Skip to main content
Top

2015 | OriginalPaper | Chapter

9. Candidates for the Third Generation: Medium Mn Steels

Author : Nina Fonstein

Published in: Advanced High Strength Sheet Steels

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Medium (4–10 %) Mn steel is considered as one of the candidates that can meet requirements of steels of third generation. This chapter presents the main factors affecting the combination of tensile properties of med MN steels: parameters of annealing, amount and stability of austenite, and Mn content. Additional alloying/microalloying effects are considered. Due to critical role of stability of retained austenite, the influence of various parameters is discussed including effect of annealing time, carbon and Mn content, as well as effect of grain size.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Arlazarov, A., M. Gouné, O. Bouaziz, A. Hazotte, and F. Kegel. 2012a. “Effect of Intercritical Annealing Time on Microstructure and Mechanical Behavior of Advanced Medium Mn Steels.” In Materials Science Forum, 706–709:2693–98. Arlazarov, A., M. Gouné, O. Bouaziz, A. Hazotte, and F. Kegel. 2012a. “Effect of Intercritical Annealing Time on Microstructure and Mechanical Behavior of Advanced Medium Mn Steels.” In Materials Science Forum, 706–709:2693–98.
go back to reference Arlazarov, A., M. Gouné, O. Bouaziz, A. Hazotte, G. Petitgand, and P. Barges. 2012b. “Evolution of Microstructure and Mechanical Properties of Medium Mn Steels during Double Annealing.” Materials Science and Engineering: A 542 (0): 31–39. Arlazarov, A., M. Gouné, O. Bouaziz, A. Hazotte, G. Petitgand, and P. Barges. 2012b. “Evolution of Microstructure and Mechanical Properties of Medium Mn Steels during Double Annealing.” Materials Science and Engineering: A 542 (0): 31–39.
go back to reference Arlazarov, A., A. Hazzotte, O. Bouaziz, and et al. 2012c. “Characterization of Microstructure Formation and Mechanical Behavior of an Advanced Medium Mn Steel.” Material Science and Technology, MS&T, 1124–31. Arlazarov, A., A. Hazzotte, O. Bouaziz, and et al. 2012c. “Characterization of Microstructure Formation and Mechanical Behavior of an Advanced Medium Mn Steel.” Material Science and Technology, MS&T, 1124–31.
go back to reference Bleck, W., K. Hulka, and K. Papamentellous. 1998. “Effect of Niobium on the Mechanical Properties of TRIP Steels.” Material Science Forum 284–286: 327–34.CrossRef Bleck, W., K. Hulka, and K. Papamentellous. 1998. “Effect of Niobium on the Mechanical Properties of TRIP Steels.” Material Science Forum 284–286: 327–34.CrossRef
go back to reference Cao, W.Q., C. Wang, C.Y. Wang, J. Shi, and M.Q. Wang. 2012. “Microstructure and Mechanical Properties of the Third Generation Automobile Steels Fabricated by ART-Annealing.” Science China, 1–9. Cao, W.Q., C. Wang, C.Y. Wang, J. Shi, and M.Q. Wang. 2012. “Microstructure and Mechanical Properties of the Third Generation Automobile Steels Fabricated by ART-Annealing.” Science China, 1–9.
go back to reference De Cooman, B.C., P.J. Gibbs, S. Lee, and D.K. Matlock. 2013. “Transmission Electron Microscopy Analysis of Ultrafine-Grained Medium Mn Transformation-Induced Plasticity Steel.” Metallurgical and Materials Transactions 44A (6): 2563–72.CrossRef De Cooman, B.C., P.J. Gibbs, S. Lee, and D.K. Matlock. 2013. “Transmission Electron Microscopy Analysis of Ultrafine-Grained Medium Mn Transformation-Induced Plasticity Steel.” Metallurgical and Materials Transactions 44A (6): 2563–72.CrossRef
go back to reference De Moor, E., S. Kang, J.G. Speer, and D.K. Matlock. 2014. “Manganese Diffusion in Third Generation Advanced High Strength Steels.” In, Key note lecture II. Prague. De Moor, E., S. Kang, J.G. Speer, and D.K. Matlock. 2014. “Manganese Diffusion in Third Generation Advanced High Strength Steels.” In, Key note lecture II. Prague.
go back to reference De Moor, E., D. Matlock, J. Speer, and M. Merwin. 2011. “Austenite Stabilization Through Manganese Enrichment.” Scripta Materialia 64: 185–88.CrossRef De Moor, E., D. Matlock, J. Speer, and M. Merwin. 2011. “Austenite Stabilization Through Manganese Enrichment.” Scripta Materialia 64: 185–88.CrossRef
go back to reference Furukawa, T. 1989. “Dependence of Strength-Ductility Characteristics of Thermal History in Low Carbon, 5 Wt.% Mn Steels.” Material Science and Technology 6 (5): 465–70.CrossRef Furukawa, T. 1989. “Dependence of Strength-Ductility Characteristics of Thermal History in Low Carbon, 5 Wt.% Mn Steels.” Material Science and Technology 6 (5): 465–70.CrossRef
go back to reference Furukawa, T., H. Huang, and O. Matsamura. 1994. “Effect of Carbon Content on Mechanical Properties of 5%Mn Steels Exhibiting Transformation Induced Plasticity.” Material Science and Technology, MS&T, 964–69. Furukawa, T., H. Huang, and O. Matsamura. 1994. “Effect of Carbon Content on Mechanical Properties of 5%Mn Steels Exhibiting Transformation Induced Plasticity.” Material Science and Technology, MS&T, 964–69.
go back to reference Gibbs, P.J., E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock. 2011. “Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel.” Metallurgical and Materials Transactions A 42 (12): 3691–3702. Gibbs, P.J., E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock. 2011. “Austenite Stability Effects on Tensile Behavior of Manganese-Enriched-Austenite Transformation-Induced Plasticity Steel.” Metallurgical and Materials Transactions A 42 (12): 3691–3702.
go back to reference Han, J., and Y.-K. Lee. 2014. “The Effect of the Heating Rate on the Reverse Transformation Mechanism and the Phase Stability of Reverted Austenite in Medium Mn Steels.” Acta Materialia 67: 354–61.CrossRef Han, J., and Y.-K. Lee. 2014. “The Effect of the Heating Rate on the Reverse Transformation Mechanism and the Phase Stability of Reverted Austenite in Medium Mn Steels.” Acta Materialia 67: 354–61.CrossRef
go back to reference Huang, H., O. Matsumura, and T. Furukawa. 1994. “Retained Austenite in Low Carbon, Manganese Steel after Intercritical Heat Treatment.” Material Science and Engineering, A 10 (7): 621–26. Huang, H., O. Matsumura, and T. Furukawa. 1994. “Retained Austenite in Low Carbon, Manganese Steel after Intercritical Heat Treatment.” Material Science and Engineering, A 10 (7): 621–26.
go back to reference Jun, H.J., and N. Fonstein. 2008. “Microstructure and Tensile Properties of TRIP-Aided CR Sheet Steels: TRIP-Dual and Q&P.” In, 155–61. Orlando, Florida. Jun, H.J., and N. Fonstein. 2008. “Microstructure and Tensile Properties of TRIP-Aided CR Sheet Steels: TRIP-Dual and Q&P.” In, 155–61. Orlando, Florida.
go back to reference Jun, H.J., O. Yakubovsky, and N. Fonstein. 2010. “Effect of Initial Microstructure and Parameters of Annealing of 4% and 6.7% Steels on the Evolution of Microstructure and Mechanical Properties.” In . Houston, Texas. Jun, H.J., O. Yakubovsky, and N. Fonstein. 2010. “Effect of Initial Microstructure and Parameters of Annealing of 4% and 6.7% Steels on the Evolution of Microstructure and Mechanical Properties.” In . Houston, Texas.
go back to reference Jun, H.J., O. Yakubovsky, and N.M. Fonstein. 2011. “On Stability of Retained Austenite in Medium Mn TRIP Steels.” In The 1st International Conference on High Manganese Steels. Seoul, Korea. Jun, H.J., O. Yakubovsky, and N.M. Fonstein. 2011. “On Stability of Retained Austenite in Medium Mn TRIP Steels.” In The 1st International Conference on High Manganese Steels. Seoul, Korea.
go back to reference Koo, J.Y., and G. Thomas. 1977. “Design of Duplex Fe/X/0.1C Steels for Improved Mechanical Properties.” Metallurgical Transactions A 8 (3): 525–28.CrossRef Koo, J.Y., and G. Thomas. 1977. “Design of Duplex Fe/X/0.1C Steels for Improved Mechanical Properties.” Metallurgical Transactions A 8 (3): 525–28.CrossRef
go back to reference Lee, S., and B.C. De Cooman. 2011. “On the Selection of the Optimal Intercritical Annealing Temperature for Medium Mn TRIP Steel.” Metallurgical and Materials Transactions A 44 (11): 5018–24.CrossRef Lee, S., and B.C. De Cooman. 2011. “On the Selection of the Optimal Intercritical Annealing Temperature for Medium Mn TRIP Steel.” Metallurgical and Materials Transactions A 44 (11): 5018–24.CrossRef
go back to reference Lee, S., and B.C. De Cooman. 2014. “Tensile Behavior of Intercritically Annealed 10 Pct Mn Multi-Phase Steel.” Metallurgical and Materials Transactions A 45A (2): 709–16.CrossRef Lee, S., and B.C. De Cooman. 2014. “Tensile Behavior of Intercritically Annealed 10 Pct Mn Multi-Phase Steel.” Metallurgical and Materials Transactions A 45A (2): 709–16.CrossRef
go back to reference Lee, S.-J., S. Lee, and B.C. De Cooman. 2011a. “Mn Partitioning during the Intercritical Annealing of Ultrafine-Grained 6% Mn Transformation-Induced Plasticity Steel.” Scripta Materialia 64: 649–52.CrossRef Lee, S.-J., S. Lee, and B.C. De Cooman. 2011a. “Mn Partitioning during the Intercritical Annealing of Ultrafine-Grained 6% Mn Transformation-Induced Plasticity Steel.” Scripta Materialia 64: 649–52.CrossRef
go back to reference Lee, S.-J., S. Lee, and B.C. De Cooman. 2011b. “Austenite Stability in Multi-Phase Ultrafine-Grained 6pct Mn Transformation-Induced Plasticity Steel.” Scripta Materialia 64: 225–28.CrossRef Lee, S.-J., S. Lee, and B.C. De Cooman. 2011b. “Austenite Stability in Multi-Phase Ultrafine-Grained 6pct Mn Transformation-Induced Plasticity Steel.” Scripta Materialia 64: 225–28.CrossRef
go back to reference Lee, S., K. Lee, and B.C. DeCooman. 2008. “Ultra Fine Grained 6wt% Manganese TRIP Steel.” Materials Science Forum 654–656: 286–89. Lee, S., K. Lee, and B.C. DeCooman. 2008. “Ultra Fine Grained 6wt% Manganese TRIP Steel.” Materials Science Forum 654–656: 286–89.
go back to reference Lee, S., S.-J. Lee, and B.C. De Cooman. 2011c. “Work Hardening Behavior of Ultrafine-Grained Mn Transformation-Induced Plasticity Steel.” Acta Materialia 59: 7546–53.CrossRef Lee, S., S.-J. Lee, and B.C. De Cooman. 2011c. “Work Hardening Behavior of Ultrafine-Grained Mn Transformation-Induced Plasticity Steel.” Acta Materialia 59: 7546–53.CrossRef
go back to reference Lee, S., S.-J. Lee, S. Santhosh Kumar, K. Lee, and B.C. De Cooman. 2011d. “Localized Deformation in Multiphase, Ultra-Fine-Grained 6 Pct Mn Transformation-Induced Plasticity Steel.” Metallurgical and Materials Transactions A 42 (12): 3638–51. Lee, S., S.-J. Lee, S. Santhosh Kumar, K. Lee, and B.C. De Cooman. 2011d. “Localized Deformation in Multiphase, Ultra-Fine-Grained 6 Pct Mn Transformation-Induced Plasticity Steel.” Metallurgical and Materials Transactions A 42 (12): 3638–51.
go back to reference Matlock, D.K., and J.G. Speer. 2006. “Design Consideration for the next Generation of Advanced High Strength Sheet Steels.” In The 3rd International Conference on Advanced Structural Steels, 774–81. Gyeongju, Korea. Matlock, D.K., and J.G. Speer. 2006. “Design Consideration for the next Generation of Advanced High Strength Sheet Steels.” In The 3rd International Conference on Advanced Structural Steels, 774–81. Gyeongju, Korea.
go back to reference Merwin, M.J. 2006. Method for Producing High Strength, High Ductility Manganese Steel Strip. Merwin, M.J. 2006. Method for Producing High Strength, High Ductility Manganese Steel Strip.
go back to reference ———. 2007. “Low-Carbon Manganese TRIP Steels.” In Materials Science Forum, 539–543:4327–32. ———. 2007. “Low-Carbon Manganese TRIP Steels.” In Materials Science Forum, 539–543:4327–32.
go back to reference ———. 2008. “Microstructure and Properties of Cold-Rolled and Annealed Lowcarbon Manganese TRIP Steels.” Iron & Steel Technology, 66–86. ———. 2008. “Microstructure and Properties of Cold-Rolled and Annealed Lowcarbon Manganese TRIP Steels.” Iron & Steel Technology, 66–86.
go back to reference Miller, R.L. 1972. “Ultrafine-Grained Microstructures and Mechanical Properties of Alloy Steels.” Metallurgical Transactions 3 (4): 905–12.CrossRef Miller, R.L. 1972. “Ultrafine-Grained Microstructures and Mechanical Properties of Alloy Steels.” Metallurgical Transactions 3 (4): 905–12.CrossRef
go back to reference Morrison, W.B. 1966. “The Effect of Grain Size on Stress-Strain Relationship in Low Carbon Steels.” Trans of ASM 59: 224–46. Morrison, W.B. 1966. “The Effect of Grain Size on Stress-Strain Relationship in Low Carbon Steels.” Trans of ASM 59: 224–46.
go back to reference Oh, C.-S., J. Kang, S.-J. Park, and S.-J. Kim. 2010. “Microstructure and Tensile Properties of Nb-Added High Manganese TRIP-Aided Steel Sheets.” In MS&T2010. Houston, TX. Oh, C.-S., J. Kang, S.-J. Park, and S.-J. Kim. 2010. “Microstructure and Tensile Properties of Nb-Added High Manganese TRIP-Aided Steel Sheets.” In MS&T2010. Houston, TX.
go back to reference Olson, G.B., and M. Cohen. 1976. “A General Mechanism of Martensite Nucleation.” Metallurgical Transactions A 7A: 1897–1904. Olson, G.B., and M. Cohen. 1976. “A General Mechanism of Martensite Nucleation.” Metallurgical Transactions A 7A: 1897–1904.
go back to reference Shi, J., X. Sun, M. Wang, W. Hui, H. Dong, and W. Cao. 2010. “Enhanced Work Hardening Behavior and Mechanical Properties in Ultrafine Grained Steels with Large Fractioned Metastable Austenite.” Scripta Materialia 63 (8): 815–18.CrossRef Shi, J., X. Sun, M. Wang, W. Hui, H. Dong, and W. Cao. 2010. “Enhanced Work Hardening Behavior and Mechanical Properties in Ultrafine Grained Steels with Large Fractioned Metastable Austenite.” Scripta Materialia 63 (8): 815–18.CrossRef
go back to reference Suh, D.W., S.-J. Park, N.N. Han, and S.-J. Kim. 2010a. “Influence of Al on Microstructure and Mechanical Behavior of Cr Containing Transformation-Induced Plasticity Steel.” Metallurgical and Materials Transactions A 41 (13): 3276–81.CrossRef Suh, D.W., S.-J. Park, N.N. Han, and S.-J. Kim. 2010a. “Influence of Al on Microstructure and Mechanical Behavior of Cr Containing Transformation-Induced Plasticity Steel.” Metallurgical and Materials Transactions A 41 (13): 3276–81.CrossRef
go back to reference Suh, D.-W., S.-J. Park, T.-H. Lee, C.-S. Oh, and S.-J. Kim. 2010b. “Influence of Al on the Microstructure Evolution and Mechanical Behavior of Low Carbon, Medium Manganese Transformation-Induced-Plasticity Steels.” Metallurgical and Materials Transactions A 41A: 397–408.CrossRef Suh, D.-W., S.-J. Park, T.-H. Lee, C.-S. Oh, and S.-J. Kim. 2010b. “Influence of Al on the Microstructure Evolution and Mechanical Behavior of Low Carbon, Medium Manganese Transformation-Induced-Plasticity Steels.” Metallurgical and Materials Transactions A 41A: 397–408.CrossRef
go back to reference Sun, R., W. Xu, C. Wang, J. Shi, H. Dong, and W. Cao. 2012. “Work Hardening Behavior of Ultrafine Grained Duplex Medium Mn Steels Processed by ART-Annealing.” Steel Research International 83 (4): 316–21.CrossRef Sun, R., W. Xu, C. Wang, J. Shi, H. Dong, and W. Cao. 2012. “Work Hardening Behavior of Ultrafine Grained Duplex Medium Mn Steels Processed by ART-Annealing.” Steel Research International 83 (4): 316–21.CrossRef
go back to reference Tokizane, M., N. Matsumura, K. Tsuzaki, T. Maki, and I. Tamura. 1982. “Recrystallization and Formation of Austenite in Deformed Lath Martensite Structure of Low-Carbon Steels.” Metallurgical Transactions 13 A: 1379–88.CrossRef Tokizane, M., N. Matsumura, K. Tsuzaki, T. Maki, and I. Tamura. 1982. “Recrystallization and Formation of Austenite in Deformed Lath Martensite Structure of Low-Carbon Steels.” Metallurgical Transactions 13 A: 1379–88.CrossRef
go back to reference You, J.S. 2004. “Effect of Reverse Transformation Treatment on the Formation of Retained Austenite and Mechanical Properties of C-Mn TRIP Steels.” Korean Journal of Materials Research 14: 126–34.CrossRef You, J.S. 2004. “Effect of Reverse Transformation Treatment on the Formation of Retained Austenite and Mechanical Properties of C-Mn TRIP Steels.” Korean Journal of Materials Research 14: 126–34.CrossRef
go back to reference Zhao, X., Y. Shen, L. Qiu, and X. Sun. 2014. “Effect of Intercritical Annealing Temperature on Mechanical Properties of Fe-7.9 Mn-0.14 Si-0.06Al-0.07C Steel.” Materials 7: 7891–7906.CrossRef Zhao, X., Y. Shen, L. Qiu, and X. Sun. 2014. “Effect of Intercritical Annealing Temperature on Mechanical Properties of Fe-7.9 Mn-0.14 Si-0.06Al-0.07C Steel.” Materials 7: 7891–7906.CrossRef
Metadata
Title
Candidates for the Third Generation: Medium Mn Steels
Author
Nina Fonstein
Copyright Year
2015
DOI
https://doi.org/10.1007/978-3-319-19165-2_9

Premium Partners