Skip to main content
Top
Published in:
Cover of the book

2019 | OriginalPaper | Chapter

1. Carbon Nanotube-Based Fuel Cell Catalysts-Comparison with Carbon Black

Authors : Naotoshi Nakashima, Tsuyohiko Fujigaya

Published in: Nanocarbons for Energy Conversion: Supramolecular Approaches

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Toward the next-generation fuel cell systems, the development of a novel electrocatalyst for the polymer electrolyte fuel cell (PEFC) is crucial to overcome the drawbacks of the present electrocatalyst. As a conductive supporting material for the catalyst, carbon nanotubes (CNTs) have emerged as a promising candidate because they have many remarkable electronic properties. In this chapter, we summarize unique properties of polymer (polybenzimidazole)-coated CNT-based catalysts for high-temperature (HT) PEFC and discuss their potential as a new electrocatalyst for the HT-PEFC in comparison with the conventional ones. We focus on the very high durability of the CNT-based catalysts under high temperature and non-humidified operation as well as conventional low temperature and high humidified operation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRef
2.
go back to reference Nakashima N (2005) Soluble carbon nanotubes: fundamentals and applications. Int J Nanosci 4:119–137CrossRef Nakashima N (2005) Soluble carbon nanotubes: fundamentals and applications. Int J Nanosci 4:119–137CrossRef
3.
go back to reference Murakami H, Nakashima N (2006) Soluble carbon nanotubes and their applications. J Nanosci Nanotechnol 6:16–27 Murakami H, Nakashima N (2006) Soluble carbon nanotubes and their applications. J Nanosci Nanotechnol 6:16–27
4.
go back to reference Nakashima N, Fujigaya T (2007) Fundamentals and applications of soluble carbon nanotubes. Chem Lett 36:692–697CrossRef Nakashima N, Fujigaya T (2007) Fundamentals and applications of soluble carbon nanotubes. Chem Lett 36:692–697CrossRef
5.
go back to reference Fujigaya T, Nakashima N (2012) Soluble carbon nanotubes and nanotube-polymer composites. J Nanosci Nanotechnol 12:1717–1738CrossRef Fujigaya T, Nakashima N (2012) Soluble carbon nanotubes and nanotube-polymer composites. J Nanosci Nanotechnol 12:1717–1738CrossRef
6.
go back to reference Fujigaya T, Nakashima N (2015) Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci Technol Adv Mater 16:Art No 024802 Fujigaya T, Nakashima N (2015) Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci Technol Adv Mater 16:Art No 024802
7.
go back to reference Dyke CA, Tour JM (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108:11151–11159CrossRef Dyke CA, Tour JM (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108:11151–11159CrossRef
8.
go back to reference Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136CrossRef Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136CrossRef
9.
go back to reference Sgobba V, Guldi DM (2009) Carbon nanotubes—electronic/electrochemical properties and application for nanoelectronics and photonics. Chem Soc Rev 38:165–184CrossRef Sgobba V, Guldi DM (2009) Carbon nanotubes—electronic/electrochemical properties and application for nanoelectronics and photonics. Chem Soc Rev 38:165–184CrossRef
10.
go back to reference Nakashima N, Tomonari Y, Murakami H (2002) Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion. Chem Lett: 638–639 Nakashima N, Tomonari Y, Murakami H (2002) Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion. Chem Lett: 638–639
11.
go back to reference Tomonari Y, Murakami H, Nakashima N (2006) Solubilizaton of single-walled carbon nanotubes by using polycyclic aromatic ammonium amphiphiles in water—strategy for the design of high-performance solubilizers. Chem Eur J 12:4027–4034CrossRef Tomonari Y, Murakami H, Nakashima N (2006) Solubilizaton of single-walled carbon nanotubes by using polycyclic aromatic ammonium amphiphiles in water—strategy for the design of high-performance solubilizers. Chem Eur J 12:4027–4034CrossRef
12.
go back to reference Murakami H, Nomura T, Nakashima N (2003) Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites. Chem Phys Lett 378:481–485CrossRef Murakami H, Nomura T, Nakashima N (2003) Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin-nanotube nanocomposites. Chem Phys Lett 378:481–485CrossRef
13.
go back to reference Nakashima N, Okuzono S, Murakami H, Nakai T, Yoshikawa K (2003) DNA dissolves single-walled carbon nanotubes in water [Erratum to document cited in CA139:186348]. Chem Lett 32:782CrossRef Nakashima N, Okuzono S, Murakami H, Nakai T, Yoshikawa K (2003) DNA dissolves single-walled carbon nanotubes in water [Erratum to document cited in CA139:186348]. Chem Lett 32:782CrossRef
14.
go back to reference Okamoto M, Fujigaya T, Nakashima N (2008) Individual dissolution of single-walled carbon nanotubes (SWNTs) using polybenzimidazole (PBI) and high effective reinforcement of SWNTs/PBI composite films. Adv Funct Mater 18:1776–1782CrossRef Okamoto M, Fujigaya T, Nakashima N (2008) Individual dissolution of single-walled carbon nanotubes (SWNTs) using polybenzimidazole (PBI) and high effective reinforcement of SWNTs/PBI composite films. Adv Funct Mater 18:1776–1782CrossRef
15.
go back to reference Hafez IH, Berber MR, Fujigaya T, Nakashima N (2014) Enhancement of platinum mass activity on the surface of polymer-wrapped carbon nanotube-based fuel cell electrocatalysts. Sci Rep 4:Article number: 6295 Hafez IH, Berber MR, Fujigaya T, Nakashima N (2014) Enhancement of platinum mass activity on the surface of polymer-wrapped carbon nanotube-based fuel cell electrocatalysts. Sci Rep 4:Article number: 6295
16.
go back to reference Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q (2003) Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B 107:6292–6299CrossRef Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q (2003) Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B 107:6292–6299CrossRef
17.
go back to reference Tian ZQ, Jiang SP, Liang YM, Shen PK (2006) Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. J Phys Chem B 110:5343–5350CrossRef Tian ZQ, Jiang SP, Liang YM, Shen PK (2006) Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. J Phys Chem B 110:5343–5350CrossRef
18.
go back to reference Li W, Liang C, Qiu J, Zhou W, Han H, Wei Z, Sun G, Xin Q (2002) Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon 40:791–794CrossRef Li W, Liang C, Qiu J, Zhou W, Han H, Wei Z, Sun G, Xin Q (2002) Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon 40:791–794CrossRef
19.
go back to reference Li L, Xing Y (2008) Electrochemical durability of carbon nanotubes at 80 °C. J Power Sources 178:75–79CrossRef Li L, Xing Y (2008) Electrochemical durability of carbon nanotubes at 80 °C. J Power Sources 178:75–79CrossRef
20.
go back to reference Li L, Xing Y (2006) Electrochemical durability of carbon nanotubes in noncatalyzed and catalyzed oxidations. J Electrochem Soc 153:A1823–A1828CrossRef Li L, Xing Y (2006) Electrochemical durability of carbon nanotubes in noncatalyzed and catalyzed oxidations. J Electrochem Soc 153:A1823–A1828CrossRef
21.
go back to reference Kongkanand A, Kuwabata S, Girishkumar G, Kamat P (2006) Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction. Langmuir 22:2392–2396CrossRef Kongkanand A, Kuwabata S, Girishkumar G, Kamat P (2006) Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction. Langmuir 22:2392–2396CrossRef
22.
go back to reference Shao Y, Yin G, Gao Y, Shi P (2006) Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. J Electrochem Soc 153:A1093–A1097CrossRef Shao Y, Yin G, Gao Y, Shi P (2006) Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. J Electrochem Soc 153:A1093–A1097CrossRef
23.
go back to reference Wang X, Li W, Chen Z, Waje M, Yan Y (2006) Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J Power Sources 158:154–159CrossRef Wang X, Li W, Chen Z, Waje M, Yan Y (2006) Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J Power Sources 158:154–159CrossRef
24.
25.
go back to reference Xu H, Zeng L, Xing S, Shi G, Xian Y, Jin L (2008) Microwave-radiated synthesis of gold nanoparticles/carbon nanotubes composites and its application to voltammetric detection of trace mercury(II). Electrochem Commun 10:1839–1843CrossRef Xu H, Zeng L, Xing S, Shi G, Xian Y, Jin L (2008) Microwave-radiated synthesis of gold nanoparticles/carbon nanotubes composites and its application to voltammetric detection of trace mercury(II). Electrochem Commun 10:1839–1843CrossRef
26.
go back to reference de Paula CC, Garcia Ramos A, da Silva AC, Cocchieri Botelho E, Rezende MC (2002) Fabrication of glassy carbon spools for utilization in fiber optic gyroscopes. Carbon 40:787–788CrossRef de Paula CC, Garcia Ramos A, da Silva AC, Cocchieri Botelho E, Rezende MC (2002) Fabrication of glassy carbon spools for utilization in fiber optic gyroscopes. Carbon 40:787–788CrossRef
27.
go back to reference Guo D-J, Li H-L (2005) High dispersion and electrocatalytic properties of palladium nanoparticles on single-walled carbon nanotubes. J Colloid Interface Sci 286:274–279CrossRef Guo D-J, Li H-L (2005) High dispersion and electrocatalytic properties of palladium nanoparticles on single-walled carbon nanotubes. J Colloid Interface Sci 286:274–279CrossRef
28.
go back to reference Chao G, Wenwen L, Yi Zheng J, Hao K (2006) Facile and large-scale synthesis and characterization of carbon nanotube/silver nanocrystal nanohybrids. Nanotechnology 17:2882CrossRef Chao G, Wenwen L, Yi Zheng J, Hao K (2006) Facile and large-scale synthesis and characterization of carbon nanotube/silver nanocrystal nanohybrids. Nanotechnology 17:2882CrossRef
29.
go back to reference Wu G, Chen YS, Xu BQ (2005) Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation. Electrochem Commun 7:1237–1243CrossRef Wu G, Chen YS, Xu BQ (2005) Remarkable support effect of SWNTs in Pt catalyst for methanol electrooxidation. Electrochem Commun 7:1237–1243CrossRef
30.
go back to reference Che G, Lakshmi BB, Martin CR, Fisher ER (1999) Metal-nanocluster-filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production. Langmuir 15:750–758CrossRef Che G, Lakshmi BB, Martin CR, Fisher ER (1999) Metal-nanocluster-filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production. Langmuir 15:750–758CrossRef
31.
go back to reference Zhang S, Shao Y, Yin G, Lin Y (2010) Carbon nanotubes decorated with Pt nanoparticles via electrostatic self-assembly: a highly active oxygen reduction electrocatalyst. J Mater Chem 20:2826–2830CrossRef Zhang S, Shao Y, Yin G, Lin Y (2010) Carbon nanotubes decorated with Pt nanoparticles via electrostatic self-assembly: a highly active oxygen reduction electrocatalyst. J Mater Chem 20:2826–2830CrossRef
32.
go back to reference Grzelczak M, Correa-Duarte MA, Salgueiriño-Maceira V, Rodríguez-González B, Rivas J, Liz-Marzán LM (2007) Pt-catalyzed formation of Ni nanoshells on carbon nanotubes. Angew Chem Int Ed 46:7026–7030CrossRef Grzelczak M, Correa-Duarte MA, Salgueiriño-Maceira V, Rodríguez-González B, Rivas J, Liz-Marzán LM (2007) Pt-catalyzed formation of Ni nanoshells on carbon nanotubes. Angew Chem Int Ed 46:7026–7030CrossRef
33.
go back to reference Wu B, Zhang Y, Kuang Y, Yu Y, Zhang X, Chen J (2012) Chitosan-functionalized carbon nanotubes as support for the high dispersion of PtRu nanoparticles and their electrocatalytic oxidation of methanol. Chem Asian J 7:190–195CrossRef Wu B, Zhang Y, Kuang Y, Yu Y, Zhang X, Chen J (2012) Chitosan-functionalized carbon nanotubes as support for the high dispersion of PtRu nanoparticles and their electrocatalytic oxidation of methanol. Chem Asian J 7:190–195CrossRef
34.
go back to reference Hsu C-H, Liao H-Y, Kuo P-L (2010) Aniline as a dispersant and stabilizer for the preparation of Pt nanoparticles deposited on carbon nanotubes. J Phys Chem C 114:7933–7939CrossRef Hsu C-H, Liao H-Y, Kuo P-L (2010) Aniline as a dispersant and stabilizer for the preparation of Pt nanoparticles deposited on carbon nanotubes. J Phys Chem C 114:7933–7939CrossRef
35.
go back to reference He D, Zeng C, Xu C, Cheng N, Li H, Mu S, Pan M (2011) Polyaniline-functionalized carbon nanotube supported platinum catalysts. Langmuir 27:5582–5588CrossRef He D, Zeng C, Xu C, Cheng N, Li H, Mu S, Pan M (2011) Polyaniline-functionalized carbon nanotube supported platinum catalysts. Langmuir 27:5582–5588CrossRef
36.
go back to reference Zhao Y, Yang X, Tian J, Wang F, Zhan L (2010) A facile and novel approach toward synthetic polypyrrole oligomers functionalization of multi-walled carbon nanotubes as PtRu catalyst support for methanol electro-oxidation. J Power Sources 195:4634–4640CrossRef Zhao Y, Yang X, Tian J, Wang F, Zhan L (2010) A facile and novel approach toward synthetic polypyrrole oligomers functionalization of multi-walled carbon nanotubes as PtRu catalyst support for methanol electro-oxidation. J Power Sources 195:4634–4640CrossRef
37.
go back to reference Wang S, Jiang SP, White TJ, Guo J, Wang X (2009) Electrocatalytic activity and interconnectivity of Pt nanoparticles on multiwalled carbon nanotubes for fuel cells. J Phys Chem C 113:18935–18945CrossRef Wang S, Jiang SP, White TJ, Guo J, Wang X (2009) Electrocatalytic activity and interconnectivity of Pt nanoparticles on multiwalled carbon nanotubes for fuel cells. J Phys Chem C 113:18935–18945CrossRef
38.
go back to reference Zhang S, Shao Y, Yin G, Lin Y (2011) Self-assembly of Pt nanoparticles on highly graphitized carbon nanotubes as an excellent oxygen-reduction catalyst. Appl Catal B 102:372–377CrossRef Zhang S, Shao Y, Yin G, Lin Y (2011) Self-assembly of Pt nanoparticles on highly graphitized carbon nanotubes as an excellent oxygen-reduction catalyst. Appl Catal B 102:372–377CrossRef
39.
go back to reference Selvaraj V, Alagar M, Kumar KS (2007) Synthesis and characterization of metal nanoparticles-decorated PPY-CNT composite and their electrocatalytic oxidation of formic acid and formaldehyde for fuel cell applications. Appl Catal B 75:129–138CrossRef Selvaraj V, Alagar M, Kumar KS (2007) Synthesis and characterization of metal nanoparticles-decorated PPY-CNT composite and their electrocatalytic oxidation of formic acid and formaldehyde for fuel cell applications. Appl Catal B 75:129–138CrossRef
40.
go back to reference Oh H-S, Kim K, Kim H (2011) Polypyrrole-modified hydrophobic carbon nanotubes as promising electrocatalyst supports in polymer electrolyte membrane fuel cells. Int J Hydrogen Energy 36:11564–11571CrossRef Oh H-S, Kim K, Kim H (2011) Polypyrrole-modified hydrophobic carbon nanotubes as promising electrocatalyst supports in polymer electrolyte membrane fuel cells. Int J Hydrogen Energy 36:11564–11571CrossRef
41.
go back to reference Fujigaya T, Nakashima N (2013) Fuel cell electrocatalyst using polybenzimidazole-modified carbon nanotubes as support materials. Adv Mater 25:1666–1681CrossRef Fujigaya T, Nakashima N (2013) Fuel cell electrocatalyst using polybenzimidazole-modified carbon nanotubes as support materials. Adv Mater 25:1666–1681CrossRef
42.
go back to reference Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352CrossRef Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352CrossRef
43.
go back to reference Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima KI, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951CrossRef Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima KI, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951CrossRef
44.
go back to reference Asensio JA, Sanchez EM, Gomez-Romero P (2010) Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chem Soc Rev 39:3210–3239CrossRef Asensio JA, Sanchez EM, Gomez-Romero P (2010) Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chem Soc Rev 39:3210–3239CrossRef
45.
go back to reference Zhang J, Xie Z, Zhang J, Tang Y, Song C, Navessin T, Shi Z, Song D, Wang H, Wilkinson DP, Liu Z-S, Holdcroft S (2006) High temperature PEM fuel cells. J Power Sources 160:872–891CrossRef Zhang J, Xie Z, Zhang J, Tang Y, Song C, Navessin T, Shi Z, Song D, Wang H, Wilkinson DP, Liu Z-S, Holdcroft S (2006) High temperature PEM fuel cells. J Power Sources 160:872–891CrossRef
46.
go back to reference Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR (1992) Temperature dependence of the electrode kinetics of oxygen reduction at the Platinum/Nafion® interface—a microelectrode investigation. J Electrochem Soc 139:2530–2537CrossRef Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR (1992) Temperature dependence of the electrode kinetics of oxygen reduction at the Platinum/Nafion® interface—a microelectrode investigation. J Electrochem Soc 139:2530–2537CrossRef
47.
go back to reference Yang C, Costamagna P, Srinivasan S, Benziger J, Bocarsly AB (2001) Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. J Power Sources 103:1–9CrossRef Yang C, Costamagna P, Srinivasan S, Benziger J, Bocarsly AB (2001) Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. J Power Sources 103:1–9CrossRef
48.
go back to reference Li Q, He R, Gao J-A, Jensen JO, Bjerrum NJ (2003) The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200 °C. J Electrochem Soc 150:A1599–A1605CrossRef Li Q, He R, Gao J-A, Jensen JO, Bjerrum NJ (2003) The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200 °C. J Electrochem Soc 150:A1599–A1605CrossRef
49.
go back to reference Li Q, He R, Jensen JO, Bjerrum NJ (2004) PBI-based polymer membranes for high temperature fuel cells - preparation, characterization and fuel cell demonstration. Fuel Cells 4:147–159CrossRef Li Q, He R, Jensen JO, Bjerrum NJ (2004) PBI-based polymer membranes for high temperature fuel cells - preparation, characterization and fuel cell demonstration. Fuel Cells 4:147–159CrossRef
50.
go back to reference Li Q, Jensen JO, Savinell RF, Bjerrum NJ (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477CrossRef Li Q, Jensen JO, Savinell RF, Bjerrum NJ (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477CrossRef
51.
go back to reference Xiao L, Zhang H, Jana T, Scanlon E, Chen R, Choe EW, Ramanathan LS, Yu S, Benicewicz BC (2005) Synthesis and characterization of pyridine-based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applicationsx. Fuel Cells 5:287–295CrossRef Xiao L, Zhang H, Jana T, Scanlon E, Chen R, Choe EW, Ramanathan LS, Yu S, Benicewicz BC (2005) Synthesis and characterization of pyridine-based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applicationsx. Fuel Cells 5:287–295CrossRef
52.
go back to reference Wang JT, Savinell RF, Wainright J, Litt M, Yu H (1996) A H2/O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte. Electrochim Acta 41:193–197CrossRef Wang JT, Savinell RF, Wainright J, Litt M, Yu H (1996) A H2/O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte. Electrochim Acta 41:193–197CrossRef
53.
go back to reference Weber J, Kreuer K-D, Maier J, Thomas A (2008) Proton conductivity enhancement by nanostructural control of poly(benzimidazole)-phosphoric acid adducts. Adv Mater 20:2595–2598CrossRef Weber J, Kreuer K-D, Maier J, Thomas A (2008) Proton conductivity enhancement by nanostructural control of poly(benzimidazole)-phosphoric acid adducts. Adv Mater 20:2595–2598CrossRef
54.
go back to reference Seland F, Berning T, Børresen B, Tunold R (2006) Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte. J Power Sources 160:27–36CrossRef Seland F, Berning T, Børresen B, Tunold R (2006) Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte. J Power Sources 160:27–36CrossRef
55.
go back to reference Pan C, Li Q, Jensen JO, He R, Cleemann LN, Nilsson MS, Bjerrum NJ, Zeng Q (2007) Preparation and operation of gas diffusion electrodes for high-temperature proton exchange membrane fuel cells. J Power Sources 172:278–286CrossRef Pan C, Li Q, Jensen JO, He R, Cleemann LN, Nilsson MS, Bjerrum NJ, Zeng Q (2007) Preparation and operation of gas diffusion electrodes for high-temperature proton exchange membrane fuel cells. J Power Sources 172:278–286CrossRef
56.
go back to reference Zhai Y, Zhang H, Liu G, Hu J, Yi B (2007) Degradation Study on MEA in H3PO4/PBI High-Temperature PEMFC Life Test. J Electrochem Soc 154:B72–B76CrossRef Zhai Y, Zhang H, Liu G, Hu J, Yi B (2007) Degradation Study on MEA in H3PO4/PBI High-Temperature PEMFC Life Test. J Electrochem Soc 154:B72–B76CrossRef
57.
go back to reference Kim H-J, An SJ, Kim J-Y, Jin KM, Cho SY, Eun YC, Yoon H-K, Park Y, Kweon H-J, Shin E-M (2004) Polybenzimidazoles for high temperature fuel cell applications. Macromol Rapid Commun 25:1410–1413CrossRef Kim H-J, An SJ, Kim J-Y, Jin KM, Cho SY, Eun YC, Yoon H-K, Park Y, Kweon H-J, Shin E-M (2004) Polybenzimidazoles for high temperature fuel cell applications. Macromol Rapid Commun 25:1410–1413CrossRef
58.
go back to reference Schuster M, Rager T, Noda A, Kreuer KD, Maier J (2005) About the choice of the protogenic group in PEM separator materials for intermediate temperature, low humidity operation: a critical comparison of sulfonic acid, phosphonic acid and imidazole functionalized model compounds. Fuel Cells 5:355–365CrossRef Schuster M, Rager T, Noda A, Kreuer KD, Maier J (2005) About the choice of the protogenic group in PEM separator materials for intermediate temperature, low humidity operation: a critical comparison of sulfonic acid, phosphonic acid and imidazole functionalized model compounds. Fuel Cells 5:355–365CrossRef
59.
go back to reference Paddison SJ, Kreuer K-D, Maier J (2006) About the choice of the protogenic group in polymer electrolyte membranes: ab initio modelling of sulfonic acid, phosphonic acid, and imidazole functionalized alkanes. Phys Chem Chem Phys 8:4530–4542CrossRef Paddison SJ, Kreuer K-D, Maier J (2006) About the choice of the protogenic group in polymer electrolyte membranes: ab initio modelling of sulfonic acid, phosphonic acid, and imidazole functionalized alkanes. Phys Chem Chem Phys 8:4530–4542CrossRef
60.
go back to reference Steininger H, Schuster M, Kreuer KD, Kaltbeitzel A, Bingöl B, Meyer WH, Schauff S, Brunklaus G, Maier J, Spiess HW (2007) Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report. Phys Chem Chem Phys 9:1764–1773CrossRef Steininger H, Schuster M, Kreuer KD, Kaltbeitzel A, Bingöl B, Meyer WH, Schauff S, Brunklaus G, Maier J, Spiess HW (2007) Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report. Phys Chem Chem Phys 9:1764–1773CrossRef
61.
go back to reference Lee K, Zhang J, Wang H, Wilkinson DP (2006) Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. J Appl Electrochem 36:507–522CrossRef Lee K, Zhang J, Wang H, Wilkinson DP (2006) Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis. J Appl Electrochem 36:507–522CrossRef
62.
go back to reference Okamoto M, Fujigaya T, Nakashima N (2009) Design of an assembly of poly(benzimidazole), carbon nanotubes, and Pt nanoparticles for a fuel-cell electrocatalyst with an ideal interfacial nanostructure. Small 5:735–740CrossRef Okamoto M, Fujigaya T, Nakashima N (2009) Design of an assembly of poly(benzimidazole), carbon nanotubes, and Pt nanoparticles for a fuel-cell electrocatalyst with an ideal interfacial nanostructure. Small 5:735–740CrossRef
63.
go back to reference Fujigaya T, Okamoto M, Nakashima N (2009) Design of an assembly of pyridine-containing polybenzimidazole, carbon nanotubes and Pt nanoparticles for a fuel cell electrocatalyst with a high electrochemically active surface area. Carbon 47:3227–3232CrossRef Fujigaya T, Okamoto M, Nakashima N (2009) Design of an assembly of pyridine-containing polybenzimidazole, carbon nanotubes and Pt nanoparticles for a fuel cell electrocatalyst with a high electrochemically active surface area. Carbon 47:3227–3232CrossRef
64.
go back to reference Reddy ALM, Ramaprabhu S (2007) Pt/SWNT-Pt/C nanocomposite electrocatalysts for proton-exchange membrane fuel cells. J Phys Chem C 111:16138–16146CrossRef Reddy ALM, Ramaprabhu S (2007) Pt/SWNT-Pt/C nanocomposite electrocatalysts for proton-exchange membrane fuel cells. J Phys Chem C 111:16138–16146CrossRef
65.
go back to reference Munakata H, Ishida T, Kanamura K (2007) Electrophoretic deposition for nanostructural design of catalyst layers on Nafion membrane. J Electrochem Soc 154:B1368–B1372CrossRef Munakata H, Ishida T, Kanamura K (2007) Electrophoretic deposition for nanostructural design of catalyst layers on Nafion membrane. J Electrochem Soc 154:B1368–B1372CrossRef
66.
go back to reference Wainright JS, Wang JT, Weng D, Savinell RF, Litt M (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc 142:L121–L123CrossRef Wainright JS, Wang JT, Weng D, Savinell RF, Litt M (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc 142:L121–L123CrossRef
67.
go back to reference Jones DJ, Rozie`re J (2001) Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications. J Membr Sci 185:41–58CrossRef Jones DJ, Rozie`re J (2001) Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications. J Membr Sci 185:41–58CrossRef
68.
go back to reference Xing B, Savadogo O (1999) The effect of acid doping on the conductivity of polybenzimidazole (PBI). J New Mater Electrochem Syst 2:95–101 Xing B, Savadogo O (1999) The effect of acid doping on the conductivity of polybenzimidazole (PBI). J New Mater Electrochem Syst 2:95–101
69.
go back to reference Bouchet R, Siebert E (1999) Proton conduction in acid doped polybenzimidazole. Solid State Ionics 118:287–299CrossRef Bouchet R, Siebert E (1999) Proton conduction in acid doped polybenzimidazole. Solid State Ionics 118:287–299CrossRef
70.
go back to reference Asensio JA, Borros S, Gomez-Romero P (2002) Proton-conducting polymers based on benzimidazoles and sulfonated benzimidazoles. J Polym Sci Part A: Polym Chem 40:3703–3710CrossRef Asensio JA, Borros S, Gomez-Romero P (2002) Proton-conducting polymers based on benzimidazoles and sulfonated benzimidazoles. J Polym Sci Part A: Polym Chem 40:3703–3710CrossRef
71.
go back to reference Glipa X, Bonnet B, Mula B, Jones DJ, Rozière J (1999) Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole. J Mater Chem 9:3045–3049CrossRef Glipa X, Bonnet B, Mula B, Jones DJ, Rozière J (1999) Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole. J Mater Chem 9:3045–3049CrossRef
72.
go back to reference Li Q, He R, Jensen JO, Bjerrum NJ (2003) Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem Mater 15:4896–4915CrossRef Li Q, He R, Jensen JO, Bjerrum NJ (2003) Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem Mater 15:4896–4915CrossRef
73.
go back to reference Matsumoto K, Fujigaya T, Sasaki K, Nakashima N (2011) Bottom-up design of carbon nanotube-based electrocatalysts and their application in high temperature operating polymer electrolyte fuel cells. J Mater Chem 21:1187–1190CrossRef Matsumoto K, Fujigaya T, Sasaki K, Nakashima N (2011) Bottom-up design of carbon nanotube-based electrocatalysts and their application in high temperature operating polymer electrolyte fuel cells. J Mater Chem 21:1187–1190CrossRef
74.
go back to reference Oono Y, Sounai A, Hori M (2009) Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells. J Power Sources 189:943–949CrossRef Oono Y, Sounai A, Hori M (2009) Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells. J Power Sources 189:943–949CrossRef
75.
go back to reference Berber MR, Fujigaya T, Sasaki K, Nakashima N (2013) Remarkably durable high temperature polymer electrolyte fuel cell based on poly(vinylphosphonic acid)-doped polybenzimidazole. Sci Rep 3:1764CrossRef Berber MR, Fujigaya T, Sasaki K, Nakashima N (2013) Remarkably durable high temperature polymer electrolyte fuel cell based on poly(vinylphosphonic acid)-doped polybenzimidazole. Sci Rep 3:1764CrossRef
76.
go back to reference Berber MR, Hafez IH, Fujigaya T, Nakashima N (2014) Durability analysis of polymer-coated pristine carbon nanotube-based fuel cell electrocatalysts under non-humidified conditions. J Mater Chem A 2:19053–19059CrossRef Berber MR, Hafez IH, Fujigaya T, Nakashima N (2014) Durability analysis of polymer-coated pristine carbon nanotube-based fuel cell electrocatalysts under non-humidified conditions. J Mater Chem A 2:19053–19059CrossRef
77.
go back to reference Ohma A, Shinohara K, Iiyama A, Yoshida T, Daimaru A (2011) Membrane and catalyst performance targets for automotive fuel cells by FCCJ membrane, catalyst, MEA WG. ECS Trans 41:775–784CrossRef Ohma A, Shinohara K, Iiyama A, Yoshida T, Daimaru A (2011) Membrane and catalyst performance targets for automotive fuel cells by FCCJ membrane, catalyst, MEA WG. ECS Trans 41:775–784CrossRef
78.
go back to reference Fujigaya T, Berber MR, Nakashima N (2016) Improved durability of electrocatalyst based on coating of carbon black with polybenzimidazole and their application in polymer electrolyte fuel cells. ACS Appl Mater Interfaces 8:14494–14502CrossRef Fujigaya T, Berber MR, Nakashima N (2016) Improved durability of electrocatalyst based on coating of carbon black with polybenzimidazole and their application in polymer electrolyte fuel cells. ACS Appl Mater Interfaces 8:14494–14502CrossRef
79.
go back to reference Yang Z, Berber MR, Nakashima N (2015) Design of polymer-coated multi-walled carbon nanotube/carbon black-based fuel cell catalysts with high durability and performance under non-humidified condition. Electrochim Acta 170:1–8CrossRef Yang Z, Berber MR, Nakashima N (2015) Design of polymer-coated multi-walled carbon nanotube/carbon black-based fuel cell catalysts with high durability and performance under non-humidified condition. Electrochim Acta 170:1–8CrossRef
80.
go back to reference Nasef MM, Fujigaya T, Abouzari-Lotf E, Nakashima N, Yang Z (2016) Enhancement of performance of pyridine modified polybenzimidazole fuel cell membranes using zirconium oxide nanoclusters and optimized phosphoric acid doping level. Int J Hydrogen Energy 41:6842–6854CrossRef Nasef MM, Fujigaya T, Abouzari-Lotf E, Nakashima N, Yang Z (2016) Enhancement of performance of pyridine modified polybenzimidazole fuel cell membranes using zirconium oxide nanoclusters and optimized phosphoric acid doping level. Int J Hydrogen Energy 41:6842–6854CrossRef
81.
go back to reference Yang Z, Fujigaya T, Nakashima N (2016) NaOH-aided platinum nanoparticle size regulation on polybenzimidazole-wrapped carbon nanotubes for use as non-humidified polymer electrolyte fuel cell catalyst. ChemCatChem 8:268–275CrossRef Yang Z, Fujigaya T, Nakashima N (2016) NaOH-aided platinum nanoparticle size regulation on polybenzimidazole-wrapped carbon nanotubes for use as non-humidified polymer electrolyte fuel cell catalyst. ChemCatChem 8:268–275CrossRef
82.
go back to reference Fujigaya T, Hirata S, Nakashima N (2014) A highly durable fuel cell electrocatalyst based on polybenzimidazole-coated stacked graphene. J Mater Chem A 2:3888–3893CrossRef Fujigaya T, Hirata S, Nakashima N (2014) A highly durable fuel cell electrocatalyst based on polybenzimidazole-coated stacked graphene. J Mater Chem A 2:3888–3893CrossRef
83.
go back to reference Yuan XZ, Wang HJ, Sun JC, Zhang JJ (2007) AC impedance technique in PEM fuel cell diagnosis—a review. Int J Hydrogen Energy 32:4365–4380CrossRef Yuan XZ, Wang HJ, Sun JC, Zhang JJ (2007) AC impedance technique in PEM fuel cell diagnosis—a review. Int J Hydrogen Energy 32:4365–4380CrossRef
84.
go back to reference Wu J, Yuan XZ, Martin JJ, Wang H, Zhang J, Shen J, Wu S, Merida W (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184:104–119CrossRef Wu J, Yuan XZ, Martin JJ, Wang H, Zhang J, Shen J, Wu S, Merida W (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184:104–119CrossRef
85.
go back to reference Uchida M, Fukuoka Y, Sugawara Y, Eda N, Ohta A (1996) Effects of microstructure of carbon support in the catalyst layer on the performance of polymer-electrolyte fuel cells. J Electrochem Soc 143:2245–2252CrossRef Uchida M, Fukuoka Y, Sugawara Y, Eda N, Ohta A (1996) Effects of microstructure of carbon support in the catalyst layer on the performance of polymer-electrolyte fuel cells. J Electrochem Soc 143:2245–2252CrossRef
86.
go back to reference Horv Aacute, Th G, Eacute Za, Kawazoe K (1983) Method for the calculation of effective pore size distribution in molecular sieve carbon. J Chem Eng Jpn 16:470–475CrossRef Horv Aacute, Th G, Eacute Za, Kawazoe K (1983) Method for the calculation of effective pore size distribution in molecular sieve carbon. J Chem Eng Jpn 16:470–475CrossRef
87.
go back to reference de Boer JH, Lippens BC, Linsen BG, Broekhoff JCP, van den Heuvel A, Osinga TJ (1966) Thet-curve of multimolecular N2-adsorption. J Colloid Interface Sci 21:405–414CrossRef de Boer JH, Lippens BC, Linsen BG, Broekhoff JCP, van den Heuvel A, Osinga TJ (1966) Thet-curve of multimolecular N2-adsorption. J Colloid Interface Sci 21:405–414CrossRef
88.
go back to reference Phillip WA, Mika Dorin R, Werner J, Hoek EMV, Wiesner U, Elimelech M (2011) Tuning structure and properties of graded triblock terpolymer-based mesoporous and hybrid films. Nano Lett 11:2892–2900CrossRef Phillip WA, Mika Dorin R, Werner J, Hoek EMV, Wiesner U, Elimelech M (2011) Tuning structure and properties of graded triblock terpolymer-based mesoporous and hybrid films. Nano Lett 11:2892–2900CrossRef
89.
go back to reference M-x Wang, Liu Q, H-f Sun, Ogbeifun N, Xu F, Stach EA, Xie J (2010) Investigation of carbon corrosion in polymer electrolyte fuel cells using steam etching. Mater Chem Phys 123:761–766CrossRef M-x Wang, Liu Q, H-f Sun, Ogbeifun N, Xu F, Stach EA, Xie J (2010) Investigation of carbon corrosion in polymer electrolyte fuel cells using steam etching. Mater Chem Phys 123:761–766CrossRef
90.
go back to reference Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51CrossRef Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51CrossRef
91.
go back to reference Sun X, Song P, Zhang Y, Liu C, Xu W, Xing W (2013) A class of high performance metal-free oxygen reduction electrocatalysts based on cheap carbon blacks. Sci Rep 3:2505 Sun X, Song P, Zhang Y, Liu C, Xu W, Xing W (2013) A class of high performance metal-free oxygen reduction electrocatalysts based on cheap carbon blacks. Sci Rep 3:2505
92.
go back to reference Jaouen F, Proietti E, Lefevre M, Chenitz R, Dodelet J-P, Wu G, Chung HT, Johnston CM, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4:114–130CrossRef Jaouen F, Proietti E, Lefevre M, Chenitz R, Dodelet J-P, Wu G, Chung HT, Johnston CM, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4:114–130CrossRef
93.
go back to reference Beard KD, Borrelli D, Cramer AM, Blom D, Van Zee JW, Monnier JR (2009) Preparation and structural analysis of carbon-supported Co core/Pt shell electrocatalysts using electroless deposition methods. ACS Nano 3:2841–2853CrossRef Beard KD, Borrelli D, Cramer AM, Blom D, Van Zee JW, Monnier JR (2009) Preparation and structural analysis of carbon-supported Co core/Pt shell electrocatalysts using electroless deposition methods. ACS Nano 3:2841–2853CrossRef
94.
go back to reference Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR (2010) Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew Chem Int Ed 49:8602–8607CrossRef Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR (2010) Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew Chem Int Ed 49:8602–8607CrossRef
95.
go back to reference Wang JX, Inada H, Wu L, Zhu Y, Choi Y, Liu P, Zhou W-P, Adzic RR (2009) Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J Am Chem Soc 131:17298–17302CrossRef Wang JX, Inada H, Wu L, Zhu Y, Choi Y, Liu P, Zhou W-P, Adzic RR (2009) Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J Am Chem Soc 131:17298–17302CrossRef
96.
go back to reference Wang D, Xin HL, Wang H, Yu Y, Rus E, Muller DA, DiSalvo FJ, Abruña HD (2012) Facile synthesis of carbon-supported Pd–Co core-shell nanoparticles as oxygen reduction electrocatalysts and their enhanced activity and stability with monolayer Pt decoration. Chem Mater 24:2274–2281CrossRef Wang D, Xin HL, Wang H, Yu Y, Rus E, Muller DA, DiSalvo FJ, Abruña HD (2012) Facile synthesis of carbon-supported Pd–Co core-shell nanoparticles as oxygen reduction electrocatalysts and their enhanced activity and stability with monolayer Pt decoration. Chem Mater 24:2274–2281CrossRef
97.
go back to reference Wang C, Daimon H, Sun SH (2009) Dumbbell-like Pt-Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction. Nano Lett 9:1493–1496CrossRef Wang C, Daimon H, Sun SH (2009) Dumbbell-like Pt-Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction. Nano Lett 9:1493–1496CrossRef
98.
go back to reference Lim B, Jiang M, Camargo PH, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305CrossRef Lim B, Jiang M, Camargo PH, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305CrossRef
99.
go back to reference Wu J, Zhang J, Peng Z, Yang S, Wagner FT, Yang H (2010) Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J Am Chem Soc 132:4984–4985CrossRef Wu J, Zhang J, Peng Z, Yang S, Wagner FT, Yang H (2010) Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J Am Chem Soc 132:4984–4985CrossRef
100.
go back to reference Li Y, Qi W, Huang B, Ji W, Wang M (2013) Size- and composition-dependent structural stability of core-shell and alloy Pd–Pt and Au–Ag nanoparticles. J Phys Chem C 117:15394–15401CrossRef Li Y, Qi W, Huang B, Ji W, Wang M (2013) Size- and composition-dependent structural stability of core-shell and alloy Pd–Pt and Au–Ag nanoparticles. J Phys Chem C 117:15394–15401CrossRef
101.
go back to reference Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56:9–35CrossRef Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56:9–35CrossRef
102.
go back to reference Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108:10955–10964CrossRef Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108:10955–10964CrossRef
103.
go back to reference Oezaslan M, Hasché F, Strasser P (2013) Pt-based core-shell catalyst architectures for oxygen fuel cell electrodes. J Phys Chem Lett 4:3273–3291CrossRef Oezaslan M, Hasché F, Strasser P (2013) Pt-based core-shell catalyst architectures for oxygen fuel cell electrodes. J Phys Chem Lett 4:3273–3291CrossRef
104.
go back to reference Colon-Mercado HR, Popov BN (2006) Stability of platinum based alloy cathode catalysts in PEM fuel cells. J Power Sources 155:253–263CrossRef Colon-Mercado HR, Popov BN (2006) Stability of platinum based alloy cathode catalysts in PEM fuel cells. J Power Sources 155:253–263CrossRef
105.
go back to reference Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128:8813–8819CrossRef Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128:8813–8819CrossRef
106.
go back to reference Stephens IEL, Bondarenko AS, Grønbjerg U, Rossmeisl J, Chorkendorff I (2012) Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ Sci 5:6744–6762CrossRef Stephens IEL, Bondarenko AS, Grønbjerg U, Rossmeisl J, Chorkendorff I (2012) Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ Sci 5:6744–6762CrossRef
107.
go back to reference Hwang SJ, Kim S-K, Lee J-G, Lee S-C, Jang JH, Kim P, Lim T-H, Sung Y-E, Yoo SJ (2012) Role of electronic perturbation in stability and activity of Pt-based alloy nanocatalysts for oxygen reduction. J Am Chem Soc 134:19508–19511CrossRef Hwang SJ, Kim S-K, Lee J-G, Lee S-C, Jang JH, Kim P, Lim T-H, Sung Y-E, Yoo SJ (2012) Role of electronic perturbation in stability and activity of Pt-based alloy nanocatalysts for oxygen reduction. J Am Chem Soc 134:19508–19511CrossRef
108.
go back to reference Fang B, Chaudhari NK, Kim M-S, Kim JH, Yu J-S (2009) Homogeneous deposition of platinum nanoparticles on carbon black for proton exchange membrane fuel cell. J Am Chem Soc 131:15330–15338CrossRef Fang B, Chaudhari NK, Kim M-S, Kim JH, Yu J-S (2009) Homogeneous deposition of platinum nanoparticles on carbon black for proton exchange membrane fuel cell. J Am Chem Soc 131:15330–15338CrossRef
109.
go back to reference Siburian R, Kondo T, Nakamura J (2013) Size control to a sub-nanometer scale in platinum catalysts on graphene. J Phys Chem C 117:3635–3645CrossRef Siburian R, Kondo T, Nakamura J (2013) Size control to a sub-nanometer scale in platinum catalysts on graphene. J Phys Chem C 117:3635–3645CrossRef
110.
go back to reference Watanabe M, Sei H, Stonehart P (1989) The influence of platinum crystallite size on the electroreduction of oxygen. J Electroanal Chem Interfacial Electrochem 261:375–387CrossRef Watanabe M, Sei H, Stonehart P (1989) The influence of platinum crystallite size on the electroreduction of oxygen. J Electroanal Chem Interfacial Electrochem 261:375–387CrossRef
111.
go back to reference Zhang S, Chen S (2013) Enhanced-electrocatalytic activity of Pt nanoparticles supported on nitrogen-doped carbon for the oxygen reduction reaction. J Power Sources 240:60–65CrossRef Zhang S, Chen S (2013) Enhanced-electrocatalytic activity of Pt nanoparticles supported on nitrogen-doped carbon for the oxygen reduction reaction. J Power Sources 240:60–65CrossRef
112.
go back to reference Imaoka T, Kitazawa H, Chun W-J, Omura S, Albrecht K, Yamamoto K (2013) Magic number Pt13 and misshapen Pt12 clusters: which one is the better catalyst? J Am Chem Soc 135:13089–13095CrossRef Imaoka T, Kitazawa H, Chun W-J, Omura S, Albrecht K, Yamamoto K (2013) Magic number Pt13 and misshapen Pt12 clusters: which one is the better catalyst? J Am Chem Soc 135:13089–13095CrossRef
113.
go back to reference Yamamoto K, Imaoka T (2014) Precision synthesis of subnanoparticles using dendrimers as a superatom synthesizer. Acc Chem Res 47:1127–1136 Yamamoto K, Imaoka T (2014) Precision synthesis of subnanoparticles using dendrimers as a superatom synthesizer. Acc Chem Res 47:1127–1136
114.
go back to reference Kinoshita K (1990) Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. J Electrochem Soc 137:845–848CrossRef Kinoshita K (1990) Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. J Electrochem Soc 137:845–848CrossRef
115.
go back to reference Nesselberger M, Ashton S, Meier JC, Katsounaros I, Mayrhofer KJJ, Arenz M (2011) The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models. J Am Chem Soc 133:17428–17433CrossRef Nesselberger M, Ashton S, Meier JC, Katsounaros I, Mayrhofer KJJ, Arenz M (2011) The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models. J Am Chem Soc 133:17428–17433CrossRef
116.
go back to reference Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J Phys Chem B 109:14433–14440CrossRef Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J Phys Chem B 109:14433–14440CrossRef
117.
go back to reference Berber MR, Hafez IH, Fujigaya T, Nakashima N (2015) A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes. Sci Rep 5: art no 16711 Berber MR, Hafez IH, Fujigaya T, Nakashima N (2015) A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes. Sci Rep 5: art no 16711
Metadata
Title
Carbon Nanotube-Based Fuel Cell Catalysts-Comparison with Carbon Black
Authors
Naotoshi Nakashima
Tsuyohiko Fujigaya
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-92917-0_1