Skip to main content
Top

2020 | OriginalPaper | Chapter

Cathodoluminescent UV Sources for Biomedical Applications

Authors : D. I. Ozol, E. P. Sheshin, M. I. Danilkin, N. Yu. Vereschagina

Published in: 4th International Conference on Nanotechnologies and Biomedical Engineering

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Ultraviolet radiation is widely used in biomedical practice. In some areas, its use is limited by the lack of sufficiently cheap sources of the desired spectrum and power. The prototypes of mercury-free cathodoluminescent UV-radiation sources are manufactured. They use field emission cathodes on the basis of carbon fiber. These sources exhibit various UV spectra depending on the phosphors used. New types of UV-emitting cathode-ray-tube phosphors are suggested.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kowalski, W.: Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection. Springer, Heidelberg (2010) Kowalski, W.: Ultraviolet Germicidal Irradiation Handbook: UVGI for Air and Surface Disinfection. Springer, Heidelberg (2010)
2.
go back to reference Mehta, D., Lim, H.W.: Ultraviolet B phototherapy for psoriasis: review of practical guidelines. Am. J. Clin. Dermatol. 17(2), 125–133 (2016)CrossRef Mehta, D., Lim, H.W.: Ultraviolet B phototherapy for psoriasis: review of practical guidelines. Am. J. Clin. Dermatol. 17(2), 125–133 (2016)CrossRef
3.
go back to reference Zhang, P., Wu, M.X.: A clinical review of phototherapy for psoriasis. Lasers Med. Sci. 33(1), 173–180 (2018)CrossRef Zhang, P., Wu, M.X.: A clinical review of phototherapy for psoriasis. Lasers Med. Sci. 33(1), 173–180 (2018)CrossRef
4.
go back to reference Scherschun, L., Kim, J.J., Lim, H.W.: Narrow-band ultraviolet B is a useful and well-tolerated treatment for vitiligo. J. Am. Acad. Dermatol. 44(6), 999–1003 (2001)CrossRef Scherschun, L., Kim, J.J., Lim, H.W.: Narrow-band ultraviolet B is a useful and well-tolerated treatment for vitiligo. J. Am. Acad. Dermatol. 44(6), 999–1003 (2001)CrossRef
6.
go back to reference Muramoto, Y., Kimura, M., Nouda, S.: Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp. Semicond. Sci. Technol. 29(8), 084004 (2014)CrossRef Muramoto, Y., Kimura, M., Nouda, S.: Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp. Semicond. Sci. Technol. 29(8), 084004 (2014)CrossRef
7.
go back to reference Kneissl, M., Rass, J.: III-Nitride ultraviolet emitters. Springer, Cham (2016)CrossRef Kneissl, M., Rass, J.: III-Nitride ultraviolet emitters. Springer, Cham (2016)CrossRef
8.
go back to reference Beck, S.E., Ryu, H., Boczek, L.A., et al.: Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy. Water Res. 109, 207–216 (2017)CrossRef Beck, S.E., Ryu, H., Boczek, L.A., et al.: Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy. Water Res. 109, 207–216 (2017)CrossRef
9.
go back to reference Watanabe, K., Taniguchi, T., Niiyama, T., et al.: Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photonics 3(10), 591–594 (2009)CrossRef Watanabe, K., Taniguchi, T., Niiyama, T., et al.: Far-ultraviolet plane-emission handheld device based on hexagonal boron nitride. Nat. Photonics 3(10), 591–594 (2009)CrossRef
10.
go back to reference Ishinaga, T., Iguchi, T., Kominami, H., et al.: Luminescent property and mechanism of ZnAl2O4 ultraviolet emitting phosphor. Phys. Status Solidi C 12(6), 797–800 (2015)CrossRef Ishinaga, T., Iguchi, T., Kominami, H., et al.: Luminescent property and mechanism of ZnAl2O4 ultraviolet emitting phosphor. Phys. Status Solidi C 12(6), 797–800 (2015)CrossRef
12.
go back to reference Yoo, S.T., Hong, J.H., Kang, J.S., Park, K.C.: Deep-ultraviolet light source with a carbon nanotube cold-cathode electron beam. J. Vac. Sci. Technol. B 36(2), 02C103 (2018)CrossRef Yoo, S.T., Hong, J.H., Kang, J.S., Park, K.C.: Deep-ultraviolet light source with a carbon nanotube cold-cathode electron beam. J. Vac. Sci. Technol. B 36(2), 02C103 (2018)CrossRef
14.
go back to reference Vereschagina, N.Y., Danilkin, M.I., Kazaryan, M.A., et al.: Cathodoluminescent UV-radiation sources. In: Proceedings of the SPIE, 10614, International Conference on Atomic and Molecular Pulsed Lasers XIII, 106141F (2018). https://doi.org/10.1117/12.2303579 Vereschagina, N.Y., Danilkin, M.I., Kazaryan, M.A., et al.: Cathodoluminescent UV-radiation sources. In: Proceedings of the SPIE, 10614, International Conference on Atomic and Molecular Pulsed Lasers XIII, 106141F (2018). https://​doi.​org/​10.​1117/​12.​2303579
15.
go back to reference Broxtermann, M., Den Engelsen, D., Fern, G.R., et al.: Cathodoluminescence and photoluminescence of YPO4:Pr3+, Y2SiO5:Pr3+, YBO3:Pr3+, and YPO4:Bi3+. ECS J. Solid State Sci. Technol. 6(4), R47–R52 (2017)CrossRef Broxtermann, M., Den Engelsen, D., Fern, G.R., et al.: Cathodoluminescence and photoluminescence of YPO4:Pr3+, Y2SiO5:Pr3+, YBO3:Pr3+, and YPO4:Bi3+. ECS J. Solid State Sci. Technol. 6(4), R47–R52 (2017)CrossRef
16.
go back to reference Levshin, V.L., Ya, Arapova E., Popov, Y.M., et al.: Investigations of the cathodoluminescence of zinc sulfide and certain other luminophores. Trudy FIAN 23, 64–135 (1963) Levshin, V.L., Ya, Arapova E., Popov, Y.M., et al.: Investigations of the cathodoluminescence of zinc sulfide and certain other luminophores. Trudy FIAN 23, 64–135 (1963)
18.
go back to reference Aluker, E., Lusis, D., Chernov, S.: Electronic Excitations and Radioluminescence of Alkali Halide Crystals. Zinatne, Riga (1979) Aluker, E., Lusis, D., Chernov, S.: Electronic Excitations and Radioluminescence of Alkali Halide Crystals. Zinatne, Riga (1979)
20.
go back to reference Baturin, A.S., Yeskin, I.N., Trufanov, A.I., et al.: Electron gun with field emission cathode of carbon fiber bundle. J. Vac. Sci. Technol. B 21(1), 354–357 (2003)CrossRef Baturin, A.S., Yeskin, I.N., Trufanov, A.I., et al.: Electron gun with field emission cathode of carbon fiber bundle. J. Vac. Sci. Technol. B 21(1), 354–357 (2003)CrossRef
21.
Metadata
Title
Cathodoluminescent UV Sources for Biomedical Applications
Authors
D. I. Ozol
E. P. Sheshin
M. I. Danilkin
N. Yu. Vereschagina
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-31866-6_60