Skip to main content
Top
Published in: Thermal Engineering 2/2024

01-02-2024 | STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Calculation of an Upgraded Rankine Cycle with Lithium Bromide Solution As a Working Flow

Authors: D. V. Dobrydnev, V. V. Papin, R. V. Bezuglov, N. N. Efimov, E. M. D’yakonov, A. S. Shmakov

Published in: Thermal Engineering | Issue 2/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Increasing the energy efficiency of thermal power plants operating according to the Rankine cycle is one of the priority tasks of the Russian energy sector. Despite a significant amount of scientific research, the efficiency of installations of this type still remains low. As a technological solution to increase their efficiency, the authors consider a modernized Rankine cycle in which an aqueous solution of lithium bromide is used as a working fluid, the condensation process of exhaust steam after the turbine is replaced by the process of its absorption, and the second working fluid is an absorbent. The features of the functioning of such a cycle are outlined, and the methodology for its calculation is presented. Studies have shown that the use of lithium bromide solution can reduce the steam pressure after the turbine and increase the useful heat drop as well as the degree of cycle filling. In addition, when the heat of the solution returned from the boiler is regenerated, the average temperature of the heat supply to the cycle increases, which also increases its thermal efficiency compared to the traditional circuit. The energy efficiency of the modernized cycle was analyzed and compared with the traditional Rankine cycle on water vapor. Calculations have shown that the use of a modernized cycle allows increasing thermal efficiency by an average of 1–2% compared to the traditional solution. The indicators characteristic of both steam power and absorption cycles were studied, and graphical dependences of efficiency on the main parameters were derived. The economic effect of using the modernized scheme is to reduce fuel consumption and emissions of harmful substances into the atmosphere in proportion to the reduction in fuel consumption.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Energy Strategy of the Russian Federation until 2035 (Minist. Energ. Ross. Fed., 2020). https://minenergo.gov.ru/node/1026 Energy Strategy of the Russian Federation until 2035 (Minist. Energ. Ross. Fed., 2020). https://minenergo.gov.ru/node/1026
2.
go back to reference V. A. Petrushchenkov and I. A. Korshakova, “Qualitative and quantitative analysis of small scale thermal energy in Russia,” Izv. Vyssh. Uchebn. Zaved., Probl. Energ., No. 5, 52–70 (2020). V. A. Petrushchenkov and I. A. Korshakova, “Qualitative and quantitative analysis of small scale thermal energy in Russia,” Izv. Vyssh. Uchebn. Zaved., Probl. Energ., No. 5, 52–70 (2020).
3.
go back to reference V. A. Kirillin, V. V. Sychev, and A. E. Sheindlin, Technical Thermodynamics (Mosk. Energ. Inst., Moscow, 2008) [in Russian]. V. A. Kirillin, V. V. Sychev, and A. E. Sheindlin, Technical Thermodynamics (Mosk. Energ. Inst., Moscow, 2008) [in Russian].
13.
go back to reference N. Galashov, S. Tsibulskiy, and T. Serova, “Analysis of the properties of working substances for the organic Rankine cycle based database ‘REFPROP’,” in Proc. Int. Conf. on Termophysical Basis of Energy Technologies, Tomsk, Russia, 2015; EPJ Web Conf. 110, 01068 (2016). https://doi.org/10.1051/epjconf/201611001068 N. Galashov, S. Tsibulskiy, and T. Serova, “Analysis of the properties of working substances for the organic Rankine cycle based database ‘REFPROP’,” in Proc. Int. Conf. on Termophysical Basis of Energy Technologies, Tomsk, Russia, 2015; EPJ Web Conf. 110, 01068 (2016). https://​doi.​org/​10.​1051/​epjconf/​201611001068
14.
go back to reference J. D. Maloney and R. C. Robertson, Thermodynamic Study of Ammonia–Water Heat Power Cycles, Report No. CF-53-8-43 (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1953). J. D. Maloney and R. C. Robertson, Thermodynamic Study of Ammonia–Water Heat Power Cycles, Report No. CF-53-8-43 (Oak Ridge National Laboratory, Oak Ridge, Tenn., 1953).
15.
go back to reference A. I. Kalina, Combined Cycle and Waste Heat Recovery Power Systems based on a Novel Thermodynamic Energy Cycle Utilizing Low-Temperature Heat for Power Generation, in Proc. Joint Power Generation Conf., 1983 (American Society of Mechanical Engineers, New York, 1983), paper no. 83-JPGC-GT-3. A. I. Kalina, Combined Cycle and Waste Heat Recovery Power Systems based on a Novel Thermodynamic Energy Cycle Utilizing Low-Temperature Heat for Power Generation, in Proc. Joint Power Generation Conf., 1983 (American Society of Mechanical Engineers, New York, 1983), paper no. 83-JPGC-GT-3.
19.
go back to reference A. V. Baranenko, L. S. Timofeevskii, A. G. Dolotov, and A. V. Popov, Absorption-Based Heat Converters: A Monograph (S.-Peterb. Gos. Univ. Nizko-Temp. i Pishch. Tekhnol, St. Petersburg, 2005) [in Russian]. A. V. Baranenko, L. S. Timofeevskii, A. G. Dolotov, and A. V. Popov, Absorption-Based Heat Converters: A Monograph (S.-Peterb. Gos. Univ. Nizko-Temp. i Pishch. Tekhnol, St. Petersburg, 2005) [in Russian].
20.
go back to reference D. I. Karabarin, Improving Efficiency of Low-Potential Energy Recovery of Heat Technology Facilities, Candidate’s Dissertation in Engineering (Siberian Federal Univ., Krasnoyarsk, 2020). D. I. Karabarin, Improving Efficiency of Low-Potential Energy Recovery of Heat Technology Facilities, Candidate’s Dissertation in Engineering (Siberian Federal Univ., Krasnoyarsk, 2020).
21.
go back to reference L. V. Galimova, Absorption-Based Refrigerating Machines and Heat Pumps: Tutorial for Higher Schools (Astrakhan. Gos. Tekh. Univ., Astrakhan, 1997) [in Russian]. L. V. Galimova, Absorption-Based Refrigerating Machines and Heat Pumps: Tutorial for Higher Schools (Astrakhan. Gos. Tekh. Univ., Astrakhan, 1997) [in Russian].
22.
23.
go back to reference V. V. Papin, N. N. Efimov, D. V. Dobrydnev, E. M. D’yakonov, R. V. Bezuglov, and A. S. Shmakov, “Modernized steam power cycle operating on absorption principle,” Prom. Energ., No. 1, 18–27 (2022). V. V. Papin, N. N. Efimov, D. V. Dobrydnev, E. M. D’yakonov, R. V. Bezuglov, and A. S. Shmakov, “Modernized steam power cycle operating on absorption principle,” Prom. Energ., No. 1, 18–27 (2022).
24.
go back to reference T. V. Morozyuk, Theory of Refrigerating Machines and Heat Pumps (Negotsiant, Odesa, 2006) [in Russian]. T. V. Morozyuk, Theory of Refrigerating Machines and Heat Pumps (Negotsiant, Odesa, 2006) [in Russian].
26.
go back to reference K. I. Stepanov, O. V. Volkova, and A. O. Tsimbalist, “Study of corrosion durability of stainless steels in an inhibited aqueous solution of lithium bromide,” Vestn. Mezhdunar. Akad. Kholoda, No. 2, 57–60 (2012). K. I. Stepanov, O. V. Volkova, and A. O. Tsimbalist, “Study of corrosion durability of stainless steels in an inhibited aqueous solution of lithium bromide,” Vestn. Mezhdunar. Akad. Kholoda, No. 2, 57–60 (2012).
28.
go back to reference M. P. Vukalovich, Tables of Thermophysical Properties of Water and Water Vapor (Izd. Standartov, Moscow, 1969) [in Russian]. M. P. Vukalovich, Tables of Thermophysical Properties of Water and Water Vapor (Izd. Standartov, Moscow, 1969) [in Russian].
29.
go back to reference REFPROP (National Institute of Standards and Technology). https://www.nist.gov/srd/refprop. Accessed March 30, 2023. REFPROP (National Institute of Standards and Technology). https://​www.​nist.​gov/​srd/​refprop.​ Accessed March 30, 2023.
30.
go back to reference ASHRAE Handbook 2017 — Fundamentals, SI ed. (American Society of Heating, Refrigerating and Air-Conditioning Engineers, 1995). ASHRAE Handbook 2017 — Fundamentals, SI ed. (American Society of Heating, Refrigerating and Air-Conditioning Engineers, 1995).
31.
go back to reference A. S. Malenkov, Development of a Prospective System of Heat and Cold Supply Based on Absorption Heat Transformers, Candidate’s Dissertation in Engineering (Moscow Power Engineering Inst., Moscow, 2018). A. S. Malenkov, Development of a Prospective System of Heat and Cold Supply Based on Absorption Heat Transformers, Candidate’s Dissertation in Engineering (Moscow Power Engineering Inst., Moscow, 2018).
34.
go back to reference S. N. Bogdanov, S. I. Burtsev, O. P. Ivanov, and A. V. Kupriyanova, Refrigerating Devices. Air Conditioning. Properties of Substances: Handbook, 4th ed. (S.-Peterb. Gos. Univ. Nizko-Temp. i Pishch. Tekhnol., St. Petersburg, 1999) [in Russian]. S. N. Bogdanov, S. I. Burtsev, O. P. Ivanov, and A. V. Kupriyanova, Refrigerating Devices. Air Conditioning. Properties of Substances: Handbook, 4th ed. (S.-Peterb. Gos. Univ. Nizko-Temp. i Pishch. Tekhnol., St. Petersburg, 1999) [in Russian].
35.
go back to reference S. V. Karavan, A. A. Dzino, A. A. Malyshev, and D. V. Karavan, “Enthalpic diagram of aqueous solution of lithium bromide,” Vestn. Mezhdunar. Akad. Kholoda, No. 3, 36–39 (2012). S. V. Karavan, A. A. Dzino, A. A. Malyshev, and D. V. Karavan, “Enthalpic diagram of aqueous solution of lithium bromide,” Vestn. Mezhdunar. Akad. Kholoda, No. 3, 36–39 (2012).
36.
go back to reference S. V. Karavan and O. A. Pinchuk, “Integral enthalpies and entropies of aqueous solution of lithium bromide,” Vestn. Mezhdunar. Akad. Kholoda, No. 4, 38–42 (2013). S. V. Karavan and O. A. Pinchuk, “Integral enthalpies and entropies of aqueous solution of lithium bromide,” Vestn. Mezhdunar. Akad. Kholoda, No. 4, 38–42 (2013).
37.
go back to reference F. L. Lansing, “Computer modeling of a single-stage lithium bromide/water absorption refrigeration unit,” in The Deep Space Network Progress Report 42-37, November and December 1976 (Jet Propulsion Laboratory, Pasadena, Calif., 1977), pp. 152–168. F. L. Lansing, “Computer modeling of a single-stage lithium bromide/water absorption refrigeration unit,” in The Deep Space Network Progress Report 42-37, November and December 1976 (Jet Propulsion Laboratory, Pasadena, Calif., 1977), pp. 152–168.
38.
go back to reference V. Maake, G. Yu. Ekkert, and Zh. L. Koshpen, Textbook on Refrigerating Devices (Mosk. Gos. Univ., Moscow, 1998) [in Russian]. V. Maake, G. Yu. Ekkert, and Zh. L. Koshpen, Textbook on Refrigerating Devices (Mosk. Gos. Univ., Moscow, 1998) [in Russian].
Metadata
Title
Calculation of an Upgraded Rankine Cycle with Lithium Bromide Solution As a Working Flow
Authors
D. V. Dobrydnev
V. V. Papin
R. V. Bezuglov
N. N. Efimov
E. M. D’yakonov
A. S. Shmakov
Publication date
01-02-2024
Publisher
Pleiades Publishing
Published in
Thermal Engineering / Issue 2/2024
Print ISSN: 0040-6015
Electronic ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601524020034

Other articles of this Issue 2/2024

Thermal Engineering 2/2024 Go to the issue

STEAM-TURBINE, GAS-TURBINE, AND COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

Improving the PGU-450T Unit’s Maneuverability while Retaining Its Reliability and Economic Efficiency in Variable Load Modes

Premium Partner