Skip to main content
Top

2018 | OriginalPaper | Chapter

Cardiac MR Segmentation from Undersampled k-space Using Deep Latent Representation Learning

Authors : Jo Schlemper, Ozan Oktay, Wenjia Bai, Daniel C. Castro, Jinming Duan, Chen Qin, Jo V. Hajnal, Daniel Rueckert

Published in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2018

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Reconstructing magnetic resonance imaging (MRI) from undersampled k-space enables the accelerated acquisition of MRI but is a challenging problem. However, in many diagnostic scenarios, perfect reconstructions are not necessary as long as the images allow clinical practitioners to extract clinically relevant parameters. In this work, we present a novel deep learning framework for reconstructing such clinical parameters directly from undersampled data, expanding on the idea of application-driven MRI. We propose two deep architectures, an end-to-end synthesis network and a latent feature interpolation network, to predict cardiac segmentation maps from extremely undersampled dynamic MRI data, bypassing the usual image reconstruction stage altogether. We perform a large-scale simulation study using UK Biobank data containing nearly 1000 test subjects and show that with the proposed approaches, an accurate estimate of clinical parameters such as ejection fraction can be obtained from fewer than 10 k-space lines per time-frame.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Caballero, J., Bai, W., Price, A.N., Rueckert, D., Hajnal, J.V.: Application-driven MRI: joint reconstruction and segmentation from undersampled MRI data. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 106–113. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_14CrossRef Caballero, J., Bai, W., Price, A.N., Rueckert, D., Hajnal, J.V.: Application-driven MRI: joint reconstruction and segmentation from undersampled MRI data. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 106–113. Springer, Cham (2014). https://​doi.​org/​10.​1007/​978-3-319-10404-1_​14CrossRef
3.
go back to reference Gaur, P., Grissom, W.A.: Accelerated MRI thermometry by direct estimation of temperature from undersampled k-space data. Magn. Reson. Med. 73(5), 1914–1925 (2015)CrossRef Gaur, P., Grissom, W.A.: Accelerated MRI thermometry by direct estimation of temperature from undersampled k-space data. Magn. Reson. Med. 73(5), 1914–1925 (2015)CrossRef
5.
go back to reference Guo, Y., Lingala, S.G., Zhu, Y., Lebel, R.M., Nayak, K.S.: Direct estimation of tracer-kinetic parameter maps from highly undersampled brain dynamic contrast enhanced MRI. Magn. Reson. Med. 78(4), 1566–1578 (2017)CrossRef Guo, Y., Lingala, S.G., Zhu, Y., Lebel, R.M., Nayak, K.S.: Direct estimation of tracer-kinetic parameter maps from highly undersampled brain dynamic contrast enhanced MRI. Magn. Reson. Med. 78(4), 1566–1578 (2017)CrossRef
6.
go back to reference Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. (2017) Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. (2017)
7.
go back to reference Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)CrossRef Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)CrossRef
8.
go back to reference Petersen, S.E., et al.: UK Biobank’s cardiovascular magnetic resonance protocol. J. Cardiovasc. Magn. Reson. 18(1), 8 (2016)CrossRef Petersen, S.E., et al.: UK Biobank’s cardiovascular magnetic resonance protocol. J. Cardiovasc. Magn. Reson. 18(1), 8 (2016)CrossRef
10.
go back to reference Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37 (2017) Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37 (2017)
Metadata
Title
Cardiac MR Segmentation from Undersampled k-space Using Deep Latent Representation Learning
Authors
Jo Schlemper
Ozan Oktay
Wenjia Bai
Daniel C. Castro
Jinming Duan
Chen Qin
Jo V. Hajnal
Daniel Rueckert
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-030-00928-1_30

Premium Partner