Skip to main content
Top
Published in: International Journal of Parallel Programming 4-5/2023

10-07-2023

Calculation of Distributed-Order Fractional Derivative on Tensor Cores-Enabled GPU

Author: Vsevolod Bohaienko

Published in: International Journal of Parallel Programming | Issue 4-5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to an increased computational complexity of calculating the values of the distributed-order Caputo fractional derivative compared to the classical Caputo derivative there is a need to develop new techniques that accelerate it. In this paper for this purpose we propose to use a fast matrix "multiply and accumulate" operation available in GPU’s that contain the so-called tensor cores. We present and experimentally analyze the properties of GPU-algorithms that are based on the L1 finite-difference approximation of the derivative and incorporate them into the Crank-Nicholson scheme for the distributed-order time-fractional diffusion equation. The computation of derivative’s values on GPU was faster than the multi-threaded implementation on CPU only for a large number of time steps with growing performance gain when number of time steps increase. The usage of the single-precision data type increased the error up to \(2.7\%\) comparing with the usage of the double-precision data type. Half-precision computations in tensor cores increased the error up to \(29.5\%\). While solving a time-fractional diffusion equation, algorithms implemented for GPU with the usage of the single-precision data type were at least three times faster than the CPU-implementation for the number of time steps more than 1280. Data type precision had only slight influence on the solution error with significantly increased execution time when the double-precision data type was used for data storage and processing.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Atanackovic, T., Stankovic, B.: On a numerical scheme for solving differential equations of fractional order. Mech. Res. Comm. 35(7), 429–438 (2008)MathSciNetCrossRefMATH Atanackovic, T., Stankovic, B.: On a numerical scheme for solving differential equations of fractional order. Mech. Res. Comm. 35(7), 429–438 (2008)MathSciNetCrossRefMATH
2.
go back to reference Baffet, D., Hesthaven, J.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55(2), 496–520 (2017)MathSciNetCrossRefMATH Baffet, D., Hesthaven, J.: A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal. 55(2), 496–520 (2017)MathSciNetCrossRefMATH
3.
go back to reference Bohaienko, V.: A fast finite-difference algorithm for solving space-fractional filtration equation with a generalised Caputo derivative. Comput. Appl. Math. 38(3), 105 (2019)MathSciNetCrossRefMATH Bohaienko, V.: A fast finite-difference algorithm for solving space-fractional filtration equation with a generalised Caputo derivative. Comput. Appl. Math. 38(3), 105 (2019)MathSciNetCrossRefMATH
4.
go back to reference Bohaienko, V.: Computing psi-caputo fractional derivative values using CUDA 10. In: CEUR Workshop Proceedings, pp. 636–648 (2020) Bohaienko, V.: Computing psi-caputo fractional derivative values using CUDA 10. In: CEUR Workshop Proceedings, pp. 636–648 (2020)
5.
go back to reference Bonchis, C., Kaslik, E., Rosu, F.: HPC optimal parallel communication algorithm for the simulation of fractional-order systems. J. Supercomput. 75, 1014–1025 (2019)CrossRef Bonchis, C., Kaslik, E., Rosu, F.: HPC optimal parallel communication algorithm for the simulation of fractional-order systems. J. Supercomput. 75, 1014–1025 (2019)CrossRef
6.
go back to reference Bu, W., Xiao, A., Zeng, W.: Finite difference/finite element methods for distributed-order time fractional diffusion equations. J. Sci. Comput. 72, 422–441 (2017)MathSciNetCrossRefMATH Bu, W., Xiao, A., Zeng, W.: Finite difference/finite element methods for distributed-order time fractional diffusion equations. J. Sci. Comput. 72, 422–441 (2017)MathSciNetCrossRefMATH
7.
go back to reference Bulavatsky, V.: Some boundary-value problmes of filtration dynamics corresponding to models of fractional diffusion of distributed order. Cyber. Syst. Anal. 58, 65–76 (2022)MathSciNetCrossRefMATH Bulavatsky, V.: Some boundary-value problmes of filtration dynamics corresponding to models of fractional diffusion of distributed order. Cyber. Syst. Anal. 58, 65–76 (2022)MathSciNetCrossRefMATH
8.
go back to reference Chen, Z., Zheng, S., Zhang, Z.: Sparsity-aware precorrected tensor train algorithm for fast solution of 2-d scattering problems and current flow modeling on unstructured meshes. IEEE Trans. Microwave Theory Tech. 67, 4833–4847 (2019)CrossRef Chen, Z., Zheng, S., Zhang, Z.: Sparsity-aware precorrected tensor train algorithm for fast solution of 2-d scattering problems and current flow modeling on unstructured meshes. IEEE Trans. Microwave Theory Tech. 67, 4833–4847 (2019)CrossRef
9.
go back to reference Ding, W., Patnaik, S., Sidhardh, S., Semperlotti, F.: Applications of distributed-order fractional operators: a review. Entropy 23, 110 (2021)MathSciNetCrossRef Ding, W., Patnaik, S., Sidhardh, S., Semperlotti, F.: Applications of distributed-order fractional operators: a review. Entropy 23, 110 (2021)MathSciNetCrossRef
10.
go back to reference Durastante, F.: Efficient solution of time-fractional differential equations with a new adaptive multi-term discretization of the generalized Caputo-Dzherbashyan derivative. Calcolo 56, 36 (2019)MathSciNetCrossRefMATH Durastante, F.: Efficient solution of time-fractional differential equations with a new adaptive multi-term discretization of the generalized Caputo-Dzherbashyan derivative. Calcolo 56, 36 (2019)MathSciNetCrossRefMATH
11.
go back to reference Ford, N., Simpson, A.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algo. 26(4), 333–346 (2001)MathSciNetCrossRefMATH Ford, N., Simpson, A.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algo. 26(4), 333–346 (2001)MathSciNetCrossRefMATH
12.
go back to reference Golev, A., Penev, A., Stefanova, K., Hristova, S.: Using GPU to speed up calculation of some approximate methods for fractional differential equations. Int. J. Pure Appl. Math. 119(3), 391–401 (2018) Golev, A., Penev, A., Stefanova, K., Hristova, S.: Using GPU to speed up calculation of some approximate methods for fractional differential equations. Int. J. Pure Appl. Math. 119(3), 391–401 (2018)
13.
go back to reference Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order, pp. 223–276. Springer Verlag, Wien (1997) Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order, pp. 223–276. Springer Verlag, Wien (1997)
14.
15.
go back to reference Jia, J., Wang, H., Zheng, X.: A fast numerical scheme for a variably distributed-order time-fractional diffusion equation and its analysis. Comput. Math. Appl. 108, 24–32 (2022)MathSciNetMATH Jia, J., Wang, H., Zheng, X.: A fast numerical scheme for a variably distributed-order time-fractional diffusion equation and its analysis. Comput. Math. Appl. 108, 24–32 (2022)MathSciNetMATH
16.
17.
go back to reference Liao, H., Lyu, P., Vong, S., Zhao, Y.: Stability of fully discrete schemes with interpolation-type fractional formulas for distributed-order subdiffusion equations. Numer. Algorithms 75, 845–878 (2017)MathSciNetCrossRefMATH Liao, H., Lyu, P., Vong, S., Zhao, Y.: Stability of fully discrete schemes with interpolation-type fractional formulas for distributed-order subdiffusion equations. Numer. Algorithms 75, 845–878 (2017)MathSciNetCrossRefMATH
18.
go back to reference Mainardi, F., Pagnini, G., Gorenflo, R.: Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187, 295–305 (2007)MathSciNetMATH Mainardi, F., Pagnini, G., Gorenflo, R.: Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187, 295–305 (2007)MathSciNetMATH
19.
go back to reference Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
20.
go back to reference Sales Teodoro, G., Tenreiro Machado, J., Capelas de Oliveira, E.: A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 388, 195–208 (2019)MathSciNetCrossRefMATH Sales Teodoro, G., Tenreiro Machado, J., Capelas de Oliveira, E.: A review of definitions of fractional derivatives and other operators. J. Comput. Phys. 388, 195–208 (2019)MathSciNetCrossRefMATH
22.
go back to reference Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, New York (1993)MATH Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, New York (1993)MATH
23.
go back to reference Sun, L.Y., Fang, Z.W., Lei, S.L., Sun, H.W., Zhang, J.L.: A fast algorithm for two-dimensional distributed-order time-space fractional diffusion equations. Appl. Math. Comput. 425, 127095 (2022)MathSciNetMATH Sun, L.Y., Fang, Z.W., Lei, S.L., Sun, H.W., Zhang, J.L.: A fast algorithm for two-dimensional distributed-order time-space fractional diffusion equations. Appl. Math. Comput. 425, 127095 (2022)MathSciNetMATH
24.
go back to reference Taghipour, M., Aminikhah, H.: An efficient non-standard finite difference scheme for solving distributed order time fractional reaction-diffusion equation. Int. J. Appl. Comput. Math. 8, 56 (2022)MathSciNetCrossRef Taghipour, M., Aminikhah, H.: An efficient non-standard finite difference scheme for solving distributed order time fractional reaction-diffusion equation. Int. J. Appl. Comput. Math. 8, 56 (2022)MathSciNetCrossRef
Metadata
Title
Calculation of Distributed-Order Fractional Derivative on Tensor Cores-Enabled GPU
Author
Vsevolod Bohaienko
Publication date
10-07-2023
Publisher
Springer US
Published in
International Journal of Parallel Programming / Issue 4-5/2023
Print ISSN: 0885-7458
Electronic ISSN: 1573-7640
DOI
https://doi.org/10.1007/s10766-023-00754-9

Premium Partner