv:1712.09093 Zhang J, Shen X, Zhuo T et al (2017) Brain tumor segmentation based on refined fully convolutional neural networks with a hierarchical dice loss. arXiv:​1712.​09093
30.
go back to reference Ben Naceur M, Saouli R, Akil M et al (2018) Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images. Comput Method Program Biomed 166:39–49CrossRef Ben Naceur M, Saouli R, Akil M et al (2018) Fully automatic brain tumor segmentation using end-to-end incremental deep neural networks in MRI images. Comput Method Program Biomed 166:39–49CrossRef
31.
go back to reference Chen L, Wu Y, DSouza Adora M et al (2018) MRI tumor segmentation with densely connected 3D CNN. Medical Imaging 2018: Image Processing. vol. 10574. International Society for Optics and Photonics Chen L, Wu Y, DSouza Adora M et al (2018) MRI tumor segmentation with densely connected 3D CNN. Medical Imaging 2018: Image Processing. vol. 10574. International Society for Optics and Photonics
32.
go back to reference Liu C, Gardner MS, Stephen J, Wen N et al (2019) Automatic segmentation of the prostate on CT images using deep neural networks (DNN). Int J Radiat Oncol Biol Phys 104(4):924–932CrossRef Liu C, Gardner MS, Stephen J, Wen N et al (2019) Automatic segmentation of the prostate on CT images using deep neural networks (DNN). Int J Radiat Oncol Biol Phys 104(4):924–932CrossRef
33.
go back to reference Yan K, Wang X, Kim J et al (2019) A propagation-DNN: deep combination learning of multi-level features for MR prostate segmentation. Comput Methods Programs Biomed 170:11–21CrossRef Yan K, Wang X, Kim J et al (2019) A propagation-DNN: deep combination learning of multi-level features for MR prostate segmentation. Comput Methods Programs Biomed 170:11–21CrossRef
34.
go back to reference Ito R, Nakae K, Hata J et al (2019) Semi-supervised deep learning of brain tissue segmentation. Neural Netw 116:25–34CrossRef Ito R, Nakae K, Hata J et al (2019) Semi-supervised deep learning of brain tissue segmentation. Neural Netw 116:25–34CrossRef
35.
go back to reference Feng X, Qing K, Tustison NJ et al (2019) Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images. Med Phys 46(4):2169–2180CrossRef Feng X, Qing K, Tustison NJ et al (2019) Deep convolutional neural network for segmentation of thoracic organs-at-risk using cropped 3D images. Med Phys 46(4):2169–2180CrossRef
36.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. Int Conf Med Image Comput Comput-Assist Interv 9351:234–241 Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. Int Conf Med Image Comput Comput-Assist Interv 9351:234–241
37.
go back to reference Zhou C, Ding C, Wang X et al (2020) One-pass multi-task networks with cross-task guided attention for brain tumor segmentation. IEEE Trans Image Process 29:4516–4529CrossRef Zhou C, Ding C, Wang X et al (2020) One-pass multi-task networks with cross-task guided attention for brain tumor segmentation. IEEE Trans Image Process 29:4516–4529CrossRef
39.
go back to reference Isensee F, Kickingereder P, Wick W et al (2018) Brain tumor segmentation and radiomics survival prediction: contribution to the brats 2017 challenge. International MICCAI Brainlesion Workshop. Springer, Cham, pp 287–297 Isensee F, Kickingereder P, Wick W et al (2018) Brain tumor segmentation and radiomics survival prediction: contribution to the brats 2017 challenge. International MICCAI Brainlesion Workshop. Springer, Cham, pp 287–297
40.
go back to reference Kamnitsas K, Ledig C, Newcombe VFJ et al (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78CrossRef Kamnitsas K, Ledig C, Newcombe VFJ et al (2017) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78CrossRef
41.
go back to reference Qin Y, Kamnitsas K, Ancha S et al (2018) Autofocus layer for semantic segmentation. International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 603–611 Qin Y, Kamnitsas K, Ancha S et al (2018) Autofocus layer for semantic segmentation. International conference on medical image computing and computer-assisted intervention. Springer, Cham, pp 603–611
43.
go back to reference Zhao W, Vernekohl D, Zhu J et al (2016) A model-based scatter artifacts correction for cone beam CT. Med Phys 43(4):1736–1753CrossRef Zhao W, Vernekohl D, Zhu J et al (2016) A model-based scatter artifacts correction for cone beam CT. Med Phys 43(4):1736–1753CrossRef
44.
go back to reference Altunbas C, Lai CJ, Zhong Y et al (2014) Reduction of ring artifacts in CBCT: Detection and correction of pixel gain variations in flat panel detectors. Medical Phys 41(9):091913 Altunbas C, Lai CJ, Zhong Y et al (2014) Reduction of ring artifacts in CBCT: Detection and correction of pixel gain variations in flat panel detectors. Medical Phys 41(9):091913
45.
go back to reference Gai S, Zhang B, Yang C et al (2018) Speckle noise reduction in medical ultrasound image using monogenic wavelet and Laplace mixture distribution. Digit Signal Process 72:192–207CrossRef Gai S, Zhang B, Yang C et al (2018) Speckle noise reduction in medical ultrasound image using monogenic wavelet and Laplace mixture distribution. Digit Signal Process 72:192–207CrossRef
46.
go back to reference Lin JS, Fuentes DT, Chandler A et al (2017) Performance Assessment for Brain MR Imaging Registration Methods. Am J Neuroradiol 38(5):973–980CrossRef Lin JS, Fuentes DT, Chandler A et al (2017) Performance Assessment for Brain MR Imaging Registration Methods. Am J Neuroradiol 38(5):973–980CrossRef
47.
go back to reference Padgett KR, Stoyanova R, Pirozzi S et al (2018) Validation of a deformable MRI to CT registration algorithm employing same day planning MRI for surrogate analysis. J Appl Clin Med Phys 19(2):258–264CrossRef Padgett KR, Stoyanova R, Pirozzi S et al (2018) Validation of a deformable MRI to CT registration algorithm employing same day planning MRI for surrogate analysis. J Appl Clin Med Phys 19(2):258–264CrossRef
48.
go back to reference Wang H, Balter J, Cao Y (2013) Patient-induced susceptibility effect on geometric distortion of clinical brain MRI for radiation treatment planning on a 3T scanner. Phys Med Biol 58(3):465–477CrossRef Wang H, Balter J, Cao Y (2013) Patient-induced susceptibility effect on geometric distortion of clinical brain MRI for radiation treatment planning on a 3T scanner. Phys Med Biol 58(3):465–477CrossRef
49.
go back to reference Togo H, Rokicki J, Yoshinaga K et al (2017) Effects of field-map distortion correction on resting state functional connectivity MRI. Front Neurosci 11:656–656CrossRef Togo H, Rokicki J, Yoshinaga K et al (2017) Effects of field-map distortion correction on resting state functional connectivity MRI. Front Neurosci 11:656–656CrossRef
50.
go back to reference Dou Q, Lequan Yu, Chen H et al (2017) 3D deeply supervised network for automated segmentation of volumetric medical images. Med Image Anal 41:40–54CrossRef Dou Q, Lequan Yu, Chen H et al (2017) 3D deeply supervised network for automated segmentation of volumetric medical images. Med Image Anal 41:40–54CrossRef
51.
go back to reference He K, Gkioxari G, Dollár P et al (2017) Mask R-CNN, 2017 IEEE international conference on computer vision (ICCV), pp 2980–2988 He K, Gkioxari G, Dollár P et al (2017) Mask R-CNN, 2017 IEEE international conference on computer vision (ICCV), pp 2980–2988
Metadata
Title
Brain tumor segmentation based on region of interest-aided localization and segmentation U-Net
Authors
Shidong Li
Jianwei Liu
Zhanjie Song
Publication date
31-03-2022
Publisher
Springer Berlin Heidelberg
Published in
International Journal of Machine Learning and Cybernetics / Issue 9/2022
Print ISSN: 1868-8071
Electronic ISSN: 1868-808X
DOI
https://doi.org/10.1007/s13042-022-01536-4

Other articles of this Issue 9/2022

International Journal of Machine Learning and Cybernetics 9/2022 Go to the issue