Skip to main content
Top

2021 | OriginalPaper | Chapter

C-LIME: A Consistency-Oriented LIME for Time-Series Health-Risk Predictions

Authors : Taku Ito, Keiichi Ochiai, Yusuke Fukazawa

Published in: Knowledge Management and Acquisition for Intelligent Systems

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Predicting health risk from electronic health records (EHRs) is increasingly demanded in the medical and health fields. Many studies have pursued prediction accuracy while ignoring the interpretability of their developed models. To encourage lifestyle changes by patients and employees, an appropriate explanation of why the model outputs high risk is as important as accurately predicting the health risk. In this study, we construct 33 predictive models (11 health-checkup items checked after one, two, and three years). We also clarify a problem in the existing Local Interpretable Model-agnostic Explanations (LIME), namely, inconsistency among the health-risk predictions of the three target years. To resolve this problem, we find and exclude an anomalous sample that deteriorate the interpretation, and output a consistent interpretation of the health-risk predictions over the three years. We evaluate proposed method using more than 10,000 medical examination data. Accuracy was improved by 16% at the maximum compared to the baseline that output the risk at year Y + 1,2,3 equaling to that at year Y. Also, proposed LIME called C-LIME improve number of employees whom we can provide consistent lifestyle advice over the years three times compared to LIME. We have released a health-risk prediction and lifestyle recommendation service using proposed method for employees of the Nippon Telegraph and Telephone Group from April of 2019.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ancona, M.B., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for deep neural networks. In: ICLR (2018) Ancona, M.B., Ceolini, E., Öztireli, C., Gross, M.: Towards better understanding of gradient-based attribution methods for deep neural networks. In: ICLR (2018)
3.
go back to reference Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via policy extraction. In: NeurIPS (2018) Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via policy extraction. In: NeurIPS (2018)
4.
go back to reference Chen, M., Hao, Y., Hwang, K., Wang, L., Wang, L.: Disease prediction by machine learning over big data from healthcare communities. IEEE Access 5, 8869–8879 (2017)CrossRef Chen, M., Hao, Y., Hwang, K., Wang, L., Wang, L.: Disease prediction by machine learning over big data from healthcare communities. IEEE Access 5, 8869–8879 (2017)CrossRef
5.
go back to reference Cheng, Y., Wang, F., Zhang, P., Hu, J.: Risk prediction with electronic health records: a deep learning approach. In: Proceedings of the 2016 SIAM International Conference on Data Mining (2016) Cheng, Y., Wang, F., Zhang, P., Hu, J.: Risk prediction with electronic health records: a deep learning approach. In: Proceedings of the 2016 SIAM International Conference on Data Mining (2016)
6.
go back to reference Craven, M.W., Shavlik, J.W.: Extracting tree-structured representations of trained networks. In: Proceedings of the 8th International Conference on Neural Information Processing Systems, pp. 24–30 (1995) Craven, M.W., Shavlik, J.W.: Extracting tree-structured representations of trained networks. In: Proceedings of the 8th International Conference on Neural Information Processing Systems, pp. 24–30 (1995)
7.
go back to reference Elshawi, R., Al-Mallah, M.H., Sakr, S.: On the interpretability of machine learning-based model for predicting hypertension. BMC Med. Inf. Decis. Making 19 (2019) Elshawi, R., Al-Mallah, M.H., Sakr, S.: On the interpretability of machine learning-based model for predicting hypertension. BMC Med. Inf. Decis. Making 19 (2019)
8.
go back to reference Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E.: Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation (2013) Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E.: Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation (2013)
9.
go back to reference Goldstein, B.A., Navar, A.M., Pencina, M.J., Ioannidis, J.P.A.: Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J. Am. Med. Inf. Assoc. 24(1), 198–208 (2016)CrossRef Goldstein, B.A., Navar, A.M., Pencina, M.J., Ioannidis, J.P.A.: Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J. Am. Med. Inf. Assoc. 24(1), 198–208 (2016)CrossRef
10.
go back to reference Hall, P., Gill, N., Schmidt, N.: Proposed guidelines for the responsible use of explainable machine learning (2019) Hall, P., Gill, N., Schmidt, N.: Proposed guidelines for the responsible use of explainable machine learning (2019)
11.
go back to reference Hastie, T.J., Tibshirani, R., Friedman, J.H.: The elements of statistical learning (2001) Hastie, T.J., Tibshirani, R., Friedman, J.H.: The elements of statistical learning (2001)
12.
go back to reference Huang, Z., Dong, W., Duan, H., Liu, J.: A regularized deep learning approach for clinical risk prediction of acute coronary syndrome using electronic health records. IEEE Trans. Biomed. Eng. 65(5), 956–968 (2018)CrossRef Huang, Z., Dong, W., Duan, H., Liu, J.: A regularized deep learning approach for clinical risk prediction of acute coronary syndrome using electronic health records. IEEE Trans. Biomed. Eng. 65(5), 956–968 (2018)CrossRef
13.
go back to reference Kanegae, H., Suzuki, K., Fukatani, K., Ito, T., Harada, N., Kario, K.: Highly precise risk prediction model for new onset hypertension using artificial intelligence techniques. J. Clin. Hypertension (2019) Kanegae, H., Suzuki, K., Fukatani, K., Ito, T., Harada, N., Kario, K.: Highly precise risk prediction model for new onset hypertension using artificial intelligence techniques. J. Clin. Hypertension (2019)
14.
go back to reference Lundberg, S., Lee, S.I.: A unified approach to interpreting model predictions. In: NIPS (2017) Lundberg, S., Lee, S.I.: A unified approach to interpreting model predictions. In: NIPS (2017)
15.
go back to reference Ma, F., Gao, J., Suo, Q., You, Q., Zhou, J., Zhang, A.: Risk prediction on electronic health records with prior medical knowledge. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1910–1919 (2018) Ma, F., Gao, J., Suo, Q., You, Q., Zhou, J., Zhang, A.: Risk prediction on electronic health records with prior medical knowledge. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1910–1919 (2018)
16.
go back to reference Miotto, R., Li, L., Kidd, B.A., Dudley, J.T.: Deep patient: An unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6 (2016) Miotto, R., Li, L., Kidd, B.A., Dudley, J.T.: Deep patient: An unsupervised representation to predict the future of patients from the electronic health records. Sci. Rep. 6 (2016)
17.
go back to reference Nguyen, P., Tran, T., Wickramasinghe, N., Venkatesh, S.: \(\mathtt Deepr\): a convolutional net for medical records. IEEE J. Biomed. Health Inf. 21(1), 22–30 (2017) Nguyen, P., Tran, T., Wickramasinghe, N., Venkatesh, S.: \(\mathtt Deepr\): a convolutional net for medical records. IEEE J. Biomed. Health Inf. 21(1), 22–30 (2017)
18.
go back to reference Pham, T., Tran, T., Phung, D., Venkatesh, S.: Predicting healthcare trajectories from medical records: a deep learning approach. J. Biomed. Inf. 69, 218–229 (2017)CrossRef Pham, T., Tran, T., Phung, D., Venkatesh, S.: Predicting healthcare trajectories from medical records: a deep learning approach. J. Biomed. Inf. 69, 218–229 (2017)CrossRef
19.
go back to reference Rahimian, F., et al.: Predicting the risk of emergency admission with machine learning: development and validation using linked electronic health records. PLOS Medicine 15, e1002695 (2018)CrossRef Rahimian, F., et al.: Predicting the risk of emergency admission with machine learning: development and validation using linked electronic health records. PLOS Medicine 15, e1002695 (2018)CrossRef
20.
go back to reference Rajkomar, A., et al.: Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 1 (2018) Rajkomar, A., et al.: Scalable and accurate deep learning with electronic health records. NPJ Digit. Med. 1 (2018)
21.
go back to reference Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016) Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)
22.
go back to reference Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: High-precision model-agnostic explanations. In: AAAI (2018) Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: High-precision model-agnostic explanations. In: AAAI (2018)
23.
go back to reference Shickel, B., Tighe, P.J., Bihorac, A., Rashidi, P.: Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J. Biomed. Health Informatics 22(5), 1589–1604 (2018)CrossRef Shickel, B., Tighe, P.J., Bihorac, A., Rashidi, P.: Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J. Biomed. Health Informatics 22(5), 1589–1604 (2018)CrossRef
24.
go back to reference Yadav, P., Steinbach, M., Kumar, V., Simon, G.: Mining electronic health records (EHRs): a survey. ACM Comput. Surv. 50(6) (2018) Yadav, P., Steinbach, M., Kumar, V., Simon, G.: Mining electronic health records (EHRs): a survey. ACM Comput. Surv. 50(6) (2018)
Metadata
Title
C-LIME: A Consistency-Oriented LIME for Time-Series Health-Risk Predictions
Authors
Taku Ito
Keiichi Ochiai
Yusuke Fukazawa
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-69886-7_5

Premium Partner