Skip to main content
Top

2021 | OriginalPaper | Chapter

Carbon Capture for Sustainable Environment in Developing Countries

Authors : M. Farooq, M. E. M. Soudagar, M. Imran, M. Arslan, M. S. Tariq, A. Pettinau, J. M. Andresen

Published in: Energy and Environmental Security in Developing Countries

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The most critical energy and environmental challenge that the developing countries are facing today is to minimize the dependence on fossil fuels. Carbon dioxide may prove to be of utmost significance as a solution of this issue through realization of carbon neutral energy cycle. Potentially, this could be achieved through the CO2 capture as the urgent response to ongoing climate change around the globe. Owing to the more than 39% increase in atmospheric CO2, the average global temperature has risen to 0.8 °C during the past century. According to an estimate, CO2 concentration in the atmosphere would reach to 1600 ppm almost, and the green-house gases emissions would also rise from 30 to 90% over the level of 2000 within next 10 years, i.e. by the end of 2030. CO2 is also deemed to intensify the contamination of CO, apart from its importance as GHG while both exist in the same gas. Hence, fears on GHG pollution have given rise to significant interest in developing the area of CO2 capture to tackle environmental and sustainability concerns. Increased CO2 causes stress on the earth's climate system, and carbon capture technology is one of the most viable approaches accepted so far for mitigating this stress. The commercial technologies are also used for carbon capture. Owing to the high production cost and consumption of resources, the regeneration of the different materials used for carbon capture remains a key problem. Used materials is yet to gain widespread use for carbon capture due to the energy penalty associated with regeneration of the adsorbents that is typically achieved via temperature swing adsorption (TSA) and/or pressure swing adsorption (PSA) with an estimated 25–40% energy penalty. In this chapter, critical study of these established techniques regarding significant challenges in terms of energy consumption, regeneration and operating costs will be analyzed. In addition, it includes cost-effective solutions in-situ regeneration of spent materials using electric potential swing desorption compared with the conventional methods of PSA and/or TSA for sustainable environment.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Agugliaro F, Valle J (2011) Location of Aur in-leakage in power plants condensed by helium test. Dyna 86(2):173–181CrossRef Agugliaro F, Valle J (2011) Location of Aur in-leakage in power plants condensed by helium test. Dyna 86(2):173–181CrossRef
2.
go back to reference Farooq M, Chaudhry I, Hussain S, Ramzan N, Ahmed M (2012) Biogas up gradation for power generation applications in Pakistan. J Qual Technol Manage VIII II:107–118 Farooq M, Chaudhry I, Hussain S, Ramzan N, Ahmed M (2012) Biogas up gradation for power generation applications in Pakistan. J Qual Technol Manage VIII II:107–118
3.
go back to reference Allesina G, Pedrazzi S, Guidetti L, Tartarini P (2015) Modeling of coupling gasification and anaerobic digestion processes for maize bioenergy conversion. Biomass Bioenerg 81:444–451CrossRef Allesina G, Pedrazzi S, Guidetti L, Tartarini P (2015) Modeling of coupling gasification and anaerobic digestion processes for maize bioenergy conversion. Biomass Bioenerg 81:444–451CrossRef
4.
go back to reference Allegue LB, Hinge J, Allé K (2012) Overview of biogas technologies for production of liquid transport fuels. Danish Technological Institute Allegue LB, Hinge J, Allé K (2012) Overview of biogas technologies for production of liquid transport fuels. Danish Technological Institute
5.
go back to reference Tamm D, Persson T, Hulteberg C, Bauer F (2013) Biogas upgrading-review of commercial technologies. SGC Rapport 270 Tamm D, Persson T, Hulteberg C, Bauer F (2013) Biogas upgrading-review of commercial technologies. SGC Rapport 270
6.
go back to reference Tao J, Qin L, Liu X, Li B, Chen J, You J, Shen Y, Chen X (2017) Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism. Biores Technol 236:60–67CrossRef Tao J, Qin L, Liu X, Li B, Chen J, You J, Shen Y, Chen X (2017) Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism. Biores Technol 236:60–67CrossRef
7.
go back to reference Creamer AE, Gao B (2016) Carbon-based adsorbents for postcombustion CO2 capture: a critical review. Environ Sci Technol 50(14):7276–7289CrossRef Creamer AE, Gao B (2016) Carbon-based adsorbents for postcombustion CO2 capture: a critical review. Environ Sci Technol 50(14):7276–7289CrossRef
8.
go back to reference Shanmugam SR, Adhikari S, Wang Z, Shakya R (2017) Treatment of aqueous phase of bio-oil by granular activated carbon and evaluation of biogas production. Biores Technol 223:115–120CrossRef Shanmugam SR, Adhikari S, Wang Z, Shakya R (2017) Treatment of aqueous phase of bio-oil by granular activated carbon and evaluation of biogas production. Biores Technol 223:115–120CrossRef
9.
go back to reference Farooq M, Bell AH, Almustapha M, Andresen JM (2017) Bio-methane from an-aerobic digestion using activated carbon adsorption. Anaerobe Farooq M, Bell AH, Almustapha M, Andresen JM (2017) Bio-methane from an-aerobic digestion using activated carbon adsorption. Anaerobe
10.
go back to reference Legras B, Polaert I, Thomas M, Estel L (2013) About using microwave irradiation in competitive adsorption processes. Appl Therm Eng 57(1):164–171CrossRef Legras B, Polaert I, Thomas M, Estel L (2013) About using microwave irradiation in competitive adsorption processes. Appl Therm Eng 57(1):164–171CrossRef
11.
go back to reference Farooq M, Qamar A, Asim M, Siddiqui F, Amjad M, Yousaf A (2016) Design and analysis of packed bed activated carbon reactor for the enrichment of biogas. University of Engineering and Technology Taxila. Tech J 21(1):58 Farooq M, Qamar A, Asim M, Siddiqui F, Amjad M, Yousaf A (2016) Design and analysis of packed bed activated carbon reactor for the enrichment of biogas. University of Engineering and Technology Taxila. Tech J 21(1):58
12.
go back to reference Meng Y, Bao G, Wang H, Yang Z, Xie J (2017) Thermochemical liquefaction characteristics of Cyanobacteria in subcritical and supercritical ethanol–water mixture. Int J Energy Res Meng Y, Bao G, Wang H, Yang Z, Xie J (2017) Thermochemical liquefaction characteristics of Cyanobacteria in subcritical and supercritical ethanol–water mixture. Int J Energy Res
13.
go back to reference Vivo-Vilches JF, Pérez-Cadenas AF, Maldonado-Hódar FJ, Carrasco-Marín F, Faria RP, Ribeiro AM, Ferreira AF, Rodrigues AE (2017) Biogas upgrading by selective adsorption onto CO2 activated carbon from wood pellets. Journal of Environmental Chemical Engineering 5(2):1386–1393CrossRef Vivo-Vilches JF, Pérez-Cadenas AF, Maldonado-Hódar FJ, Carrasco-Marín F, Faria RP, Ribeiro AM, Ferreira AF, Rodrigues AE (2017) Biogas upgrading by selective adsorption onto CO2 activated carbon from wood pellets. Journal of Environmental Chemical Engineering 5(2):1386–1393CrossRef
14.
go back to reference Kadam R, Panwar N (2017) Recent advancement in biogas enrichment and its applications. Renew Sustain Energy Rev 73:892–903CrossRef Kadam R, Panwar N (2017) Recent advancement in biogas enrichment and its applications. Renew Sustain Energy Rev 73:892–903CrossRef
15.
go back to reference Liu Z, Wang L, Kong X, Li P, Yu J, Rodrigues AE (2012) Onsite CO2capture from flue gas by an adsorption process in a coal-fired power plant. Ind Eng Chem Res 51(21):7355–7363CrossRef Liu Z, Wang L, Kong X, Li P, Yu J, Rodrigues AE (2012) Onsite CO2capture from flue gas by an adsorption process in a coal-fired power plant. Ind Eng Chem Res 51(21):7355–7363CrossRef
16.
go back to reference Tippayawong N, Thanompongchart P (2010) Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy 35(12):4531–4535CrossRef Tippayawong N, Thanompongchart P (2010) Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy 35(12):4531–4535CrossRef
17.
go back to reference Hedin N, Andersson L, Bergström L, Yan J (2013) Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption. Appl Energy 104:418–433CrossRef Hedin N, Andersson L, Bergström L, Yan J (2013) Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption. Appl Energy 104:418–433CrossRef
18.
go back to reference Ntiamoah A, Ling J, Xiao P, Webley PA, Zhai Y (2016) CO2 capture by temperature swing adsorption: use of hot CO2-rich gas for regeneration. Ind Eng Chem Res 55(3):703–713CrossRef Ntiamoah A, Ling J, Xiao P, Webley PA, Zhai Y (2016) CO2 capture by temperature swing adsorption: use of hot CO2-rich gas for regeneration. Ind Eng Chem Res 55(3):703–713CrossRef
19.
go back to reference Xin L, Zhong L (2012) Adsorption of water vapor onto and its electrothermal desorption from activated carbons with different electric conductivities. Sep Purif Technol 85:77–82CrossRef Xin L, Zhong L (2012) Adsorption of water vapor onto and its electrothermal desorption from activated carbons with different electric conductivities. Sep Purif Technol 85:77–82CrossRef
20.
go back to reference Lyndon R, Konstas K, Ladewig BP, Southon PD, Kepert PCJ, Hill MR (2013) Dynamic photo-switching in metal-organic frameworks as a route to low-energy carbon dioxide capture and release. Angew Chem Int Ed 52(13):3695–3698CrossRef Lyndon R, Konstas K, Ladewig BP, Southon PD, Kepert PCJ, Hill MR (2013) Dynamic photo-switching in metal-organic frameworks as a route to low-energy carbon dioxide capture and release. Angew Chem Int Ed 52(13):3695–3698CrossRef
21.
go back to reference Lampe S (2006) Assessment of fuel gas cleanup systems for waste gas fueled power generation. EPRI, Palo Alto, CA, p 1012763 Lampe S (2006) Assessment of fuel gas cleanup systems for waste gas fueled power generation. EPRI, Palo Alto, CA, p 1012763
Metadata
Title
Carbon Capture for Sustainable Environment in Developing Countries
Authors
M. Farooq
M. E. M. Soudagar
M. Imran
M. Arslan
M. S. Tariq
A. Pettinau
J. M. Andresen
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-63654-8_21