Skip to main content
Top

2018 | OriginalPaper | Chapter

Cascading Failure Based on Load Redistribution of a Smart Grid with Different Coupling Modes

Authors : WenJie Kang, PeiDong Zhu, Gang Hu

Published in: Computational Science – ICCS 2018

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As one of the most important properties of the power grid, the voltage load plays an important role in the cascading failure of the smart grid and load redistribution can accelerate the speed of the failure by triggering more nodes to overload and fail. The subnet structure and different coupling modes also affect the robustness of the smart grid. However, the research on the effect of load, subnet structure and coupling mode on the cascading failure of the smart grid is still rare. In this paper, the smart grid with two-way coupling link consists of a power grid with small world topology and a communication network with scale-free topology. An improved load-capacity model is applied to overload-induced failure in the power grid and node importance (NI) is used as an evaluation index to assess the effect of nodes on the power grid and communication network. We propose three kinds of coupling modes based on NI of nodes between the cyber and physical subnets, i.e., Random Coupling in Subnets (RCIS), Assortative Coupling in Subnets (ACIS) and Disassortative Coupling in Subnets (DCIS). In order to improve the robustness of the smart grid, a cascading failure model based on load redistribution is proposed to analyze the influence of different coupling modes on the cascading failure of the smart grid under both a targeted attack and random attack. Some findings are summarized as: (I) The robustness of the smart grid is improved by increasing the tolerance \(\alpha \). (II) ACIS applied to the bottom-up coupling link is more beneficial in enhancing the robustness of the smart grid than DCIS and RCIS, regardless of a targeted attack or random attack.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Rosato, V., Issacharoff, L., Tiriticco, F., et al.: Modelling interdependent infrastructures using interacting dynamical models. Int. J. Crit. Infrastruct. 4(1/2), 63–79 (2008)CrossRef Rosato, V., Issacharoff, L., Tiriticco, F., et al.: Modelling interdependent infrastructures using interacting dynamical models. Int. J. Crit. Infrastruct. 4(1/2), 63–79 (2008)CrossRef
2.
go back to reference Parshani, R., Buldyrev, S.V., Havlin, S.: Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett. 105(4), 048701 (2010)CrossRef Parshani, R., Buldyrev, S.V., Havlin, S.: Interdependent networks: reducing the coupling strength leads to a change from a first to second order percolation transition. Phys. Rev. Lett. 105(4), 048701 (2010)CrossRef
3.
go back to reference Gao, J., Buldyrev, S.V., Stanley, H.E., et al.: Percolation of a general network of networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 88(6), 062816 (2013)CrossRef Gao, J., Buldyrev, S.V., Stanley, H.E., et al.: Percolation of a general network of networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 88(6), 062816 (2013)CrossRef
4.
go back to reference Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010)CrossRef Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010)CrossRef
5.
go back to reference Vespignani, A.: Complex networks: the fragility of interdependency. Nature 464(7291), 984 (2010)CrossRef Vespignani, A.: Complex networks: the fragility of interdependency. Nature 464(7291), 984 (2010)CrossRef
6.
go back to reference Chakravartula, S.: Complex networks: structure and dynamics. Diss. Theses - Gradworks 424(4–5), 175308 (2014)MathSciNet Chakravartula, S.: Complex networks: structure and dynamics. Diss. Theses - Gradworks 424(4–5), 175308 (2014)MathSciNet
7.
go back to reference Dong, G., Tian, L., Zhou, D., et al.: Robustness of n interdependent networks with partial support-dependence relationship. EPL 102(102), 68004 (2013)CrossRef Dong, G., Tian, L., Zhou, D., et al.: Robustness of n interdependent networks with partial support-dependence relationship. EPL 102(102), 68004 (2013)CrossRef
8.
go back to reference Chen, Z., Du, W.B., Cao, X.B., et al.: Cascading failure of interdependent networks with different coupling preference under targeted attack. Chaos Solitons Fractals Interdisc. J. Nonlinear Sci. Nonequilibrium Complex Phenom. 80, 7–12 (2015)MathSciNetMATH Chen, Z., Du, W.B., Cao, X.B., et al.: Cascading failure of interdependent networks with different coupling preference under targeted attack. Chaos Solitons Fractals Interdisc. J. Nonlinear Sci. Nonequilibrium Complex Phenom. 80, 7–12 (2015)MathSciNetMATH
9.
go back to reference Wang, J., Li, Y., Zheng, Q.: Cascading load model in interdependent networks with coupled strength. Phys. A Stat. Mech. Appl. 430, 242–253 (2015)MathSciNetCrossRef Wang, J., Li, Y., Zheng, Q.: Cascading load model in interdependent networks with coupled strength. Phys. A Stat. Mech. Appl. 430, 242–253 (2015)MathSciNetCrossRef
10.
go back to reference Han, H., Yang, R.: Improvement on load-induced cascading failure in asymmetrical inter-dependent networks: modeling and analysis. Math. Probl. Eng. 2015(8), 1–10 (2015) Han, H., Yang, R.: Improvement on load-induced cascading failure in asymmetrical inter-dependent networks: modeling and analysis. Math. Probl. Eng. 2015(8), 1–10 (2015)
11.
go back to reference Huang, X., Shao, S., Wang, H., et al.: The robustness of interdependent clustered networks. EPL (Europhys. Lett.) 101(1), 18002–18007 (2012)CrossRef Huang, X., Shao, S., Wang, H., et al.: The robustness of interdependent clustered networks. EPL (Europhys. Lett.) 101(1), 18002–18007 (2012)CrossRef
12.
go back to reference Tian, M., Wang, X., Dong, Z., et al.: Cascading failures of interdependent modular scale-free networks with different coupling preferences. EPL 111(1), 18007 (2015)CrossRef Tian, M., Wang, X., Dong, Z., et al.: Cascading failures of interdependent modular scale-free networks with different coupling preferences. EPL 111(1), 18007 (2015)CrossRef
13.
go back to reference Cheng, Z., Cao, J.: Cascade of failures in interdependent networks coupled by different type networks. Phys. A Stat. Mech. Appl. 430, 193–200 (2015)CrossRef Cheng, Z., Cao, J.: Cascade of failures in interdependent networks coupled by different type networks. Phys. A Stat. Mech. Appl. 430, 193–200 (2015)CrossRef
14.
go back to reference Babaei, M., Ghassemieh, H., Jalili, M.: Cascading failure tolerance of modular small-world networks. IEEE Trans. Circ. Syst. II Exp. Briefs 58(8), 527–531 (2011) Babaei, M., Ghassemieh, H., Jalili, M.: Cascading failure tolerance of modular small-world networks. IEEE Trans. Circ. Syst. II Exp. Briefs 58(8), 527–531 (2011)
15.
go back to reference Cai, Y., Cao, Y., Li, Y., et al.: Cascading failure analysis considering interaction between power grids and communication networks. IEEE Trans. Smart Grid 7(1), 530–538 (2016)CrossRef Cai, Y., Cao, Y., Li, Y., et al.: Cascading failure analysis considering interaction between power grids and communication networks. IEEE Trans. Smart Grid 7(1), 530–538 (2016)CrossRef
16.
go back to reference Zhao, Z., Zhang, P., Yang, H., et al.: Cascading failures in interconnected networks with dynamical redistribution of loads. Physica A-Stat. Mech. Appl. 433, 204–210 (2015)CrossRef Zhao, Z., Zhang, P., Yang, H., et al.: Cascading failures in interconnected networks with dynamical redistribution of loads. Physica A-Stat. Mech. Appl. 433, 204–210 (2015)CrossRef
17.
go back to reference Yan, J., Zhu, Y., He, H., et al.: Multi-contingency cascading analysis of smart grid based on self-organizing map. IEEE Trans. Inf. Forensics Secur. 8(4), 646–656 (2013)CrossRef Yan, J., Zhu, Y., He, H., et al.: Multi-contingency cascading analysis of smart grid based on self-organizing map. IEEE Trans. Inf. Forensics Secur. 8(4), 646–656 (2013)CrossRef
18.
go back to reference Havlin, S.: Robustness of a network formed by \(n\) interdependent networks with a one-to-one correspondence of dependent nodes. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 85(6), 3112–3113 (2012)MathSciNet Havlin, S.: Robustness of a network formed by \(n\) interdependent networks with a one-to-one correspondence of dependent nodes. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 85(6), 3112–3113 (2012)MathSciNet
19.
go back to reference Habib, M.F.: Cascading-failure-resilient interconnection for interdependent power grid - optical networks. In: Optical Fiber Communications Conference and Exhibition, pp. 1–3. IEEE (2015) Habib, M.F.: Cascading-failure-resilient interconnection for interdependent power grid - optical networks. In: Optical Fiber Communications Conference and Exhibition, pp. 1–3. IEEE (2015)
20.
go back to reference Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 69(4 Pt 2), 045104 (2004)CrossRef Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 69(4 Pt 2), 045104 (2004)CrossRef
21.
go back to reference Zhang, J., Song, B., Zhang, Z., et al.: An approach for modeling vulnerability of the network of networks. Phys. A Stat. Mech. Appl. 412(10), 127–136 (2014)MathSciNetCrossRef Zhang, J., Song, B., Zhang, Z., et al.: An approach for modeling vulnerability of the network of networks. Phys. A Stat. Mech. Appl. 412(10), 127–136 (2014)MathSciNetCrossRef
22.
go back to reference Hua, Q.: Attack structural vulnerability of power grids: a hybrid approach based on complex networks. Phys. A Stat. Mech. Appl. 389(3), 595–603 (2010)CrossRef Hua, Q.: Attack structural vulnerability of power grids: a hybrid approach based on complex networks. Phys. A Stat. Mech. Appl. 389(3), 595–603 (2010)CrossRef
Metadata
Title
Cascading Failure Based on Load Redistribution of a Smart Grid with Different Coupling Modes
Authors
WenJie Kang
PeiDong Zhu
Gang Hu
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-93698-7_25

Premium Partner