Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Broadband Energy Harvesting Performance of a Piezoelectrically Generated Bistable Laminate

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The vibration based energy harvesting performance of a piezoelectrically generated bistable laminate consisting of only Macro Fiber Composites (MFC) is experimentally characterized. Conventionally, piezoelectric transducers are bonded onto thermally induced bistable composite laminates and exhibit broadband cross-well dynamics that are exploited for improved power generation over linear resonant harvesters. Recently, a novel method of inducing bistability was proposed by bonding two actuated MFCs in a [0 MFC ∕90 MFC ] T layup and releasing the voltage post cure to create in-plane residual stresses and yield two cylindrically stable configurations. Forward and backward frequency sweeps at multiple acceleration levels across the first two observed modes of the laminate’s two states are performed to identify all dynamic regimes and the corresponding voltages produced by each MFC. Besides single-well oscillations, snap throughs are observed in intermittencies, subharmonic, chaotic, and limit cycle oscillations across wide frequency ranges. Resistor sweeps are conducted for each regime to determine maximum power outputs, and single and multi-frequency performance metrics accounting for laminate volume, mass, input accelerations, and frequencies are evaluated for the laminate. A performance comparison with conventional bistable composite harvesters demonstrate the laminate’s viability for energy harvesting, allowing it to be multi-functional in combination with its snap through morphing capability.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013)CrossRef Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013)CrossRef
2.
go back to reference Emam, S.A., Inman, D.J.: A review on bistable composite laminates for morphing and energy harvesting. Appl. Mech. Rev. 67(6), 060803 (2015)CrossRef Emam, S.A., Inman, D.J.: A review on bistable composite laminates for morphing and energy harvesting. Appl. Mech. Rev. 67(6), 060803 (2015)CrossRef
3.
go back to reference Hu, N., Burgueño, R.: Buckling-induced smart applications: recent advances and trends. Smart Mater. Struct. 24(6), 063001 (2015)CrossRef Hu, N., Burgueño, R.: Buckling-induced smart applications: recent advances and trends. Smart Mater. Struct. 24(6), 063001 (2015)CrossRef
4.
go back to reference Pellegrini, S.P., Tolou, N., Schenk, M., Herder, J.L.: Bistable vibration energy harvesters: a review. J. Intell. Mater. Syst. Struct. 24(11), 1303–1312 (2012)CrossRef Pellegrini, S.P., Tolou, N., Schenk, M., Herder, J.L.: Bistable vibration energy harvesters: a review. J. Intell. Mater. Syst. Struct. 24(11), 1303–1312 (2012)CrossRef
5.
go back to reference Tang, L., Yang, Y., Soh, C.K.: Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21(18), 1867–1897 (2010)CrossRef Tang, L., Yang, Y., Soh, C.K.: Toward broadband vibration-based energy harvesting. J. Intell. Mater. Syst. Struct. 21(18), 1867–1897 (2010)CrossRef
6.
go back to reference Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 941(10), 254102–254103 (2009)CrossRef Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 941(10), 254102–254103 (2009)CrossRef
7.
go back to reference Erturk, A., Inman, D.: Broadband piezoelectric power generation on high-energy orbits of the bistable duffing oscillator with electromechanical coupling. J. Sound Vib. 330(10), 2339–2353 (2011)CrossRef Erturk, A., Inman, D.: Broadband piezoelectric power generation on high-energy orbits of the bistable duffing oscillator with electromechanical coupling. J. Sound Vib. 330(10), 2339–2353 (2011)CrossRef
8.
go back to reference Tang, L., Yang, Y., Soh, C.K.: Improving functionality of vibration energy harvesters using magnets. J. Intell. Mater. Syst. Struct. 23(13), 1433–1449 (2012)CrossRef Tang, L., Yang, Y., Soh, C.K.: Improving functionality of vibration energy harvesters using magnets. J. Intell. Mater. Syst. Struct. 23(13), 1433–1449 (2012)CrossRef
9.
go back to reference Lin, J.T., Alphenaar, B.: Enhancement of energy harvested from a random vibration source by magnetic coupling of a piezoelectric cantilever. J. Intell. Mater. Syst. Struct. 21(13), 1337–1341 (2010)CrossRef Lin, J.T., Alphenaar, B.: Enhancement of energy harvested from a random vibration source by magnetic coupling of a piezoelectric cantilever. J. Intell. Mater. Syst. Struct. 21(13), 1337–1341 (2010)CrossRef
10.
go back to reference Karami, M.A., Farmer, J.R., Inman, D.J.: Parametrically excited nonlinear piezoelectric compact wind turbine. Renew. Energy 50, 977–987 (2013)CrossRef Karami, M.A., Farmer, J.R., Inman, D.J.: Parametrically excited nonlinear piezoelectric compact wind turbine. Renew. Energy 50, 977–987 (2013)CrossRef
11.
go back to reference Cottone, F., Gammaitoni, L., Vocca, H., Ferrari, M., Ferrari, V.: Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater. Struct. 21(3), 035021 (2012)CrossRef Cottone, F., Gammaitoni, L., Vocca, H., Ferrari, M., Ferrari, V.: Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater. Struct. 21(3), 035021 (2012)CrossRef
12.
go back to reference Masana, R., Daqaq, M.F.: Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters. J. Vib. Acoust. 133(1), 011007 (2011)CrossRef Masana, R., Daqaq, M.F.: Electromechanical modeling and nonlinear analysis of axially loaded energy harvesters. J. Vib. Acoust. 133(1), 011007 (2011)CrossRef
13.
go back to reference Arrieta, A.F., Hagedorn, P., Erturk, A., Inman, D.J.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 97(10), 104102 (2010)CrossRef Arrieta, A.F., Hagedorn, P., Erturk, A., Inman, D.J.: A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl. Phys. Lett. 97(10), 104102 (2010)CrossRef
14.
go back to reference Arrieta, A.F., Delpero, T., Bergamini, A.E., Ermanni, P.: Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites. Appl. Phys. Lett. 102(17), 173904 (2013)CrossRef Arrieta, A.F., Delpero, T., Bergamini, A.E., Ermanni, P.: Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites. Appl. Phys. Lett. 102(17), 173904 (2013)CrossRef
15.
go back to reference Betts, D., Bowen, C., Kim, H., Gathercole, N., Clarke, C., Inman, D.: Nonlinear dynamics of a bistable piezoelectric-composite energy harvester for broadband application. Eur. Phys. J. Spec. Top. 222(7), 1553–1562 (2013)CrossRef Betts, D., Bowen, C., Kim, H., Gathercole, N., Clarke, C., Inman, D.: Nonlinear dynamics of a bistable piezoelectric-composite energy harvester for broadband application. Eur. Phys. J. Spec. Top. 222(7), 1553–1562 (2013)CrossRef
16.
go back to reference Betts, D.N., Guyer, R.A., Le Bas, P.Y., Bowen, C.R., Inman, D., Kim, H.A.: Modelling the dynamic response of bistable composite plates for piezoelectric energy harvesting. In: 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2014) Betts, D.N., Guyer, R.A., Le Bas, P.Y., Bowen, C.R., Inman, D., Kim, H.A.: Modelling the dynamic response of bistable composite plates for piezoelectric energy harvesting. In: 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2014)
17.
go back to reference Betts, D.N., Bowen, C.R., Inman, D.J., Weaver, P.M., Kim, H.A.: Investigation of geometries of bistable piezoelectric-laminate plates for vibration-based energy harvesting. In: SPIE Active and Passive Smart Structures and Integrated Systems (2014) Betts, D.N., Bowen, C.R., Inman, D.J., Weaver, P.M., Kim, H.A.: Investigation of geometries of bistable piezoelectric-laminate plates for vibration-based energy harvesting. In: SPIE Active and Passive Smart Structures and Integrated Systems (2014)
18.
go back to reference Li, H., Dai, F., Du, S.: Broadband energy harvesting by exploiting nonlinear oscillations around the second vibration mode of a rectangular piezoelectric bistable laminate. Smart Mater. Struct. 24(4), 045024 (2015)CrossRef Li, H., Dai, F., Du, S.: Broadband energy harvesting by exploiting nonlinear oscillations around the second vibration mode of a rectangular piezoelectric bistable laminate. Smart Mater. Struct. 24(4), 045024 (2015)CrossRef
19.
go back to reference Harris, P., Skinner, W., Bowen, C.R., Kim, H.A.: Manufacture and characterisation of piezoelectric broadband energy harvesters based on asymmetric bistable cantilever laminates. Ferroelectrics 480, 67–76 (2015)CrossRef Harris, P., Skinner, W., Bowen, C.R., Kim, H.A.: Manufacture and characterisation of piezoelectric broadband energy harvesters based on asymmetric bistable cantilever laminates. Ferroelectrics 480, 67–76 (2015)CrossRef
20.
go back to reference Harris, P., Arafa, M., Litak, G., Bowen, C.R., Iwaniec, J.: Output response identification in a multistable system for piezoelectric energy harvesting. Eur. Phys. J. B 90, 1–11 (2017) Harris, P., Arafa, M., Litak, G., Bowen, C.R., Iwaniec, J.: Output response identification in a multistable system for piezoelectric energy harvesting. Eur. Phys. J. B 90, 1–11 (2017)
21.
go back to reference Pan, D., Ma, B., Dai, F.: Experimental investigation of broadband energy harvesting of a bi-stable composite piezoelectric plate. Smart Mater. Struct. 26(3), 035045 (2017)CrossRef Pan, D., Ma, B., Dai, F.: Experimental investigation of broadband energy harvesting of a bi-stable composite piezoelectric plate. Smart Mater. Struct. 26(3), 035045 (2017)CrossRef
22.
go back to reference Udani, J.P., Wrigley, C., Arrieta, A.F.: Performance metric comparison study for non-magnetic bi-stable energy harvesters. In: SPIE Active and Passive Smart Structures and Integrated Systems (2017) Udani, J.P., Wrigley, C., Arrieta, A.F.: Performance metric comparison study for non-magnetic bi-stable energy harvesters. In: SPIE Active and Passive Smart Structures and Integrated Systems (2017)
23.
go back to reference Lee, A.J., Moosavian, A., Inman, D.J.: A piezoelectrically generated bistable laminate for morphing. Mater. Lett. 190, 123–126 (2017)CrossRef Lee, A.J., Moosavian, A., Inman, D.J.: A piezoelectrically generated bistable laminate for morphing. Mater. Lett. 190, 123–126 (2017)CrossRef
24.
go back to reference Lee, A.J., Moosavian, A., Inman, D.J.: Control and characterization of a bistable laminate generated with piezoelectricity. Smart Mater. Struct. 26, 085007 (2017)CrossRef Lee, A.J., Moosavian, A., Inman, D.J.: Control and characterization of a bistable laminate generated with piezoelectricity. Smart Mater. Struct. 26, 085007 (2017)CrossRef
25.
go back to reference Hyer, M.W.: Some observations on the cured shape of thin unsymmetric laminates. J. Compos. Mater. 15(2), 175–194 (1981)CrossRef Hyer, M.W.: Some observations on the cured shape of thin unsymmetric laminates. J. Compos. Mater. 15(2), 175–194 (1981)CrossRef
26.
go back to reference Betts, D.N., Kim, H.A., Bowen, C.R., Inman, D.J.: Optimal configurations of bistable piezo-composites for energy harvesting. Appl. Phys. Lett. 100(95), 114104–114117 (2012)CrossRef Betts, D.N., Kim, H.A., Bowen, C.R., Inman, D.J.: Optimal configurations of bistable piezo-composites for energy harvesting. Appl. Phys. Lett. 100(95), 114104–114117 (2012)CrossRef
27.
go back to reference Sodano, H.A.: An experimental comparison between several active composite actuators for power generation. Smart Mater. Struct. 15, 1211–1216 (2006)CrossRef Sodano, H.A.: An experimental comparison between several active composite actuators for power generation. Smart Mater. Struct. 15, 1211–1216 (2006)CrossRef
28.
go back to reference Choi, Y.T., Wereley, N.M., Purekar, A.S.: Energy harvesting devices using macro-fiber composite materials. J. Intell. Mater. Syst. Struct. 21(6), 647–658 (2010)CrossRef Choi, Y.T., Wereley, N.M., Purekar, A.S.: Energy harvesting devices using macro-fiber composite materials. J. Intell. Mater. Syst. Struct. 21(6), 647–658 (2010)CrossRef
29.
go back to reference Beeby, S.P., Torah, R.N., Tudor, M.J., Glynne-Jones, P., O’Donnell, T., Saha, C.R., Roy, S.: A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 17(7), 1257–1265 (2007)CrossRef Beeby, S.P., Torah, R.N., Tudor, M.J., Glynne-Jones, P., O’Donnell, T., Saha, C.R., Roy, S.: A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 17(7), 1257–1265 (2007)CrossRef
30.
go back to reference Gigliotti, M., Wisnom, M.R., Potter, K.D.: Loss of bifurcation and multiple shapes of thin [0/90] unsymmetric composite plates subject to thermal stress. Compos. Sci. Tech. 64(1), 109–128 (2004)CrossRef Gigliotti, M., Wisnom, M.R., Potter, K.D.: Loss of bifurcation and multiple shapes of thin [0/90] unsymmetric composite plates subject to thermal stress. Compos. Sci. Tech. 64(1), 109–128 (2004)CrossRef
31.
go back to reference Moon, F.C.: Chaotic and Fractal Dynamics: an Introduction for Applied Scientists and Engineers. Wiley, New York (1992)CrossRef Moon, F.C.: Chaotic and Fractal Dynamics: an Introduction for Applied Scientists and Engineers. Wiley, New York (1992)CrossRef
32.
go back to reference Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Cambridge (1994)MATH Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Cambridge (1994)MATH
33.
go back to reference Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980)MathSciNetCrossRef Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980)MathSciNetCrossRef
34.
go back to reference Virgin, L.N.: Introduction to experimental nonlinear dynamics: a case study in mechanical vibration. Cambridge University Press, Cambridge (2000)MATH Virgin, L.N.: Introduction to experimental nonlinear dynamics: a case study in mechanical vibration. Cambridge University Press, Cambridge (2000)MATH
Metadata
Title
Broadband Energy Harvesting Performance of a Piezoelectrically Generated Bistable Laminate
Authors
Andrew J. Lee
Daniel J. Inman
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-74642-5_1

Premium Partner