Skip to main content
Top
Published in: Metallurgical and Materials Transactions A 2/2016

23-11-2015

Can Pearlite form Outside of the Hultgren Extrapolation of the Ae3 and Acm Phase Boundaries?

Authors: M. M. Aranda, R. Rementeria, C. Capdevila, R. E. Hackenberg

Published in: Metallurgical and Materials Transactions A | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

It is usually assumed that ferrous pearlite can form only when the average austenite carbon concentration C 0 lies between the extrapolated Ae3 (γ/α) and Acm (γ/θ) phase boundaries (the “Hultgren extrapolation”). This “mutual supersaturation” criterion for cooperative lamellar nucleation and growth is critically examined from a historical perspective and in light of recent experiments on coarse-grained hypoeutectoid steels which show pearlite formation outside the Hultgren extrapolation. This criterion, at least as interpreted in terms of the average austenite composition, is shown to be unnecessarily restrictive. The carbon fluxes evaluated from Brandt’s solution are sufficient to allow pearlite growth both inside and outside the Hultgren Extrapolation. As for the feasibility of the nucleation events leading to pearlite, the only criterion is that there are some local regions of austenite inside the Hultgren Extrapolation, even if the average austenite composition is outside.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Footnotes
1
One proposed criterion is an upper growth rate of the proeutectoid constituent at which pearlitic cementite nucleation at the migrating interface is viable.[2426] Another criterion is the equilibration of the chemical potential of carbon between the proeutectoid and remaining austenite phases, subsequent to earlier stages of discontinuity in carbon chemical potential.[27] Detailed growth kinetics studies of proeutectoid phases[2832] and consideration of kinetics changes after soft impingement[3335] are the key to testing these proposed criteria.
 
2
A parallel argument applies for the case of hypereutectoid steels.[77]
 
3
More significant departures from LE, such as might originate from to a strong solute drag effect or other nonchemical origins could decrease the effective γ/γ interface composition to as low as the bulk austenite composition C 0. Since C 0 < Acm when C 0 lies outside the Hultgren extrapolation, this extreme condition will prevent cementite nucleation and pearlite initiation. However, such extreme conditions have scarcely been documented for pearlite and, at most, appear to be the rare exception, not the rule.
 
4
There are also kinetic advantages for cementite nucleating heterogeneously at pre-existing ferrite-austenite interfaces, provided their rate of migration is slow enough to allow the embryo to grow to critical size before being overrun.[24,26]
 
5
There is a thermodynamically required minimum amount of solute partitioning between the pearlitic phases themselves.[6] It is assumed that the ferrite and cementite do not appreciably deviate from their metastable equilibrium carbon compositions given by the extrapolated α/γ + α and θ/γ + θphase boundaries. It turns out there is a generally wide latitude for nonequilibrium partitioning of many substitutional alloy elements such as Mn, for which thermodynamically minimum partitioning requirements can be evaluated.[6]
 
6
In support of this, Cahn and Hagel pointed out that the kinetic parameter α (a function of growth rate, spacing, and diffusivity), as it varies vs. bulk carbon content, neither undergoes a maximum or minimum at the eutectoid composition nor suffers other discontinuities as might be expected upon crossing the Ae3 or Acm if the joint supersaturation criterion was required for pearlite growth.[6]
 
Literature
1.
go back to reference H.C. Sorby: J. Iron Steel Inst., 1886, vol. 1, pp. 140-147. H.C. Sorby: J. Iron Steel Inst., 1886, vol. 1, pp. 140-147.
2.
go back to reference N.T. Belaiew: J. Iron Steel Inst., 1922, vol. 105, pp. 201-239. N.T. Belaiew: J. Iron Steel Inst., 1922, vol. 105, pp. 201-239.
3.
4.
go back to reference J.R. Vilella, G.E. Guellich and E.C. Bain: Trans. ASM, 1936, vol. 24, pp. 225-261. J.R. Vilella, G.E. Guellich and E.C. Bain: Trans. ASM, 1936, vol. 24, pp. 225-261.
5.
6.
go back to reference J.W. Cahn and W.C. Hagel: in Decomposition of Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson, eds., Interscience, New York, NY, 1962, pp 131–92. J.W. Cahn and W.C. Hagel: in Decomposition of Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson, eds., Interscience, New York, NY, 1962, pp 131–92.
7.
go back to reference M. Hillert: in Decomposition of Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson, eds., Interscience, New York, NY, 1962, pp 197–237. M. Hillert: in Decomposition of Austenite by Diffusional Processes, V.F. Zackay and H.I. Aaronson, eds., Interscience, New York, NY, 1962, pp 197–237.
8.
go back to reference N. Ridley: in Phase Transformations in Ferrous Alloys, A.R. Marder and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1984, pp 201–36. N. Ridley: in Phase Transformations in Ferrous Alloys, A.R. Marder and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1984, pp 201–36.
10.
12.
go back to reference D.R. Lesuer, C.K. Syn, A. Goldberg, J. Wadsworth and O.D. Sherby: JOM, 1993, vol. 45 (8), pp. 40-46.CrossRef D.R. Lesuer, C.K. Syn, A. Goldberg, J. Wadsworth and O.D. Sherby: JOM, 1993, vol. 45 (8), pp. 40-46.CrossRef
13.
go back to reference E.M. Taleff, C.K. Syn, D.R. Leseur and O.D. Sherby: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 111-118.CrossRef E.M. Taleff, C.K. Syn, D.R. Leseur and O.D. Sherby: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 111-118.CrossRef
14.
go back to reference D.R. Lesuer, C.K. Syn, and O.D. Sherby: in Investigations and Applications of Severe Plastic Deformation, T.C. Lowe and R.Z. Valiev, eds., Kluwer, Dordrecht, 2000, pp. 357–66. D.R. Lesuer, C.K. Syn, and O.D. Sherby: in Investigations and Applications of Severe Plastic Deformation, T.C. Lowe and R.Z. Valiev, eds., Kluwer, Dordrecht, 2000, pp. 357–66.
15.
go back to reference K.E. Easterling: Introduction to the Physical Metallurgy of Welding. (Butterworths, London, 1983). K.E. Easterling: Introduction to the Physical Metallurgy of Welding. (Butterworths, London, 1983).
16.
go back to reference G. Krauss: Steels: Processing, Structure, and Performance, 3rd ed. (ASM, Materials Park, OH, 2005). G. Krauss: Steels: Processing, Structure, and Performance, 3rd ed. (ASM, Materials Park, OH, 2005).
17.
go back to reference J.F. Lancaster: Metallurgy of Welding, 6 th ed. (Woodhead: Cambridge, 1999).CrossRef J.F. Lancaster: Metallurgy of Welding, 6 th ed. (Woodhead: Cambridge, 1999).CrossRef
18.
go back to reference D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed. (Chapman & Hall, London, 1992).CrossRef D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed. (Chapman & Hall, London, 1992).CrossRef
19.
go back to reference J.W. Christian: The Theory of Transformations in Metals and Alloys, 3rd ed. (Elsevier, New York, 2001). J.W. Christian: The Theory of Transformations in Metals and Alloys, 3rd ed. (Elsevier, New York, 2001).
20.
go back to reference L.E. Samuels: Light Microscopy of Carbon Steels, revised ed. (ASM, Materials Park, OH, 1999), p. 241. L.E. Samuels: Light Microscopy of Carbon Steels, revised ed. (ASM, Materials Park, OH, 1999), p. 241.
21.
go back to reference K. Honda: J. Iron Steel Inst., 1926, vol. 114, pp. 417-422. K. Honda: J. Iron Steel Inst., 1926, vol. 114, pp. 417-422.
22.
go back to reference R.F. Mehl: in Hardenability of Alloy Steels., ASM, Cleveland, OH, 1939, pp. 1–65. R.F. Mehl: in Hardenability of Alloy Steels., ASM, Cleveland, OH, 1939, pp. 1–65.
23.
go back to reference A. Hultgren: Trans. ASM, 1947, vol. 39, pp. 915-1005. A. Hultgren: Trans. ASM, 1947, vol. 39, pp. 915-1005.
24.
go back to reference M. Umemoto, A. Hiramatsu, A. Moriya, T. Watanabe, S. Nanba, N. Nakajima, G. Anan and Y. Higo: ISIJ Int., 1992, vol. 32, pp. 306-315.CrossRef M. Umemoto, A. Hiramatsu, A. Moriya, T. Watanabe, S. Nanba, N. Nakajima, G. Anan and Y. Higo: ISIJ Int., 1992, vol. 32, pp. 306-315.CrossRef
25.
go back to reference C. Capdevila, F.G. Caballero and C. García de Andrés: Acta Mater., 2002, vol. 50, pp. 4629-4641.CrossRef C. Capdevila, F.G. Caballero and C. García de Andrés: Acta Mater., 2002, vol. 50, pp. 4629-4641.CrossRef
26.
go back to reference H.I. Aaronson, M.R. Plichta, G.W. Franti and K.C. Russell: Metall. Trans. A, 1978, vol. 9A, pp. 363-371.CrossRef H.I. Aaronson, M.R. Plichta, G.W. Franti and K.C. Russell: Metall. Trans. A, 1978, vol. 9A, pp. 363-371.CrossRef
27.
go back to reference G.P. Krielaart, M. Onink, C.M. Brakman, F.D. Tichelaar, E.J. Mittemeijer and S. van der Zwaag: Z. Metallkunde, 1994, vol. 85, pp. 756-765. G.P. Krielaart, M. Onink, C.M. Brakman, F.D. Tichelaar, E.J. Mittemeijer and S. van der Zwaag: Z. Metallkunde, 1994, vol. 85, pp. 756-765.
28.
go back to reference J.B. Gilmour, G.R. Purdy and J.S. Kirkaldy: Metall. Trans., 1972, vol. 3, pp. 1455-1464.CrossRef J.B. Gilmour, G.R. Purdy and J.S. Kirkaldy: Metall. Trans., 1972, vol. 3, pp. 1455-1464.CrossRef
29.
go back to reference E.B. Damm: Ph.D. Dissertation, Colorado School of Mines (Golden, CO, 2006). E.B. Damm: Ph.D. Dissertation, Colorado School of Mines (Golden, CO, 2006).
30.
go back to reference W.T. Reynolds, Jr., and H.I. Aaronson: in Phase Transformations in Ferrous Alloys, A.R. Marder and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1984, pp 155–200. W.T. Reynolds, Jr., and H.I. Aaronson: in Phase Transformations in Ferrous Alloys, A.R. Marder and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1984, pp 155–200.
31.
32.
go back to reference A. Van der Ven and L. Delaey: Prog. Mater. Sci., 1996, vol. 40, pp. 181-264.CrossRef A. Van der Ven and L. Delaey: Prog. Mater. Sci., 1996, vol. 40, pp. 181-264.CrossRef
33.
go back to reference C.G. de Andres, C. Capdevila, F.G. Caballero and H.K.D.H. Bhadeshia: Scripta Mater., 1998, vol. 39, pp.. 853-859.CrossRef C.G. de Andres, C. Capdevila, F.G. Caballero and H.K.D.H. Bhadeshia: Scripta Mater., 1998, vol. 39, pp.. 853-859.CrossRef
34.
go back to reference K. Fan, F. Liu, X.N. Liu, Y.X. Zhang, G.C. Yang, Y.H. Zhou: Acta Mater., 2008, vol. 56, pp. 4309-4318.CrossRef K. Fan, F. Liu, X.N. Liu, Y.X. Zhang, G.C. Yang, Y.H. Zhou: Acta Mater., 2008, vol. 56, pp. 4309-4318.CrossRef
35.
go back to reference H. Chen and S. van der Zwaag: J. Mater. Sci., 2011, vol. 46, pp. 1328-1336.CrossRef H. Chen and S. van der Zwaag: J. Mater. Sci., 2011, vol. 46, pp. 1328-1336.CrossRef
36.
go back to reference Z.Q. Liu, G. Miyamoto, Z.G. Yang and T. Furuhara: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5456-5467.CrossRef Z.Q. Liu, G. Miyamoto, Z.G. Yang and T. Furuhara: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5456-5467.CrossRef
37.
go back to reference M. M. Aranda, B. Kim, R. Rementeria, C. Capdevila, C. García de Andrés: Metall. Mater Trans. A, 2014, vol. 45A, pp. 1778-1786.CrossRef M. M. Aranda, B. Kim, R. Rementeria, C. Capdevila, C. García de Andrés: Metall. Mater Trans. A, 2014, vol. 45A, pp. 1778-1786.CrossRef
39.
go back to reference R.E. Hackenberg: in Phase Transformations in Steels, E. Pereloma and D.V. Edmonds, eds., Woodhead, Cambridge, 2012, vol. 1, pp. 3–55. R.E. Hackenberg: in Phase Transformations in Steels, E. Pereloma and D.V. Edmonds, eds., Woodhead, Cambridge, 2012, vol. 1, pp. 3–55.
40.
go back to reference A. Hultgren: A Metallographic Study on Tungsten Steels. (Wiley: New York, 1920), p. 30. A. Hultgren: A Metallographic Study on Tungsten Steels. (Wiley: New York, 1920), p. 30.
41.
go back to reference H.C.H. Carpenter and J.M. Robertson: J. Iron Steel Inst., 1932, vol. 125, pp. 309-328. H.C.H. Carpenter and J.M. Robertson: J. Iron Steel Inst., 1932, vol. 125, pp. 309-328.
42.
go back to reference E.S. Davenport: Trans. ASM, 1939, vol. 27, pp. 837-886. E.S. Davenport: Trans. ASM, 1939, vol. 27, pp. 837-886.
43.
go back to reference F.C. Hull and R.F. Mehl: Trans. ASM, 1942, vol. 30, pp. 381-421. F.C. Hull and R.F. Mehl: Trans. ASM, 1942, vol. 30, pp. 381-421.
44.
go back to reference M. Hillert: Jernkontorets Annaler, 1957, vol. 141, pp. 757-789. M. Hillert: Jernkontorets Annaler, 1957, vol. 141, pp. 757-789.
46.
go back to reference W.H. Brandt: Trans. AIME, 1946, vol. 167, pp. 405-418. W.H. Brandt: Trans. AIME, 1946, vol. 167, pp. 405-418.
47.
go back to reference C. Zener: Trans. AIME, 1946, vol. 167, pp. 550-595. C. Zener: Trans. AIME, 1946, vol. 167, pp. 550-595.
50.
go back to reference K. Hashiguchi and J.S. Kirkaldy, Scand. J. Metall., 1984, vol. 13, pp. 240-248. K. Hashiguchi and J.S. Kirkaldy, Scand. J. Metall., 1984, vol. 13, pp. 240-248.
52.
go back to reference K.A. Jackson, J.D. Hunt: Trans. TMS-AIME, 1966, vol. 236, pp. 1129-1142. K.A. Jackson, J.D. Hunt: Trans. TMS-AIME, 1966, vol. 236, pp. 1129-1142.
53.
54.
55.
56.
57.
go back to reference B. Wei, D.M. Herlach, F. Sommer, W. Kurz: Mater. Sci. Eng., 1993, vol. A173, pp. 355-359.CrossRef B. Wei, D.M. Herlach, F. Sommer, W. Kurz: Mater. Sci. Eng., 1993, vol. A173, pp. 355-359.CrossRef
58.
go back to reference B. Wei, D.M. Herlach, F. Sommer, W. Kurz: Mater. Sci. Eng., 1994, vol. A181–182, pp. 1150-1155.CrossRef B. Wei, D.M. Herlach, F. Sommer, W. Kurz: Mater. Sci. Eng., 1994, vol. A181–182, pp. 1150-1155.CrossRef
59.
go back to reference S.C. Gill, W. Kurz: Acta Metall. Mater., 1995, vol. 43, pp. 139-151. S.C. Gill, W. Kurz: Acta Metall. Mater., 1995, vol. 43, pp. 139-151.
60.
go back to reference P. Gilgien, A. Zryd, W. Kurz: Acta Metall. Mater., 1995, vol. 43, pp. 3477-3487.CrossRef P. Gilgien, A. Zryd, W. Kurz: Acta Metall. Mater., 1995, vol. 43, pp. 3477-3487.CrossRef
61.
go back to reference A.V. Catalina, S. Sen, D.M. Stefanescu: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 383-394.CrossRef A.V. Catalina, S. Sen, D.M. Stefanescu: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 383-394.CrossRef
62.
go back to reference H. Wang, F. Liu, D.M. Herlach: Journal of Crystal Growth, 2014, vol. 389, pp. 68-73.CrossRef H. Wang, F. Liu, D.M. Herlach: Journal of Crystal Growth, 2014, vol. 389, pp. 68-73.CrossRef
63.
64.
65.
go back to reference D. Herlach, P. Galenko, D. Holland-Moritz: Metastable Solids from Undercooled Melts, Elsevier, Amsterdam, 2007.CrossRef D. Herlach, P. Galenko, D. Holland-Moritz: Metastable Solids from Undercooled Melts, Elsevier, Amsterdam, 2007.CrossRef
66.
go back to reference M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, R. Trivedi: Acta Mater., 2009, vol. 57, pp. 941-971.CrossRef M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, R. Trivedi: Acta Mater., 2009, vol. 57, pp. 941-971.CrossRef
67.
go back to reference S. Akamatsu, G. Faivre, S. Moulinet: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2039-2048.CrossRef S. Akamatsu, G. Faivre, S. Moulinet: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2039-2048.CrossRef
68.
go back to reference R.M. Sharp, A. Hellawell: Journal of Crystal Growth, 1969, vol. 5, pp. 155-161.CrossRef R.M. Sharp, A. Hellawell: Journal of Crystal Growth, 1969, vol. 5, pp. 155-161.CrossRef
69.
go back to reference R.M. Sharp, A. Hellawell: Journal of Crystal Growth, 1970, vol. 6, pp. 253-260.CrossRef R.M. Sharp, A. Hellawell: Journal of Crystal Growth, 1970, vol. 6, pp. 253-260.CrossRef
70.
71.
72.
go back to reference D.D. Pearson, J.D. Verhoeven: Metall. Trans. A, 1984, vol. 15A, pp. 1037-1045.CrossRef D.D. Pearson, J.D. Verhoeven: Metall. Trans. A, 1984, vol. 15A, pp. 1037-1045.CrossRef
73.
go back to reference J.D. Verhoeven, D.D. Pearson: Metall. Trans. A, 1984, vol. 15A, pp. 1047-1054.CrossRef J.D. Verhoeven, D.D. Pearson: Metall. Trans. A, 1984, vol. 15A, pp. 1047-1054.CrossRef
74.
go back to reference J.W. Christian: The Theory of Transformations in Metals and Alloys, 1st ed. (Pergamon, Oxford, 1965). J.W. Christian: The Theory of Transformations in Metals and Alloys, 1st ed. (Pergamon, Oxford, 1965).
75.
go back to reference J.C. Fisher: in Thermodynamics in Physical Metallurgy, ASM, Cleveland, OH, 1950, pp. 201–41. J.C. Fisher: in Thermodynamics in Physical Metallurgy, ASM, Cleveland, OH, 1950, pp. 201–41.
76.
go back to reference M.A. Mangan and G.J. Shiflet: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2767-2781.CrossRef M.A. Mangan and G.J. Shiflet: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2767-2781.CrossRef
77.
go back to reference M.E. Nicholson: Trans. AIME, 1954, vol. 200, pp. 1071-1074. M.E. Nicholson: Trans. AIME, 1954, vol. 200, pp. 1071-1074.
78.
go back to reference S.E. Offerman, L.J.G.W Van Wilderen, N.H. Van Dijk, J. Sietsma, M.T. Rekveldt, and S. Van der Zwaag: Acta Mater., 2003, vol. 51, pp. 3927–38. S.E. Offerman, L.J.G.W Van Wilderen, N.H. Van Dijk, J. Sietsma, M.T. Rekveldt, and S. Van der Zwaag: Acta Mater., 2003, vol. 51, pp. 3927–38.
79.
go back to reference H.J. Lee, G. Spanos, G.J. Shiflet and H.I. Aaronson: Acta Metall., 1988, vol. 36, pp. 1129-1140.CrossRef H.J. Lee, G. Spanos, G.J. Shiflet and H.I. Aaronson: Acta Metall., 1988, vol. 36, pp. 1129-1140.CrossRef
80.
go back to reference C. García De Andrés, M.J. Bartolomé, C. Capdevila, D. San Martín, F.G. Caballero, and V. López: Mater. Char., 2001, vol. 46, pp. 389–98. C. García De Andrés, M.J. Bartolomé, C. Capdevila, D. San Martín, F.G. Caballero, and V. López: Mater. Char., 2001, vol. 46, pp. 389–98.
81.
82.
go back to reference M. Hillert: in Proceedings of an International Conference on Solid-Solid Phase transformations, H.I. Aaronson eds., TMS-AIME, Warrendale, PA, 1982, pp 789–806. M. Hillert: in Proceedings of an International Conference on Solid-Solid Phase transformations, H.I. Aaronson eds., TMS-AIME, Warrendale, PA, 1982, pp 789–806.
83.
go back to reference M. Hillert: in The Mechanism of Phase Transformations in Crystalline Solids, Institute of Metals, London, 1969, pp 231–247. M. Hillert: in The Mechanism of Phase Transformations in Crystalline Solids, Institute of Metals, London, 1969, pp 231–247.
84.
go back to reference S. S. Babu, H. K. D. H. Bhadeshia: J. Mater. Sci. Lett., 1995, vol. 14, pp. 314-316.CrossRef S. S. Babu, H. K. D. H. Bhadeshia: J. Mater. Sci. Lett., 1995, vol. 14, pp. 314-316.CrossRef
85.
Metadata
Title
Can Pearlite form Outside of the Hultgren Extrapolation of the Ae3 and Acm Phase Boundaries?
Authors
M. M. Aranda
R. Rementeria
C. Capdevila
R. E. Hackenberg
Publication date
23-11-2015
Publisher
Springer US
Published in
Metallurgical and Materials Transactions A / Issue 2/2016
Print ISSN: 1073-5623
Electronic ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-015-3249-x

Other articles of this Issue 2/2016

Metallurgical and Materials Transactions A 2/2016 Go to the issue

Symposium: Constitutive Response & Modeling of Structural Materials in Honor of G.T. Gray III’s 60th Birthday

The Mechanical and Optical Response of Polychlorotrifluoroethylene to One-Dimensional Shock Loading

Premium Partners