Skip to main content
Top

2018 | OriginalPaper | Chapter

6. Carbon as a Biomaterial

Authors : Vasif Hasirci, Nesrin Hasirci

Published in: Fundamentals of Biomaterials

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Carbon is an element found abundantly in the Earth’s crust and in the human body. The various bonding capabilities enable it to form so many different varieties of compounds including the many gases, liquids, and solids. The carbon compounds constitute the nutrients, the organic energy sources, the building materials for plants, and many other molecules in the body. Since all living species are hydrocarbon based, carbon basically is the element of life if water is the molecule of life. Carbon-derived compounds like diamond, graphite, and graphene are made of only one element, and the method of their production is different than the commercially available ceramics since the melting temperature of carbon is very high.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Bernasek TL, Stahl JL, Pupello D (2009) Pyrolytic carbon endoprosthetic replacement for osteonecrosis and femoral fracture of the hip: a pilot study. Clin Orthop Relat Res 467(7):1826–1832CrossRef Bernasek TL, Stahl JL, Pupello D (2009) Pyrolytic carbon endoprosthetic replacement for osteonecrosis and femoral fracture of the hip: a pilot study. Clin Orthop Relat Res 467(7):1826–1832CrossRef
3.
go back to reference Ratner BD (2004) Pyrolytic carbon. In: Biomaterials science: an introduction to materials in medicine. Academic Press, Cambridge, pp 171–180 Ratner BD (2004) Pyrolytic carbon. In: Biomaterials science: an introduction to materials in medicine. Academic Press, Cambridge, pp 171–180
4.
go back to reference Walker PL (1964) Carbon: an old but new material. In: Science in progress. Yale University Press, New Haven, pp 177–228 Walker PL (1964) Carbon: an old but new material. In: Science in progress. Yale University Press, New Haven, pp 177–228
5.
go back to reference Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670CrossRef Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670CrossRef
7.
go back to reference McEnaney B (1990) Carbon materials for the future. Energeia 1(5):1–6 McEnaney B (1990) Carbon materials for the future. Energeia 1(5):1–6
9.
go back to reference Ilomuanya M, Nashiru B, Ifudu N, Igwilo CI (2017) Effect of pore size and morphology of activated charcoal. J Microsc Ultrastruct 5(1):32–38CrossRef Ilomuanya M, Nashiru B, Ifudu N, Igwilo CI (2017) Effect of pore size and morphology of activated charcoal. J Microsc Ultrastruct 5(1):32–38CrossRef
10.
go back to reference Yatzidis H (1964) A convenient haemoperfusion micro-apparatus over charcoal for the treatment of endogenous and exogenous intoxications. Its use as an effective artificial kidney. Proc Eur Dial Transplant Assoc 1:83 Yatzidis H (1964) A convenient haemoperfusion micro-apparatus over charcoal for the treatment of endogenous and exogenous intoxications. Its use as an effective artificial kidney. Proc Eur Dial Transplant Assoc 1:83
11.
go back to reference Kolff WJ (1967) Introduction of a simple artificial kidney in the United States: result of international cooperation. Cleve Clin J Med 34:151–158CrossRef Kolff WJ (1967) Introduction of a simple artificial kidney in the United States: result of international cooperation. Cleve Clin J Med 34:151–158CrossRef
12.
go back to reference Hasirci N, Akovali G (1986) Polymer coating for hemoperfusion over activated charcoal. JBiomed Mater Res 20:963–970CrossRef Hasirci N, Akovali G (1986) Polymer coating for hemoperfusion over activated charcoal. JBiomed Mater Res 20:963–970CrossRef
13.
go back to reference Hasirci N, Akovali G (1984) Some studies on coating of activated charcoal with plasma polymer hexamethyldisiloxane. In: Boenig HV (ed) Advances in low temperature plasma chemistry, technology, applications, vol 1. Technomic Publ. Co., Lancaster, pp 339–342 Hasirci N, Akovali G (1984) Some studies on coating of activated charcoal with plasma polymer hexamethyldisiloxane. In: Boenig HV (ed) Advances in low temperature plasma chemistry, technology, applications, vol 1. Technomic Publ. Co., Lancaster, pp 339–342
14.
go back to reference Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI, Rodríguez-Macías FJ, Elíase AL, Muñoz-Sandoval E, Cano-Márquezd AG, Charlier J-C, Terrones H (2010) Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. NanoToday 5(4):351–372CrossRef Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI, Rodríguez-Macías FJ, Elíase AL, Muñoz-Sandoval E, Cano-Márquezd AG, Charlier J-C, Terrones H (2010) Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. NanoToday 5(4):351–372CrossRef
15.
go back to reference Morpurgo AF (2015) Ten years of nature physics: the ABC of 2D materials. Nat Phys 11(8):625CrossRef Morpurgo AF (2015) Ten years of nature physics: the ABC of 2D materials. Nat Phys 11(8):625CrossRef
16.
go back to reference Pinto AM, Goncalves IC, Magalhaes FD (2013) Graphene-based materials biocompatibility: a review. Colloids Surf B: Biointerfaces 111:188–202CrossRef Pinto AM, Goncalves IC, Magalhaes FD (2013) Graphene-based materials biocompatibility: a review. Colloids Surf B: Biointerfaces 111:188–202CrossRef
17.
go back to reference Zhang X, Yin J, Peng C, Hu W, Zhu Z, Li W (2011) Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 49(3):986–995CrossRef Zhang X, Yin J, Peng C, Hu W, Zhu Z, Li W (2011) Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 49(3):986–995CrossRef
18.
go back to reference Mehra NK, Mishra V, Jain NK (2014) A review of ligand tethered surface engineered carbon nanotubes. Biomaterials 35(4):1267–1283CrossRef Mehra NK, Mishra V, Jain NK (2014) A review of ligand tethered surface engineered carbon nanotubes. Biomaterials 35(4):1267–1283CrossRef
19.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
20.
go back to reference Loiseau A, Pascard H (1996) Synthesis of long carbon nanotubes filled with Se, S, Sb and Ge by the arc method. Chem Phys Lett 256:246–252CrossRef Loiseau A, Pascard H (1996) Synthesis of long carbon nanotubes filled with Se, S, Sb and Ge by the arc method. Chem Phys Lett 256:246–252CrossRef
21.
go back to reference Deng L, Eichhorn SJ, Kao C-C, Young RJ (2011) The effective Young’s modulus of carbon nanotubes in composites. ACS Appl Mater Interfaces 3:433–440CrossRef Deng L, Eichhorn SJ, Kao C-C, Young RJ (2011) The effective Young’s modulus of carbon nanotubes in composites. ACS Appl Mater Interfaces 3:433–440CrossRef
23.
go back to reference Li Q, Li Y, Zhang X et al (2007) Structure-dependent electrical properties of carbon nanotube fibers. Adv Mater 19:3358–3363CrossRef Li Q, Li Y, Zhang X et al (2007) Structure-dependent electrical properties of carbon nanotube fibers. Adv Mater 19:3358–3363CrossRef
24.
go back to reference von Recum AF (ed) (1999) Handbook of biomaterials evaluation. Taylor and Francis, Philadelphia von Recum AF (ed) (1999) Handbook of biomaterials evaluation. Taylor and Francis, Philadelphia
25.
go back to reference Cui FZ, Li DJ (2000) A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films. Surf Coat Technol 131:481–487CrossRef Cui FZ, Li DJ (2000) A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films. Surf Coat Technol 131:481–487CrossRef
26.
go back to reference Hauert R (2003) A review of modified DLC coatings for biological applications. Diam Relat Mater 12(3–7):583–589CrossRef Hauert R (2003) A review of modified DLC coatings for biological applications. Diam Relat Mater 12(3–7):583–589CrossRef
27.
go back to reference Rodil SE, Olivares R, Arzate H, Muhl S (2006) Biocompatibility, cytotoxicity and bioactivity of amorphous carbon films. In: Messina G, Santangelo S (eds) Carbon, the future material for advanced technology applications, Topics Appl. Phys, vol 100. Springer, Heidelberg, pp 55–75 Rodil SE, Olivares R, Arzate H, Muhl S (2006) Biocompatibility, cytotoxicity and bioactivity of amorphous carbon films. In: Messina G, Santangelo S (eds) Carbon, the future material for advanced technology applications, Topics Appl. Phys, vol 100. Springer, Heidelberg, pp 55–75
28.
go back to reference Ohgoe Y, Hirakuri KH, Tsuchimoto K, Friedbacher G, Miyashita O (2004) Uniform deposition of diamond-like carbon films on polymeric materials for biomedical applications. Surf Coat Technol 184:263CrossRef Ohgoe Y, Hirakuri KH, Tsuchimoto K, Friedbacher G, Miyashita O (2004) Uniform deposition of diamond-like carbon films on polymeric materials for biomedical applications. Surf Coat Technol 184:263CrossRef
29.
go back to reference Butany J, Ahluwalia MS, Munroe C et al (2003) Mechanical heart valve prostheses: identification and evaluation (erratum). Cardiovasc Pathol 12(6):322–344CrossRef Butany J, Ahluwalia MS, Munroe C et al (2003) Mechanical heart valve prostheses: identification and evaluation (erratum). Cardiovasc Pathol 12(6):322–344CrossRef
30.
go back to reference Adam F, Hammer DS, Pfautsch S, Westermann K (2002) Early failure of a press-fit carbon fiber hip prosthesis with a smooth surface. J Arthroplast 17(2):217–223CrossRef Adam F, Hammer DS, Pfautsch S, Westermann K (2002) Early failure of a press-fit carbon fiber hip prosthesis with a smooth surface. J Arthroplast 17(2):217–223CrossRef
31.
go back to reference Du C, Su XW, Cui FZ, Zhu XD (1998) Morphological behaviour of osteoblasts on diamond-like carbon coating and amorphous C–N film in organ culture. Biomaterials 19:651CrossRef Du C, Su XW, Cui FZ, Zhu XD (1998) Morphological behaviour of osteoblasts on diamond-like carbon coating and amorphous C–N film in organ culture. Biomaterials 19:651CrossRef
32.
go back to reference Tiainen VM (2001) Amorphous carbon as a bio-mechanical coating-Mechanical properties and biological applications. Diam Relat Mater 10:153–160CrossRef Tiainen VM (2001) Amorphous carbon as a bio-mechanical coating-Mechanical properties and biological applications. Diam Relat Mater 10:153–160CrossRef
33.
go back to reference Roy RK, Lee KR (2007) Biomedical applications of diamond-like carbon coatings: a review. J Biomed Mater Res B Appl Biomater 83B:72–84CrossRef Roy RK, Lee KR (2007) Biomedical applications of diamond-like carbon coatings: a review. J Biomed Mater Res B Appl Biomater 83B:72–84CrossRef
34.
go back to reference Gutensohn K, Beythien C, Bau J et al (2000) In vitro analyses of diamondlike carbon coated stents: reduction of metal ion release, platelet activation and thrombogenicity. Thromb Res 99:577–558CrossRef Gutensohn K, Beythien C, Bau J et al (2000) In vitro analyses of diamondlike carbon coated stents: reduction of metal ion release, platelet activation and thrombogenicity. Thromb Res 99:577–558CrossRef
35.
go back to reference Maguire PD, McLaughlin JA, Okpalugo TII et al (2005) Mechanical stability, corrosion performance and bioresponse of amorphous diamond-like carbon for medical stents and guidewires. Diam Relat Mater 14:127CrossRef Maguire PD, McLaughlin JA, Okpalugo TII et al (2005) Mechanical stability, corrosion performance and bioresponse of amorphous diamond-like carbon for medical stents and guidewires. Diam Relat Mater 14:127CrossRef
36.
go back to reference Milano A, Bortolotti U, Mazzucco A et al (1992) Heart valve replacement with the Sorin tilting-disc prosthesis: a 10-year experience. J Thorac Cardiovasc Surg 103:267 Milano A, Bortolotti U, Mazzucco A et al (1992) Heart valve replacement with the Sorin tilting-disc prosthesis: a 10-year experience. J Thorac Cardiovasc Surg 103:267
37.
go back to reference Borman JB, de Riberolles C (2003) E J Cardio-Thor Surg. 23:86 Borman JB, de Riberolles C (2003) E J Cardio-Thor Surg. 23:86
38.
go back to reference Airoldi F, Colombo A, Tavano D, Stankovic G, Klugmann S, Paolillo V, Bonizzoni E, Briguori C, Carlino M, Montorfano M (2004) Comparison of diamond like carbon coated stents versus uncoated stainless steel stents in coronary artery disease. Am J Cardiol 93(4):474–477CrossRef Airoldi F, Colombo A, Tavano D, Stankovic G, Klugmann S, Paolillo V, Bonizzoni E, Briguori C, Carlino M, Montorfano M (2004) Comparison of diamond like carbon coated stents versus uncoated stainless steel stents in coronary artery disease. Am J Cardiol 93(4):474–477CrossRef
Metadata
Title
Carbon as a Biomaterial
Authors
Vasif Hasirci
Nesrin Hasirci
Copyright Year
2018
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4939-8856-3_6

Premium Partners