Skip to main content
Top

2019 | OriginalPaper | Chapter

Causal Discovery of Linear Non-Gaussian Acyclic Model with Small Samples

Authors : Feng Xie, Ruichu Cai, Yan Zeng, Zhifeng Hao

Published in: Intelligence Science and Big Data Engineering. Big Data and Machine Learning

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Linear non-Gaussian Acyclic Model (LiNGAM) is a well-known model for causal discovery from observational data. Existing estimation methods are usually based on infinite sample theory and often fail to obtain an ideal result in the small samples. However, it is commonplace to encounter non-Gaussian data with small or medium sample sizes in practice. In this paper, we propose a Minimal Set-based LiNGAM algorithm (MiS-LiNGAM) to address the LiNGAM with small samples. MiS-LiNGAM is a two-phase and greedy search algorithm. Specifically, in the first phase, we find the skeleton of the network using the regression-based conditional independence test, which helps us reduce the complexity in finding the minimal LiNGAM set of the second phase. Further, this independence test we applied guarantees the reliability when the number of conditioning variables increases. In the second phase, we give an efficient method to iteratively select the minimal LiNGAM set with the skeleton and learn the causal network. We also present the corresponding theoretical derivation. The experimental results on simulated networks and real networks are presented to demonstrate the efficacy of our method.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Matlab package available at https://​www.​cs.​helsinki.​fi/​u/​ahyvarin/​code/​pwcausal/​, Here, we adopt mxnt (maximum entropy approximations) to estimate the likelihood ratios in the Pairwise-LiNGAM algorithm.
 
Literature
1.
go back to reference Spirtes, P., Glymour, C., Scheines, R., Tillman, R.: Automated search for causal relations: theory and practice (2010) Spirtes, P., Glymour, C., Scheines, R., Tillman, R.: Automated search for causal relations: theory and practice (2010)
2.
go back to reference Pearl, J.: The seven tools of causal inference, with reflections on machine learning. Commun. ACM 62(3), 54–60 (2019)CrossRef Pearl, J.: The seven tools of causal inference, with reflections on machine learning. Commun. ACM 62(3), 54–60 (2019)CrossRef
3.
go back to reference Lele, X., et al.: A pooling-lingam algorithm for effective connectivity analysis of fMRI data. Front. Comput. Neurosci. 8, 125 (2014)MathSciNet Lele, X., et al.: A pooling-lingam algorithm for effective connectivity analysis of fMRI data. Front. Comput. Neurosci. 8, 125 (2014)MathSciNet
4.
go back to reference Sanchez-Romero, R., Ramsey, J.D., Zhang, K., Glymour, M.R.K., Huang, B., Glymour, C.: Estimating feedforward and feedback effective connections from fMRI time series: assessments of statistical methods. Netw. Neurosci. 3(2), 274–306 (2019)CrossRef Sanchez-Romero, R., Ramsey, J.D., Zhang, K., Glymour, M.R.K., Huang, B., Glymour, C.: Estimating feedforward and feedback effective connections from fMRI time series: assessments of statistical methods. Netw. Neurosci. 3(2), 274–306 (2019)CrossRef
5.
go back to reference Zhang, K., Chan, L.: Minimal nonlinear distortion principle for nonlinear independent component analysis. J. Mach. Learn. Res. 9(Nov), 2455–2487 (2008)MathSciNetMATH Zhang, K., Chan, L.: Minimal nonlinear distortion principle for nonlinear independent component analysis. J. Mach. Learn. Res. 9(Nov), 2455–2487 (2008)MathSciNetMATH
6.
go back to reference Al-Yahyaee, K.H., Mensi, W., Al-Jarrah, I.M.W., Tiwari, A.K.: Testing for the Granger-causality between returns in the U.S and GIPSI stock markets. Phys. A: Stat. Mech. Appl. 531, 120950 (2019)CrossRef Al-Yahyaee, K.H., Mensi, W., Al-Jarrah, I.M.W., Tiwari, A.K.: Testing for the Granger-causality between returns in the U.S and GIPSI stock markets. Phys. A: Stat. Mech. Appl. 531, 120950 (2019)CrossRef
7.
go back to reference Cai, R., Zhang, Z., Hao, Z., Winslett, M.: Understanding social causalities behind human action sequences. IEEE Trans. Neural Netw. Learn. Syst. 28(8), 1801–1813 (2016)MathSciNetCrossRef Cai, R., Zhang, Z., Hao, Z., Winslett, M.: Understanding social causalities behind human action sequences. IEEE Trans. Neural Netw. Learn. Syst. 28(8), 1801–1813 (2016)MathSciNetCrossRef
8.
go back to reference Helajärvi, H., Rosenström, T., et al.: Exploring causality between TV viewing and weight change in young and middle-aged adults. The cardiovascular risk in young finns study. PLoS One 9(7), e101860 (2014)CrossRef Helajärvi, H., Rosenström, T., et al.: Exploring causality between TV viewing and weight change in young and middle-aged adults. The cardiovascular risk in young finns study. PLoS One 9(7), e101860 (2014)CrossRef
9.
go back to reference Spirtes, P., Glymour, C.: An algorithm for fast recovery of sparse causal graphs. Soc. Sci. Comput. Rev. 9(1), 62–72 (1991)CrossRef Spirtes, P., Glymour, C.: An algorithm for fast recovery of sparse causal graphs. Soc. Sci. Comput. Rev. 9(1), 62–72 (1991)CrossRef
10.
go back to reference Pearl, J., Verma, T.: A theory of inferred causation. In: Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning, KR 1991, pp. 441–452 (1991) Pearl, J., Verma, T.: A theory of inferred causation. In: Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning, KR 1991, pp. 441–452 (1991)
11.
go back to reference Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A.: A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7(Oct), 2003–2030 (2006)MathSciNetMATH Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A.: A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7(Oct), 2003–2030 (2006)MathSciNetMATH
12.
go back to reference Shimizu, S.: LiNGAM: non-Gaussian methods for estimating causal structures. Behaviormetrika 41(1), 65–98 (2014)CrossRef Shimizu, S.: LiNGAM: non-Gaussian methods for estimating causal structures. Behaviormetrika 41(1), 65–98 (2014)CrossRef
13.
go back to reference Shimizu, S.: Non-gaussian methods for causal structure learning. Prev. Sci. 20, 1–11 (2018) Shimizu, S.: Non-gaussian methods for causal structure learning. Prev. Sci. 20, 1–11 (2018)
14.
go back to reference Hoyer, P.O., Hyttinen, A.: Bayesian discovery of linear acyclic causal models. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 240–248. AUAI Press (2009) Hoyer, P.O., Hyttinen, A.: Bayesian discovery of linear acyclic causal models. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pp. 240–248. AUAI Press (2009)
15.
go back to reference Shimizu, S., et al.: DirectLiNGAM: a direct method for learning a linear non-Gaussian structural equation model. J. Mach. Learn. Res. 12(Apr), 1225–1248 (2011)MathSciNetMATH Shimizu, S., et al.: DirectLiNGAM: a direct method for learning a linear non-Gaussian structural equation model. J. Mach. Learn. Res. 12(Apr), 1225–1248 (2011)MathSciNetMATH
16.
go back to reference Hyvärinen, A., Smith, S.M.: Pairwise likelihood ratios for estimation of non-Gaussian structural equation models. J. Mach. Learn. Res. 14(Jan), 111–152 (2013)MathSciNetMATH Hyvärinen, A., Smith, S.M.: Pairwise likelihood ratios for estimation of non-Gaussian structural equation models. J. Mach. Learn. Res. 14(Jan), 111–152 (2013)MathSciNetMATH
17.
go back to reference Kagan, A.M., Rao, C.R., Linnik, Y.V.: Characterization problems in mathematical statistics (1973) Kagan, A.M., Rao, C.R., Linnik, Y.V.: Characterization problems in mathematical statistics (1973)
18.
go back to reference Zhang, H., Zhou, S., Zhang, K., Guan, J.: Causal discovery using regression-based conditional independence tests. In: Thirty-First AAAI Conference on Artificial Intelligence (2017) Zhang, H., Zhou, S., Zhang, K., Guan, J.: Causal discovery using regression-based conditional independence tests. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
19.
go back to reference Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. MIT Press, Cambridge (2000)MATH Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. MIT Press, Cambridge (2000)MATH
20.
go back to reference Pearl, J.: Causality: Models, Reasoning and Inference, vol. 29. Springer, Heidelberg (2000)MATH Pearl, J.: Causality: Models, Reasoning and Inference, vol. 29. Springer, Heidelberg (2000)MATH
21.
go back to reference Sogawa, Y., Shimizu, S., Shimamura, T., HyväRinen, A., Washio, T., Imoto, S.: Estimating exogenous variables in data with more variables than observations. Neural Netw. 24(8), 875–880 (2011)MATHCrossRef Sogawa, Y., Shimizu, S., Shimamura, T., HyväRinen, A., Washio, T., Imoto, S.: Estimating exogenous variables in data with more variables than observations. Neural Netw. 24(8), 875–880 (2011)MATHCrossRef
22.
go back to reference Cai, R., Zhang, Z., Hao, Z.: SADA: a general framework to support robust causation discovery. In: International Conference on Machine Learning, pp. 208–216 (2013) Cai, R., Zhang, Z., Hao, Z.: SADA: a general framework to support robust causation discovery. In: International Conference on Machine Learning, pp. 208–216 (2013)
23.
go back to reference Hyvärinen, A., Zhang, K., Shimizu, S., Hoyer, P.O.: Estimation of a structural vector autoregression model using non-gaussianity. J. Mach. Learn. Res. 11(May), 1709–1731 (2010)MathSciNetMATH Hyvärinen, A., Zhang, K., Shimizu, S., Hoyer, P.O.: Estimation of a structural vector autoregression model using non-gaussianity. J. Mach. Learn. Res. 11(May), 1709–1731 (2010)MathSciNetMATH
24.
go back to reference Hoyer, P.O., Shimizu, S., Kerminen, A.J., Palviainen, M.: Estimation of causal effects using linear non-gaussian causal models with hidden variables. Int. J. Approx. Reason. 49(2), 362–378 (2008)MathSciNetMATHCrossRef Hoyer, P.O., Shimizu, S., Kerminen, A.J., Palviainen, M.: Estimation of causal effects using linear non-gaussian causal models with hidden variables. Int. J. Approx. Reason. 49(2), 362–378 (2008)MathSciNetMATHCrossRef
25.
go back to reference Shimizu, S., Bollen, K.: Bayesian estimation of causal direction in acyclic structural equation models with individual-specific confounder variables and non-Gaussian distributions. J. Mach. Learn. Res. 15(1), 2629–2652 (2014)MathSciNetMATH Shimizu, S., Bollen, K.: Bayesian estimation of causal direction in acyclic structural equation models with individual-specific confounder variables and non-Gaussian distributions. J. Mach. Learn. Res. 15(1), 2629–2652 (2014)MathSciNetMATH
26.
go back to reference Loh, P.-L., Bühlmann, P.: High-dimensional learning of linear causal networks via inverse covariance estimation. J. Mach. Learn. Res. 15(1), 3065–3105 (2014)MathSciNetMATH Loh, P.-L., Bühlmann, P.: High-dimensional learning of linear causal networks via inverse covariance estimation. J. Mach. Learn. Res. 15(1), 3065–3105 (2014)MathSciNetMATH
27.
go back to reference Cai, R., Xie, F., Chen, W., Hao, Z.: An efficient kurtosis-based causal discovery method for linear non-Gaussian acyclic data. In 2017 IEEE/ACM 25th International Symposium on Quality of Service, pp. 1–6. IEEE (2017) Cai, R., Xie, F., Chen, W., Hao, Z.: An efficient kurtosis-based causal discovery method for linear non-Gaussian acyclic data. In 2017 IEEE/ACM 25th International Symposium on Quality of Service, pp. 1–6. IEEE (2017)
28.
go back to reference Hoyer, P.O., et al.: Causal discovery of linear acyclic models with arbitrary distributions. In: Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence, pp. 282–289. AUAI Press (2008) Hoyer, P.O., et al.: Causal discovery of linear acyclic models with arbitrary distributions. In: Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence, pp. 282–289. AUAI Press (2008)
Metadata
Title
Causal Discovery of Linear Non-Gaussian Acyclic Model with Small Samples
Authors
Feng Xie
Ruichu Cai
Yan Zeng
Zhifeng Hao
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-36204-1_32

Premium Partner