Skip to main content
Top
Published in:
Cover of the book

2016 | OriginalPaper | Chapter

Bubble Dynamics and Observations

Authors : Robert Mettin, Carlos Cairós

Published in: Handbook of Ultrasonics and Sonochemistry

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The dynamics of acoustic cavitation bubbles can be complicated due to their nonlinear nature. They comprise several aspects on different spatial and temporal scales: The interplay of bubble and sound field leads to volume oscillations and partly strong implosion of the gas phase, which induces further effects like chemical reactions and luminescence. Acoustic forces lead to bubble translation, interaction, and merging. Non-spherical shape modes can cause deformations and splitting, and the bubble collapse can take place with formation of a fast liquid jet in the case of rapid translation, adjacent bubbles, or solid objects. In multi-bubble systems, acoustic field geometries and bubble interactions lead to emergence of a variety of characteristic dynamical bubble structures. A brief review of these issues is given with an emphasis on observations in experiments.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Flynn HG (1964) Physics of acoustic cavitation in liquids. In: Mason WP (ed) Physical acoustics, vol 1B. Academic, London, pp 57–172 Flynn HG (1964) Physics of acoustic cavitation in liquids. In: Mason WP (ed) Physical acoustics, vol 1B. Academic, London, pp 57–172
2.
go back to reference Rozenberg LD (1971) High-intensity ultrasonic fields. Plenum Press, New YorkCrossRef Rozenberg LD (1971) High-intensity ultrasonic fields. Plenum Press, New YorkCrossRef
3.
go back to reference Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Annu Rev Fluid Mech 9:145CrossRef Plesset MS, Prosperetti A (1977) Bubble dynamics and cavitation. Annu Rev Fluid Mech 9:145CrossRef
5.
go back to reference Young FR (1989) Cavitation. McGraw-Hill, London Young FR (1989) Cavitation. McGraw-Hill, London
6.
go back to reference Leighton TG (1994) The acoustic bubble. Academic, London Leighton TG (1994) The acoustic bubble. Academic, London
7.
go back to reference Brennen CE (1995) Cavitation and bubble dynamics. Oxford University Press, New York Brennen CE (1995) Cavitation and bubble dynamics. Oxford University Press, New York
8.
go back to reference Lauterborn W et al (1999) Experimental and theoretical bubble dynamics. In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 110. Wiley, New York, pp 295–380CrossRef Lauterborn W et al (1999) Experimental and theoretical bubble dynamics. In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 110. Wiley, New York, pp 295–380CrossRef
9.
go back to reference Trevena DH (1987) Cavitation and tension in liquids. Adam Hilger, Bristol Trevena DH (1987) Cavitation and tension in liquids. Adam Hilger, Bristol
10.
go back to reference Crum L (1982) Acoustic cavitation. In: 1982 ultrasonics symposium. IEEE. pp 1–11 Crum L (1982) Acoustic cavitation. In: 1982 ultrasonics symposium. IEEE. pp 1–11
11.
go back to reference Mørch KA (2007) Reflections on cavitation nuclei in water. Phys Fluids 19:072104CrossRef Mørch KA (2007) Reflections on cavitation nuclei in water. Phys Fluids 19:072104CrossRef
12.
go back to reference Fox FE, Francis E, Herzfeld KF (1954) Gas bubbles with organic skin as cavitation nuclei. J Acoust Soc Am 26:984CrossRef Fox FE, Francis E, Herzfeld KF (1954) Gas bubbles with organic skin as cavitation nuclei. J Acoust Soc Am 26:984CrossRef
13.
go back to reference Yount DE (1982) On the evolution, generation, and regeneration of gas cavitation nuclei. J Acoust Soc Am 71:1473CrossRef Yount DE (1982) On the evolution, generation, and regeneration of gas cavitation nuclei. J Acoust Soc Am 71:1473CrossRef
14.
go back to reference Lauterborn W, Vogel A (2013) Shock wave emission by laser generated bubbles, Chap. I.3. In: Delale CF (ed) Bubble dynamics & shock waves, vol 8, Shockwaves. Springer, Berlin, pp 67–103CrossRef Lauterborn W, Vogel A (2013) Shock wave emission by laser generated bubbles, Chap. I.3. In: Delale CF (ed) Bubble dynamics & shock waves, vol 8, Shockwaves. Springer, Berlin, pp 67–103CrossRef
15.
go back to reference Sankin G et al (2001) Early stage of bubble dynamics and luminescence in water in a converging shock reflected by a free surface. In: v. Estorff O (ed) Fortschritte der Akustik – DAGA 2001. DEGA, Oldenburg, pp 258–259 Sankin G et al (2001) Early stage of bubble dynamics and luminescence in water in a converging shock reflected by a free surface. In: v. Estorff O (ed) Fortschritte der Akustik – DAGA 2001. DEGA, Oldenburg, pp 258–259
16.
go back to reference Mettin R (2007) From a single bubble to bubble structures in acoustic cavitation. In: Kurz T, Parlitz U, Kaatze U (eds) Oscillations, waves and interactions. Universitätsverlag Göttingen, Göttingen, pp 171–198 Mettin R (2007) From a single bubble to bubble structures in acoustic cavitation. In: Kurz T, Parlitz U, Kaatze U (eds) Oscillations, waves and interactions. Universitätsverlag Göttingen, Göttingen, pp 171–198
17.
go back to reference Krefting D (2003) Dissertation. Georg-August-University Göttingen Krefting D (2003) Dissertation. Georg-August-University Göttingen
18.
go back to reference Fernandez Rivas D et al (2013) Ultrasound artificially nucleated bubbles and their sonochemical radical production. Ultrason Sonochem 20:510CrossRef Fernandez Rivas D et al (2013) Ultrasound artificially nucleated bubbles and their sonochemical radical production. Ultrason Sonochem 20:510CrossRef
19.
go back to reference Apfel RE (1970) The role of impurities in cavitation‐threshold determination. J Acoust Soc Am 48:1179CrossRef Apfel RE (1970) The role of impurities in cavitation‐threshold determination. J Acoust Soc Am 48:1179CrossRef
20.
go back to reference Nyborg WL (1965) Acoustic streaming. In: Mason WP (ed) Physical acoustics, vol 2B. Academic, New York, pp 265–331 Nyborg WL (1965) Acoustic streaming. In: Mason WP (ed) Physical acoustics, vol 2B. Academic, New York, pp 265–331
21.
go back to reference Zarembo LK (1971) Acoustic streaming. In: Rozenberg LD (ed) High-intensity ultrasonic fields part III. Plenum Press, New York, pp 137–199 Zarembo LK (1971) Acoustic streaming. In: Rozenberg LD (ed) High-intensity ultrasonic fields part III. Plenum Press, New York, pp 137–199
22.
go back to reference Hatanaka S et al (2002) Influence of bubble clustering on multibubble sonoluminescence. Ultrasonics 40:655CrossRef Hatanaka S et al (2002) Influence of bubble clustering on multibubble sonoluminescence. Ultrasonics 40:655CrossRef
23.
go back to reference Gilmore FR (1952) Collapse and growth of a spherical bubble in a viscous compressible liquid, Tech. Rep. No. 26-4, Office of Naval Research, Hydrodynamics Laboratory, California. Institute of Technology, Pasadena Gilmore FR (1952) Collapse and growth of a spherical bubble in a viscous compressible liquid, Tech. Rep. No. 26-4, Office of Naval Research, Hydrodynamics Laboratory, California. Institute of Technology, Pasadena
24.
go back to reference Keller JB, Miksis M (1980) Bubble oscillations of large amplitude. J Acoust Soc Am 68:628CrossRef Keller JB, Miksis M (1980) Bubble oscillations of large amplitude. J Acoust Soc Am 68:628CrossRef
25.
go back to reference Prosperetti A, Lezzi A (1986) Bubble dynamics in a compressible liquid. Part 1. First-order theory. J Fluid Mech 168:457CrossRef Prosperetti A, Lezzi A (1986) Bubble dynamics in a compressible liquid. Part 1. First-order theory. J Fluid Mech 168:457CrossRef
26.
go back to reference Yasui K (1997) Alternative model of single-bubble sonoluminescence. Phys Rev E 56:6750CrossRef Yasui K (1997) Alternative model of single-bubble sonoluminescence. Phys Rev E 56:6750CrossRef
27.
go back to reference Storey BD, Szeri AJ (2000) Water vapour, sonoluminescence and sonochemistry. Proc Roy Soc Lond A 456:1685CrossRef Storey BD, Szeri AJ (2000) Water vapour, sonoluminescence and sonochemistry. Proc Roy Soc Lond A 456:1685CrossRef
28.
go back to reference Guckenheimer J, Holmes P (1982) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, vol 42, Applied mathematical sciences. Springer, New York Guckenheimer J, Holmes P (1982) Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, vol 42, Applied mathematical sciences. Springer, New York
29.
go back to reference Lauterborn W (1976) Numerical investigation of nonlinear oscillations of gas bubbles in liquids. J Acoust Soc Am 59:283CrossRef Lauterborn W (1976) Numerical investigation of nonlinear oscillations of gas bubbles in liquids. J Acoust Soc Am 59:283CrossRef
30.
go back to reference Lauterborn W, Mettin R (1999) Nonlinear bubble dynamics: response curves and more. In: Crum LA et al (eds) Sonochemistry and sonoluminescence. Kluwer, Dordrecht, pp 63–72CrossRef Lauterborn W, Mettin R (1999) Nonlinear bubble dynamics: response curves and more. In: Crum LA et al (eds) Sonochemistry and sonoluminescence. Kluwer, Dordrecht, pp 63–72CrossRef
31.
go back to reference Holt RG, Crum LA (1992) Acoustically forced oscillations of air bubbles in water: experimental results. J Acoust Soc Am 91:1924CrossRef Holt RG, Crum LA (1992) Acoustically forced oscillations of air bubbles in water: experimental results. J Acoust Soc Am 91:1924CrossRef
32.
go back to reference Parlitz U et al (1990) Bifurcation structure of bubble oscillators. J Acoust Soc Am 88:1061CrossRef Parlitz U et al (1990) Bifurcation structure of bubble oscillators. J Acoust Soc Am 88:1061CrossRef
33.
go back to reference Thiemann A (2011) Dissertation. Georg-August-University Göttingen Thiemann A (2011) Dissertation. Georg-August-University Göttingen
34.
go back to reference Nowak T et al (2015) Acoustic streaming and bubble translation at a cavitating ultrasonic horn. In: Recent developments in nonlinear acoustics: 20th international symposium on nonlinear acoustics including the 2nd international sonic boom forum, AIP Conf. Proc. 1685, 020002-1-9 (2015); http://dx.doi.org/10.1063/1.4934382 Nowak T et al (2015) Acoustic streaming and bubble translation at a cavitating ultrasonic horn. In: Recent developments in nonlinear acoustics: 20th international symposium on nonlinear acoustics including the 2nd international sonic boom forum, AIP Conf. Proc. 1685, 020002-1-9 (2015); http://​dx.​doi.​org/​10.​1063/​1.​4934382
35.
36.
go back to reference Gaitan DF et al (1992) Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J Acoust Soc Am 91:3166CrossRef Gaitan DF et al (1992) Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J Acoust Soc Am 91:3166CrossRef
37.
go back to reference Putterman SJ, Weninger KR (2000) Sonoluminescence: how bubbles turn sound into light. Annu Rev Fluid Mech 32:445CrossRef Putterman SJ, Weninger KR (2000) Sonoluminescence: how bubbles turn sound into light. Annu Rev Fluid Mech 32:445CrossRef
38.
go back to reference Brenner MP, Hilgenfeldt S, Lohse D (2002) Single-bubble sonoluminescence. Rev Mod Phys 74:425CrossRef Brenner MP, Hilgenfeldt S, Lohse D (2002) Single-bubble sonoluminescence. Rev Mod Phys 74:425CrossRef
39.
go back to reference Holzfuss J, Rüggeberg M, Billo A (1998) Shock wave emissions of a sonoluminescing bubble. Phys Rev Lett 81:5434CrossRef Holzfuss J, Rüggeberg M, Billo A (1998) Shock wave emissions of a sonoluminescing bubble. Phys Rev Lett 81:5434CrossRef
40.
go back to reference McNamara WB, Didenko YT, Suslick KS (1999) Sonoluminescence temperatures during multi-bubble cavitation. Nature 401:772CrossRef McNamara WB, Didenko YT, Suslick KS (1999) Sonoluminescence temperatures during multi-bubble cavitation. Nature 401:772CrossRef
41.
go back to reference Hiller R, Putterman S, Barber BP (1992) Spectrum of synchronous picosecond sonoluminescence. J Acoust Soc Am 92:2454CrossRef Hiller R, Putterman S, Barber BP (1992) Spectrum of synchronous picosecond sonoluminescence. J Acoust Soc Am 92:2454CrossRef
42.
go back to reference Yasui K et al (2008) The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. J Chem Phys 128:184705CrossRef Yasui K et al (2008) The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. J Chem Phys 128:184705CrossRef
43.
go back to reference Wu CC, Roberts PH (1994) A model of sonoluminescence. Proc Roy Soc Lond A 445:323CrossRef Wu CC, Roberts PH (1994) A model of sonoluminescence. Proc Roy Soc Lond A 445:323CrossRef
44.
go back to reference Akhatov I et al (2001) Collapse and rebound of a laser-induced cavitation bubble. Phys Fluids 13:2805CrossRef Akhatov I et al (2001) Collapse and rebound of a laser-induced cavitation bubble. Phys Fluids 13:2805CrossRef
45.
go back to reference Schanz D et al (2012) Molecular dynamics simulations of cavitation bubble collapse and sonoluminescence. New J Phys 14:113019CrossRef Schanz D et al (2012) Molecular dynamics simulations of cavitation bubble collapse and sonoluminescence. New J Phys 14:113019CrossRef
46.
go back to reference Geisler R (1998) Diploma thesis. Georg-August-University Göttingen Geisler R (1998) Diploma thesis. Georg-August-University Göttingen
47.
go back to reference Mettin R, Cairós C, Troia A (2015) Sonochemistry and bubble dynamics. Ultrason Sonochem 25:24CrossRef Mettin R, Cairós C, Troia A (2015) Sonochemistry and bubble dynamics. Ultrason Sonochem 25:24CrossRef
48.
go back to reference Bjerknes VFK (1906) Fields of force. Columbia University Press, New York Bjerknes VFK (1906) Fields of force. Columbia University Press, New York
49.
go back to reference Akhatov I et al (1997) Bjerknes force threshold for stable single bubble sonoluminescence. Phys Rev E 55:3747CrossRef Akhatov I et al (1997) Bjerknes force threshold for stable single bubble sonoluminescence. Phys Rev E 55:3747CrossRef
50.
go back to reference Matula TJ et al (1997) Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions. J Acoust Soc Am 102:1522CrossRef Matula TJ et al (1997) Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions. J Acoust Soc Am 102:1522CrossRef
51.
go back to reference Thompson JMT, Stewart HB (1986) Nonlinear dynamics and chaos. Wiley, Chichester Thompson JMT, Stewart HB (1986) Nonlinear dynamics and chaos. Wiley, Chichester
52.
go back to reference Mettin R, Doinikov AA (2009) Translational instability of a spherical bubble in a standing ultrasound wave. Appl Acoust 70:1330CrossRef Mettin R, Doinikov AA (2009) Translational instability of a spherical bubble in a standing ultrasound wave. Appl Acoust 70:1330CrossRef
53.
go back to reference Zabolotskaya EA (1984) Interaction of gas bubbles in the field of a sonic wave. Akust Zh 30:618, transl. Sov. Phys. Acoust. 30, 365 (1984) Zabolotskaya EA (1984) Interaction of gas bubbles in the field of a sonic wave. Akust Zh 30:618, transl. Sov. Phys. Acoust. 30, 365 (1984)
54.
go back to reference Luther S, Mettin R, Lauterborn W (2000) Modeling acoustic cavitation by a Lagrangian approach. In: Lauterborn W, Kurz T (eds) Nonlinear acoustics at the turn of the millennium. AIP conference proceedings, vol 524. AIP, Melville, pp 351–354 Luther S, Mettin R, Lauterborn W (2000) Modeling acoustic cavitation by a Lagrangian approach. In: Lauterborn W, Kurz T (eds) Nonlinear acoustics at the turn of the millennium. AIP conference proceedings, vol 524. AIP, Melville, pp 351–354
55.
go back to reference Harkin A, Kaper TJ, Nadim A (2001) Coupled pulsation and translation of two gas bubbles in a liquid. J Fluid Mech 445:377CrossRef Harkin A, Kaper TJ, Nadim A (2001) Coupled pulsation and translation of two gas bubbles in a liquid. J Fluid Mech 445:377CrossRef
56.
go back to reference Ilinskii YA, Hamilton MF, Zabolotskaya EA (2007) Bubble interaction dynamics in Lagrangian and Hamiltonian mechanics. J Acoust Soc Am 121:786CrossRef Ilinskii YA, Hamilton MF, Zabolotskaya EA (2007) Bubble interaction dynamics in Lagrangian and Hamiltonian mechanics. J Acoust Soc Am 121:786CrossRef
57.
go back to reference Mettin R et al (2000) Dynamics of delay-coupled spherical bubbles. In: Lauterborn W, Kurz T (eds) Nonlinear acoustics at the turn of the millennium, AIP conference proceedings, vol 524. AIP, Melville, pp 359–362 Mettin R et al (2000) Dynamics of delay-coupled spherical bubbles. In: Lauterborn W, Kurz T (eds) Nonlinear acoustics at the turn of the millennium, AIP conference proceedings, vol 524. AIP, Melville, pp 359–362
58.
go back to reference Doinikov AA, Manasseh R, Ooi A (2005) Time delays in coupled multibubble systems. J Acoust Soc Am 117:47CrossRef Doinikov AA, Manasseh R, Ooi A (2005) Time delays in coupled multibubble systems. J Acoust Soc Am 117:47CrossRef
59.
go back to reference Crum LA (1975) Bjerknes forces on bubbles in a stationary sound field. J Acoust Soc Am 57:1363CrossRef Crum LA (1975) Bjerknes forces on bubbles in a stationary sound field. J Acoust Soc Am 57:1363CrossRef
60.
go back to reference Mettin R et al (1997) Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys Rev E 56:2924CrossRef Mettin R et al (1997) Bjerknes forces between small cavitation bubbles in a strong acoustic field. Phys Rev E 56:2924CrossRef
61.
go back to reference Oguz HN, Prosperetti A (1990) A generalization of the impulse and virial theorems with an application to bubble oscillations. J Fluid Mech 218:143CrossRef Oguz HN, Prosperetti A (1990) A generalization of the impulse and virial theorems with an application to bubble oscillations. J Fluid Mech 218:143CrossRef
62.
go back to reference Doinikov AA (1999) Effects of the second harmonic on the secondary Bjerknes force. Phys Rev E 59:3016CrossRef Doinikov AA (1999) Effects of the second harmonic on the secondary Bjerknes force. Phys Rev E 59:3016CrossRef
63.
go back to reference Barbat T, Ashgriz N, Liu C-S (1999) Dynamics of two interacting bubbles in an acoustic field. J Fluid Mech 389:137CrossRef Barbat T, Ashgriz N, Liu C-S (1999) Dynamics of two interacting bubbles in an acoustic field. J Fluid Mech 389:137CrossRef
64.
go back to reference Koch P et al (2003) Simulation of the translational motion of few cavitation bubbles in an ultrasonic field. In: Proceedings of IEEE international ultrasonics symposium, Honolulu, 5–8 Oct 2003, pp 1475–1478 Koch P et al (2003) Simulation of the translational motion of few cavitation bubbles in an ultrasonic field. In: Proceedings of IEEE international ultrasonics symposium, Honolulu, 5–8 Oct 2003, pp 1475–1478
65.
go back to reference Mettin R et al (2006) Modeling acoustic cavitation with bubble redistribution. In: 6th international symposium on cavitation – CAV2006, Wageningen, 11.15 Sept, paper no. 75 Mettin R et al (2006) Modeling acoustic cavitation with bubble redistribution. In: 6th international symposium on cavitation – CAV2006, Wageningen, 11.15 Sept, paper no. 75
66.
go back to reference Yoshida K, Fujikawa T, Watanabe Y (2011) Experimental investigation on reversal of secondary Bjerknes force between two bubbles in ultrasonic standing wave. J Acoust Soc Am 130:135CrossRef Yoshida K, Fujikawa T, Watanabe Y (2011) Experimental investigation on reversal of secondary Bjerknes force between two bubbles in ultrasonic standing wave. J Acoust Soc Am 130:135CrossRef
67.
go back to reference Magnaudet J, Legendre D (1998) The viscous drag force on a spherical bubble with a time-dependent radius. Phys Fluids 10:550CrossRef Magnaudet J, Legendre D (1998) The viscous drag force on a spherical bubble with a time-dependent radius. Phys Fluids 10:550CrossRef
68.
go back to reference Appel J et al (2004) Stereoscopic highs-peed recording of bubble filaments. Ultrason Sonochem 11:39CrossRef Appel J et al (2004) Stereoscopic highs-peed recording of bubble filaments. Ultrason Sonochem 11:39CrossRef
69.
go back to reference Kapustina OA (1973) Degassing of liquids. In: Rozenberg LD (ed) Physical principles of ultrasonic technology. Plenum Press, New York, Part IV Kapustina OA (1973) Degassing of liquids. In: Rozenberg LD (ed) Physical principles of ultrasonic technology. Plenum Press, New York, Part IV
70.
go back to reference Longuet-Higgins M (1999) Particle drift near an oscillating cavity. In: Crum LA et al (eds) Sonochemistry and sonoluminescence. Kluwer, Dordrecht, pp 105–116CrossRef Longuet-Higgins M (1999) Particle drift near an oscillating cavity. In: Crum LA et al (eds) Sonochemistry and sonoluminescence. Kluwer, Dordrecht, pp 105–116CrossRef
71.
go back to reference Obreschkow D et al (2011) Universal scaling law for jets of collapsing bubbles. Phys Rev Lett 107:204501CrossRef Obreschkow D et al (2011) Universal scaling law for jets of collapsing bubbles. Phys Rev Lett 107:204501CrossRef
72.
go back to reference Benjamin TB, Ellis AT (1966) The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Philos Trans R Soc Lond A260:221CrossRef Benjamin TB, Ellis AT (1966) The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Philos Trans R Soc Lond A260:221CrossRef
73.
go back to reference Calvisi ML et al (2007) Shape stability and violent collapse of microbubbles in acoustic traveling waves. Phys Fluids 19:047101CrossRef Calvisi ML et al (2007) Shape stability and violent collapse of microbubbles in acoustic traveling waves. Phys Fluids 19:047101CrossRef
74.
go back to reference Wang QX, Blake JR (2010) Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J Fluid Mech 659:191CrossRef Wang QX, Blake JR (2010) Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J Fluid Mech 659:191CrossRef
75.
go back to reference Nowak T, Mettin R (2014) Unsteady translation and repetitive jetting of acoustic cavitation bubbles. Phys Rev E 90:033016CrossRef Nowak T, Mettin R (2014) Unsteady translation and repetitive jetting of acoustic cavitation bubbles. Phys Rev E 90:033016CrossRef
76.
go back to reference Tomita Y, Shima A, Sato K (1990) Dynamic behavior of two‐laser‐induced bubbles in water. Appl Phys Lett 57:234CrossRef Tomita Y, Shima A, Sato K (1990) Dynamic behavior of two‐laser‐induced bubbles in water. Appl Phys Lett 57:234CrossRef
77.
go back to reference Fong SW et al (2009) Interactions of multiple spark-generated bubbles with phase differences. Exp Fluids 46:705CrossRef Fong SW et al (2009) Interactions of multiple spark-generated bubbles with phase differences. Exp Fluids 46:705CrossRef
78.
go back to reference Sankin GN, Yuan F, Zhong P (2010) Pulsating tandem microbubble for localized and directional single-cell membrane poration. Phys Rev Lett 105:078101CrossRef Sankin GN, Yuan F, Zhong P (2010) Pulsating tandem microbubble for localized and directional single-cell membrane poration. Phys Rev Lett 105:078101CrossRef
79.
go back to reference Han B et al (2015) Dynamics of laser-induced bubble pairs. J Fluid Mech 771:706CrossRef Han B et al (2015) Dynamics of laser-induced bubble pairs. J Fluid Mech 771:706CrossRef
80.
go back to reference Plesset MS, Chapman RB (1971) Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J Fluid Mech 47:283CrossRef Plesset MS, Chapman RB (1971) Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J Fluid Mech 47:283CrossRef
81.
go back to reference Lauterborn W, Bolle H (1975) Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J Fluid Mech 72:391CrossRef Lauterborn W, Bolle H (1975) Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J Fluid Mech 72:391CrossRef
82.
go back to reference Blake JR, Gibson DC (1987) Cavitation bubbles near boundaries. Annu Rev Fluid Mech 19:99CrossRef Blake JR, Gibson DC (1987) Cavitation bubbles near boundaries. Annu Rev Fluid Mech 19:99CrossRef
83.
go back to reference Bourne NK, Field JE (1992) Shock-induced collapse of single cavities in liquids. J Fluid Mech 244:225CrossRef Bourne NK, Field JE (1992) Shock-induced collapse of single cavities in liquids. J Fluid Mech 244:225CrossRef
84.
go back to reference Ohl CD, Ikink R (2003) Shock-wave-induced jetting of micron-size bubbles. Phys Rev Lett 90:214502CrossRef Ohl CD, Ikink R (2003) Shock-wave-induced jetting of micron-size bubbles. Phys Rev Lett 90:214502CrossRef
85.
go back to reference Sankin GN et al (2005) Shock wave interaction with laser-generated single bubbles. Phys Rev Lett 95:034501. Tomita Y, Shima A (1986) Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J Fluid Mech 169:535 Sankin GN et al (2005) Shock wave interaction with laser-generated single bubbles. Phys Rev Lett 95:034501. Tomita Y, Shima A (1986) Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J Fluid Mech 169:535
86.
go back to reference Philipp A, Lauterborn W (1998) Cavitation erosion by single laser-produced bubbles. J Fluid Mech 361:75CrossRef Philipp A, Lauterborn W (1998) Cavitation erosion by single laser-produced bubbles. J Fluid Mech 361:75CrossRef
87.
go back to reference Olaf J (1957) Oberflächenreinigung mit Ultraschall. Acustica 7:253 Olaf J (1957) Oberflächenreinigung mit Ultraschall. Acustica 7:253
88.
go back to reference Agranat A, Bashkirov VI, Kitaigorodskii YI (1973) Ultrasonic cleaning. In: Rozenberg LD (ed) Physical principles of ultrasonic technology. Plenum Press, New York, Part III Agranat A, Bashkirov VI, Kitaigorodskii YI (1973) Ultrasonic cleaning. In: Rozenberg LD (ed) Physical principles of ultrasonic technology. Plenum Press, New York, Part III
89.
go back to reference Krefting D, Mettin R, Lauterborn W (2004) High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrason Sonochem 11:119CrossRef Krefting D, Mettin R, Lauterborn W (2004) High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrason Sonochem 11:119CrossRef
90.
go back to reference Ohl C-D et al (2006) Surface cleaning from laser-induced cavitation bubbles. Appl Phys Lett 89:074102CrossRef Ohl C-D et al (2006) Surface cleaning from laser-induced cavitation bubbles. Appl Phys Lett 89:074102CrossRef
91.
go back to reference Reuter F, Mettin R (2016) Mechanisms of single bubble cleaning. Ultrason Sonochem 29:550–562. doi:10.1016/j.ultsonch.2015.06.017 Reuter F, Mettin R (2016) Mechanisms of single bubble cleaning. Ultrason Sonochem 29:550–562. doi:10.1016/j.ultsonch.2015.06.017
92.
go back to reference Prosperetti A (2011) Advanced mathematics for applications. Cambridge University Press, Cambridge Prosperetti A (2011) Advanced mathematics for applications. Cambridge University Press, Cambridge
93.
go back to reference Kornfeld M, Suvorov L (1944) On the destructive action of cavitation. J Appl Phys 15:495CrossRef Kornfeld M, Suvorov L (1944) On the destructive action of cavitation. J Appl Phys 15:495CrossRef
94.
go back to reference Krefting D, Mettin R, Lauterborn W (2001) Translationsdynamik levitierter Einzelblasen. In: v. Estorff O (ed) Fortschritte der Akustik – DAGA 2001. DEGA, Oldenburg, pp 252–253 Krefting D, Mettin R, Lauterborn W (2001) Translationsdynamik levitierter Einzelblasen. In: v. Estorff O (ed) Fortschritte der Akustik – DAGA 2001. DEGA, Oldenburg, pp 252–253
95.
go back to reference Mettin R (2005) Bubble structures in acoustic cavitation. In: Doinikov AA (ed) Bubble and particle dynamics in acoustic fields: modern trends and applications. Research Signpost, Kerala, pp 1–36 Mettin R (2005) Bubble structures in acoustic cavitation. In: Doinikov AA (ed) Bubble and particle dynamics in acoustic fields: modern trends and applications. Research Signpost, Kerala, pp 1–36
96.
go back to reference Plesset MS (1954) On the stability of fluid flows with spherical symmetry. J Appl Phys 25:96CrossRef Plesset MS (1954) On the stability of fluid flows with spherical symmetry. J Appl Phys 25:96CrossRef
97.
98.
go back to reference Kull HJ (1991) Theory of the Rayleigh-Taylor instability. Phys Rep 206:197. Eller A, Flynn HG (1965) Rectified diffusion during nonlinear pulsations of cavitation bubbles. J Acoust Soc Am 37(3):493–503 Kull HJ (1991) Theory of the Rayleigh-Taylor instability. Phys Rep 206:197. Eller A, Flynn HG (1965) Rectified diffusion during nonlinear pulsations of cavitation bubbles. J Acoust Soc Am 37(3):493–503
99.
go back to reference Hinsch K (1975) The dynamics of bubble fields in acoustic cavitation. In: Akulichev VA et al (eds) Proceedings of 6th international symposium on nonlinear acoustics. Moscow University, pp 26–34 Hinsch K (1975) The dynamics of bubble fields in acoustic cavitation. In: Akulichev VA et al (eds) Proceedings of 6th international symposium on nonlinear acoustics. Moscow University, pp 26–34
100.
go back to reference Mettin R, Ohl C-D, Lauterborn W (1999) Particle approach to structure formation in acoustic cavitation. In: Crum LA et al (eds) Sonochemistry and sonoluminescence. Kluwer, Dordrecht, pp 138–144 Mettin R, Ohl C-D, Lauterborn W (1999) Particle approach to structure formation in acoustic cavitation. In: Crum LA et al (eds) Sonochemistry and sonoluminescence. Kluwer, Dordrecht, pp 138–144
101.
go back to reference Mettin R et al (1999) Acoustic cavitation structures and simulations by a particle model. Ultrason Sonochem 6:25CrossRef Mettin R et al (1999) Acoustic cavitation structures and simulations by a particle model. Ultrason Sonochem 6:25CrossRef
102.
go back to reference Zabalotskaya EA (1973) Emission of harmonic and combination-frequency waves by air bubbles. Sov Phys Acoust 18:396 Zabalotskaya EA (1973) Emission of harmonic and combination-frequency waves by air bubbles. Sov Phys Acoust 18:396
103.
go back to reference Commander KW, Prosperetti A (1988) Linear pressure waves in bubbly liquids: comparison between theory and experiments. J Acoust Soc Am 85:732CrossRef Commander KW, Prosperetti A (1988) Linear pressure waves in bubbly liquids: comparison between theory and experiments. J Acoust Soc Am 85:732CrossRef
104.
go back to reference Caflisch RE et al (1985) Effective equations for wave propagation in bubbly liquids. J Fluid Mech 153:259CrossRef Caflisch RE et al (1985) Effective equations for wave propagation in bubbly liquids. J Fluid Mech 153:259CrossRef
105.
go back to reference Kobelev YA, Ostrovsky LA (1989) Nonlinear acoustic phenomena due to bubble drift in a gas–liquid mixture. J Acoust Soc Am 85:621CrossRef Kobelev YA, Ostrovsky LA (1989) Nonlinear acoustic phenomena due to bubble drift in a gas–liquid mixture. J Acoust Soc Am 85:621CrossRef
106.
go back to reference Louisnard O (2012) A simple model of ultrasound propagation in a cavitating liquid. Part I: theory, nonlinear attenuation and traveling wave generation. Ultrason Sonochem 19:56CrossRef Louisnard O (2012) A simple model of ultrasound propagation in a cavitating liquid. Part I: theory, nonlinear attenuation and traveling wave generation. Ultrason Sonochem 19:56CrossRef
107.
go back to reference Jamshidi R, Brenner G (2013) Dissipation of ultrasonic wave propagation in bubbly liquids considering the effect of compressibility to the first order of acoustical Mach number. Ultrasonics 53:842CrossRef Jamshidi R, Brenner G (2013) Dissipation of ultrasonic wave propagation in bubbly liquids considering the effect of compressibility to the first order of acoustical Mach number. Ultrasonics 53:842CrossRef
108.
go back to reference Mettin R et al (2002) Advanced observation and modeling of an acoustic cavitation structure. In: Rudenko OV, Sapozhnikov OA (eds) Nonlinear acoustics at the beginning of the 21st century, proceedings of 16th international symposium on nonlinear acoustics, vol 2. Moscow State University, Moscow, pp 1003–1006 Mettin R et al (2002) Advanced observation and modeling of an acoustic cavitation structure. In: Rudenko OV, Sapozhnikov OA (eds) Nonlinear acoustics at the beginning of the 21st century, proceedings of 16th international symposium on nonlinear acoustics, vol 2. Moscow State University, Moscow, pp 1003–1006
109.
go back to reference Mettin R et al (2002) Bubble structures in acoustic cavitation: observation and modelling of a “jellyfish’-streamer. In: Forum acousticum Sevilla, Spain, 16–20 Sept 2002, Special Issue of the Revista de Acustica, Vol. XXXIII, 2002, ULT-02-004-IP Mettin R et al (2002) Bubble structures in acoustic cavitation: observation and modelling of a “jellyfish’-streamer. In: Forum acousticum Sevilla, Spain, 16–20 Sept 2002, Special Issue of the Revista de Acustica, Vol. XXXIII, 2002, ULT-02-004-IP
110.
go back to reference Lichtenberg GC (1777) Nova method natvram ac motvm fluidi electrici investigandi. Novi Commentarii Soc Regaiae 8:168–179 Lichtenberg GC (1777) Nova method natvram ac motvm fluidi electrici investigandi. Novi Commentarii Soc Regaiae 8:168–179
111.
go back to reference Merrill FH, Von Hippel A (1939) The atom physical interpretation of Lichtenberg figures and their application to the study of gas discharge phenomena. J Appl Phys 10:873CrossRef Merrill FH, Von Hippel A (1939) The atom physical interpretation of Lichtenberg figures and their application to the study of gas discharge phenomena. J Appl Phys 10:873CrossRef
112.
go back to reference Thiemann A et al (2011) Characterization of an acoustic cavitation bubble structure at 230 kHz. Ultrason Sonochem 18:595CrossRef Thiemann A et al (2011) Characterization of an acoustic cavitation bubble structure at 230 kHz. Ultrason Sonochem 18:595CrossRef
113.
go back to reference Cairós C et al (2014) Effects of argon sparging rate, ultrasonic power, and frequency on multibubble sonoluminescence spectra and bubble dynamics in NaCl aqueous solutions. Ultrason Sonochem 21:2044CrossRef Cairós C et al (2014) Effects of argon sparging rate, ultrasonic power, and frequency on multibubble sonoluminescence spectra and bubble dynamics in NaCl aqueous solutions. Ultrason Sonochem 21:2044CrossRef
114.
go back to reference Bar-Yam Y (1997) Dynamics of complex systems, vol 213. Addison-Wesley, Reading Bar-Yam Y (1997) Dynamics of complex systems, vol 213. Addison-Wesley, Reading
115.
go back to reference Badii R, Politi A (1999) Complexity: hierarchical structures and scaling in physics. Cambridge University Press, Cambridge Badii R, Politi A (1999) Complexity: hierarchical structures and scaling in physics. Cambridge University Press, Cambridge
116.
go back to reference Siegel CL, Moser J (1971) Lectures on celestial mechanics. Springer, New YorkCrossRef Siegel CL, Moser J (1971) Lectures on celestial mechanics. Springer, New YorkCrossRef
117.
go back to reference Ilinskii YA, Zabolotskaya EA (1992) Cooperative radiation and scattering of acoustic waves by gas bubbles in liquids. J Acoust Soc Am 92:2837CrossRef Ilinskii YA, Zabolotskaya EA (1992) Cooperative radiation and scattering of acoustic waves by gas bubbles in liquids. J Acoust Soc Am 92:2837CrossRef
118.
go back to reference Parlitz U et al (1999) Spatio–temporal dynamics of acoustic cavitation bubble clouds. Philos Trans R Soc Lond A 357:313CrossRef Parlitz U et al (1999) Spatio–temporal dynamics of acoustic cavitation bubble clouds. Philos Trans R Soc Lond A 357:313CrossRef
119.
go back to reference Tervo JT, Mettin R, Lauterborn W (2006) Bubble cluster dynamics in acoustic cavitation. Acta Acustica United Acustica 92:178 Tervo JT, Mettin R, Lauterborn W (2006) Bubble cluster dynamics in acoustic cavitation. Acta Acustica United Acustica 92:178
120.
go back to reference Chan CU, Ohl C-D (2012) Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics. Phys Rev Lett 109:174501CrossRef Chan CU, Ohl C-D (2012) Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics. Phys Rev Lett 109:174501CrossRef
121.
go back to reference San Lee J, Weon BM, Je JH (2013) X-ray phase-contrast imaging of dynamics of complex fluids. J Phys D 46:494006CrossRef San Lee J, Weon BM, Je JH (2013) X-ray phase-contrast imaging of dynamics of complex fluids. J Phys D 46:494006CrossRef
122.
go back to reference Tyrrell JW, Attard P (2001) Images of nanobubbles on hydrophobic surfaces and their interactions. Phys Rev Lett 87:176104CrossRef Tyrrell JW, Attard P (2001) Images of nanobubbles on hydrophobic surfaces and their interactions. Phys Rev Lett 87:176104CrossRef
123.
go back to reference Chan CU et al (2015) Collapse of surface nanobubbles. Phys Rev Lett 114:114505CrossRef Chan CU et al (2015) Collapse of surface nanobubbles. Phys Rev Lett 114:114505CrossRef
124.
go back to reference Rossinelli D et al (2013) 11 PFLOP/s simulations of cloud cavitation collapse. In: Conference for high-performance computing, networking, storage and analysis. IEEE, Denver, pp 1–13 Rossinelli D et al (2013) 11 PFLOP/s simulations of cloud cavitation collapse. In: Conference for high-performance computing, networking, storage and analysis. IEEE, Denver, pp 1–13
125.
go back to reference Kinjo T, Matsumoto M (1998) Cavitation processes and negative pressure. Fluid Phase Equilib 144:343CrossRef Kinjo T, Matsumoto M (1998) Cavitation processes and negative pressure. Fluid Phase Equilib 144:343CrossRef
126.
go back to reference Malyshev VL et al (2015) Study of the tensile strength of a liquid by molecular dynamics methods. High Temp 53:406CrossRef Malyshev VL et al (2015) Study of the tensile strength of a liquid by molecular dynamics methods. High Temp 53:406CrossRef
127.
go back to reference Shekhar A et al (2013) Nanobubble collapse on a silica surface in water: billion-atom reactive molecular dynamics simulations. Phys Rev Lett 111:184503CrossRef Shekhar A et al (2013) Nanobubble collapse on a silica surface in water: billion-atom reactive molecular dynamics simulations. Phys Rev Lett 111:184503CrossRef
128.
go back to reference Fu H et al (2015) Sonoporation at small and large length scales: effect of cavitation bubble collapse on membranes. J Phys Chem Lett 6:413CrossRef Fu H et al (2015) Sonoporation at small and large length scales: effect of cavitation bubble collapse on membranes. J Phys Chem Lett 6:413CrossRef
Metadata
Title
Bubble Dynamics and Observations
Authors
Robert Mettin
Carlos Cairós
Copyright Year
2016
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-287-278-4_3