Skip to main content
Top
Published in:
Cover of the book

Open Access 2022 | OriginalPaper | Chapter

8. Causality and a Theorem of Paley and Wiener

Authors : Christian Seifert, Sascha Trostorff, Marcus Waurick

Published in: Evolutionary Equations

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
download
DOWNLOAD
print
PRINT
insite
SEARCH
loading …

Abstract

In this chapter we turn our focus back to causal operators. In Chap. 5 we found out that material laws provide a class of causal and autonomous bounded operators. In this chapter we will present another proof of this fact, which rests on a result which characterises functions in \(L_2(\mathbb {R};H)\) with support contained in the non-negative reals; the celebrated Theorem of Paley and Wiener. With the help of this theorem, which is interesting in its own right, the proof of causality for material laws becomes very easy. At a first glance it seems that holomorphy of a material law is a rather strong assumption. In the second part of this chapter, however, we shall see that in designing autonomous and causal solution operators, there is no way of circumventing holomorphy.
In this chapter we turn our focus back to causal operators. In Chap. 5 we found out that material laws provide a class of causal and autonomous bounded operators. In this chapter we will present another proof of this fact, which rests on a result which characterises functions in \(L_2(\mathbb {R};H)\) with support contained in the non-negative reals; the celebrated Theorem of Paley and Wiener. With the help of this theorem, which is interesting in its own right, the proof of causality for material laws becomes very easy. At a first glance it seems that holomorphy of a material law is a rather strong assumption. In the second part of this chapter, however, we shall see that in designing autonomous and causal solution operators, there is no way of circumventing holomorphy.
In the following, let H be a Hilbert space, and we consider \(L_{2,\nu }(\mathbb {R}_{\geqslant 0};H)\) as the subspace of functions in \(L_{2,\nu }(\mathbb {R};H)\) vanishing on \(\left (-\infty ,0\right )\).

8.1 A Theorem of Paley and Wiener

We start with the following lemma, for which we need the notion of locally integrable functions. We define
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/MediaObjects/514400_1_En_8_Equa_HTML.png
Lemma 8.1.1
Let \(f\in L_{1,\mathrm {loc}}(\mathbb {R};H)\) . Then we have \(f\in L_{2}(\mathbb {R}_{\geqslant 0};H)\) if and only if \(f\in \bigcap _{\nu >0}L_{2,\nu }(\mathbb {R};H)\) with \(\sup _{\nu >0}\left \Vert f \right \Vert { }_{L_{2,\nu }(\mathbb {R};H)}<\infty \) . In the latter case we have that
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/MediaObjects/514400_1_En_8_Equb_HTML.png
Proof
Let \(f\in L_2(\mathbb {R}_{\geqslant 0};H)\) and ν > 0. Then we estimate
$$\displaystyle \begin{aligned} \int_{\mathbb{R}}\left\Vert f(t) \right\Vert {}_{H}^{2}\mathrm{e}^{-2\nu t}\,\mathrm{d} t & =\int_{\mathbb{R}_{\geqslant0}}\left\Vert f(t) \right\Vert {}_{H}^{2}\mathrm{e}^{-2\nu t}\,\mathrm{d} t \leqslant\int_{\mathbb{R}_{\geqslant0}}\left\Vert f(t) \right\Vert {}_{H}^{2}\,\mathrm{d} t =\left\Vert f \right\Vert {}_{L_2(\mathbb{R}_{\geqslant0};H)}^{2}, \end{aligned} $$
which proves that \(f\in L_{2,\nu }(\mathbb {R};H)\) with \(\left \Vert f \right \Vert { }_{L_{2,\nu }(\mathbb {R};H)}\leqslant \left \Vert f \right \Vert { }_{L_2(\mathbb {R}_{\geqslant 0};H)}\) for each ν > 0. Moreover, \(\left \Vert f \right \Vert { }_{L_{2,\nu }(\mathbb {R};H)}\to \left \Vert f \right \Vert { }_{L_2(\mathbb {R}_{\geqslant 0};H)}\) as ν → 0 by monotone convergence and since clearly \(\left \Vert f \right \Vert { }_{L_{2,\nu }(\mathbb {R};H)}\leqslant \left \Vert f \right \Vert { }_{L_{2,\mu }(\mathbb {R};H)}\) for \(0<\mu \leqslant \nu \) we obtain
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/MediaObjects/514400_1_En_8_Equd_HTML.png
Assume now that \(f\in \bigcap _{\nu >0}L_{2,\nu }(\mathbb {R};H)\) with https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq17_HTML.gif . This inequality yields
$$\displaystyle \begin{aligned} \sup_{\nu\in \left(0,\infty\right)}\int_{\left(-\infty,0\right)} \left\Vert f(t) \right\Vert ^2\mathrm{e}^{-2\nu t} \,\mathrm{d} t\leqslant C^2. \end{aligned}$$
Hence, the monotone convergence theorem yields that https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq18_HTML.gif for \(t\in \left (-\infty ,0\right )\) defines a function \(g\in L_1\left (-\infty ,0\right )\). Thus, [g = ] is a set of measure zero and thus \([f=0]\cap \left (-\infty ,0\right )=\left (-\infty , 0\right )\setminus [g=\infty ]\) has full measure in \(\left (-\infty ,0\right )\) implying that \( \operatorname {\mathrm {spt}} f\subseteq \mathbb {R}_{\geqslant 0}\).
Finally, from
$$\displaystyle \begin{aligned} \sup_{\nu\in \left(0,\infty\right)}\int_{\left(0,\infty\right)} \left\Vert f(t) \right\Vert ^2\mathrm{e}^{-2\nu t} \,\mathrm{d} t\leqslant C^2. \end{aligned}$$
we infer again by the monotone convergence theorem that \(t\mapsto \lim _{\nu \to 0}\left \Vert f(t) \right \Vert ^2 \mathrm {e}^{-2\nu t}=\left \Vert f(t) \right \Vert ^2\) defines a function in L 1(0, ), showing the remaining assertion. □
For the proof of the Paley–Wiener theorem we need a suitable space of holomorphic functions on the right half-plane, the so-called Hardy space \(\mathcal {H}_2(\mathbb {C}_{\operatorname {Re}>\nu };H)\), which we introduce in the following.
Definition
For \(\nu \in \mathbb {R}\) we define the Hardy space
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/MediaObjects/514400_1_En_8_Equg_HTML.png
and equip it with the norm \(\left \Vert \cdot \right \Vert { }_{\mathcal {H}_2(\mathbb {C}_{\operatorname {Re}>\nu };H)}\) defined by
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/MediaObjects/514400_1_En_8_Equh_HTML.png
We motivate the Theorem of Paley–Wiener first. For this, let \(f\in L_{2,\nu }(\mathbb {R}_{\geqslant 0};H)\) and define its Laplace transform as
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/MediaObjects/514400_1_En_8_Equ1_HTML.png
(8.1)
Note that \(\mathcal {L}f(z)=\mathcal {L}_{\operatorname {Re} z}f(\operatorname {Im} z)\) for all \(z\in \mathbb {C}_{\operatorname {Re}>\nu }\) due to the support constraint on f. Moreover, it is not difficult to see that the integral on the right-hand side of (8.1) exists as \(\big (t\mapsto \mathrm {e}^{-\rho t}f(t)\big )\in L_{1}(\mathbb {R}_{\geqslant 0};H)\cap L_2(\mathbb {R}_{\geqslant 0};H)\) for all ρ > ν. Hence, \(\mathcal {L}f\colon \mathbb {C}_{\operatorname {Re}>\nu }\to H\) is holomorphic (cf. Exercise 5.​6). Moreover, by Lemma 8.1.1
$$\displaystyle \begin{aligned} \sup_{\rho>\nu}\left\Vert \mathcal{L}f(\mathrm{i}\cdot+\rho) \right\Vert {}_{L_2(\mathbb{R};H)} & =\sup_{\rho>\nu}\left\Vert \mathcal{L}_{\rho}f \right\Vert {}_{L_2(\mathbb{R};H)} =\sup_{\rho>\nu}\left\Vert f \right\Vert {}_{L_{2,\rho}(\mathbb{R};H)}\\ & =\sup_{\rho>0}\left\Vert \mathrm{e}^{-\nu\cdot}f \right\Vert {}_{L_{2,\rho}(\mathbb{R};H)}\\ & =\left\Vert \mathrm{e}^{-\nu\cdot}f \right\Vert {}_{L_2(\mathbb{R};H)} = \left\Vert f \right\Vert {}_{L_{2,\nu}(\mathbb{R};H)}, \end{aligned} $$
which proves that
$$\displaystyle \begin{aligned} \mathcal{L}\colon L_{2,\nu}(\mathbb{R}_{\geqslant0};H) & \to\mathcal{H}_2(\mathbb{C}_{\operatorname{Re}>\nu};H)\\ f & \mapsto\big(z\mapsto\left(\mathcal{L}_{\operatorname{Re} z}f\right)(\operatorname{Im} z)\big) \end{aligned} $$
is well-defined and isometric. It turns out that \(\mathcal {L}\) is actually surjective, see Corollary 8.1.3 below. The surjectivity statement is contained in the following Theorem of Paley–Wiener, [78]. We mainly follow the proof given in [101, 19.2 Theorem].
Theorem 8.1.2 (Paley–Wiener)
Let \(g\in \mathcal {H}_2(\mathbb {C}_{\operatorname {Re}>0};H)\) . Then there exists an \(f\in L_2(\mathbb {R}_{\geqslant 0};H)\) such that
$$\displaystyle \begin{aligned} \mathcal{L}_{\nu}f=g(\mathrm{i}\cdot+\nu)\quad (\nu>0). \end{aligned}$$
Proof
For ν > 0 we set https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq36_HTML.gif and https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq37_HTML.gif . Moreover, we set https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq38_HTML.gif . We first prove that \(f\in \bigcap _{\nu >0}L_{2,\nu }(\mathbb {R};H)\) with \(\sup _{\nu >0}\left \Vert f \right \Vert { }_{L_{2,\nu }(\mathbb {R};H)}<\infty .\) For doing so, let a > 0, ρ > 0 and \(x\in \mathbb {R}\). Applying Cauchy’s integral theorem to the function z↦ezx g(z) and the curve γ, as indicated in Fig. 8.1, we obtain
$$\displaystyle \begin{aligned} \begin{gathered} 0 = \mathrm{i}\intop_{-a}^{a}\mathrm{e}^{(\mathrm{i} t+1)x}g(\mathrm{i} t+1)\,\mathrm{d} t-\intop_{\rho}^{1}\mathrm{e}^{(\mathrm{i} a+\kappa)x}g(\mathrm{i} a+\kappa)\,\mathrm{d}\kappa {} \\ \qquad -\mathrm{i}\intop_{-a}^{a}\mathrm{e}^{(\mathrm{i} t+\rho)x}g(\mathrm{i} t+\rho)\,\mathrm{d} t+\intop_{\rho}^{1}\mathrm{e}^{(-\mathrm{i} a+\kappa)x}g(-\mathrm{i} a+\kappa)\,\mathrm{d}\kappa. \end{gathered} \end{aligned} $$
(8.2)
Moreover, since
$$\displaystyle \begin{aligned} \intop_{\mathbb{R}}\left\Vert \intop_{\rho}^{1}\mathrm{e}^{(\pm\mathrm{i} a+\kappa)x}g(\pm\mathrm{i} a+\kappa)\,\mathrm{d}\kappa \right\Vert {}_{H}^{2}\,\mathrm{d} a & \leqslant \intop_{\mathbb{R}}\left\vert \intop_{\rho}^{1}\left\vert \mathrm{e}^{(\pm\mathrm{i} a+\kappa)x} \right\vert ^2\,\mathrm{d} \kappa \intop_\rho^1 \left\Vert g(\pm\mathrm{i} a+\kappa) \right\Vert {}_H^2\,\mathrm{d}\kappa \right\vert \,\mathrm{d} a\\ & \leqslant \left\vert \intop_{\rho}^{1}\mathrm{e}^{2\kappa x}\,\mathrm{d} \kappa \right\vert \left\vert \intop_\rho^1 \intop_{\mathbb{R}}\left\Vert g(\pm\mathrm{i} a+\kappa) \right\Vert {}_H^2 \,\mathrm{d} a \,\mathrm{d}\kappa \right\vert \\ & \leqslant\left\vert \int_{\rho}^{1}\mathrm{e}^{2\kappa x}\,\mathrm{d}\kappa \right\vert \left\vert 1-\rho \right\vert \left\Vert g \right\Vert {}_{\mathcal{H}_2(\mathbb{C}_{\operatorname{Re}>0};H)}^{2} <\infty, \end{aligned} $$
we infer that \(\left (a\mapsto \intop _{\rho }^{1}\mathrm {e}^{(\pm \mathrm {i} a+\kappa )x}g(\pm \mathrm {i} a+\kappa )\,\mathrm {d}\kappa \right )\in L_2(\mathbb {R};H)\) and thus, we find a sequence \((a_{n})_{n\in \mathbb {N}}\) in \(\mathbb {R}_{>0}\) such that a n → and
$$\displaystyle \begin{aligned} \intop_{\rho}^{1}\mathrm{e}^{(\pm\mathrm{i} a_{n}+\kappa)x}g(\pm\mathrm{i} a_{n}+\kappa)\,\mathrm{d}\kappa\to0 \end{aligned}$$
as n →. Hence, using (8.2) with a replaced by a n and letting n tend to infinity, we derive that
$$\displaystyle \begin{aligned} \intop_{-a_{n}}^{a_{n}}\mathrm{e}^{(\mathrm{i} t+1)x}g(\mathrm{i} t+1)\,\mathrm{d} t-\intop_{-a_{n}}^{a_{n}}\mathrm{e}^{(\mathrm{i} t+\rho)x}g(\mathrm{i} t+\rho)\,\mathrm{d} t\to0\quad (n\to\infty). \end{aligned}$$
Noting that for each μ > 0 we have
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/MediaObjects/514400_1_En_8_Equo_HTML.png
and that https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq45_HTML.gif in \(L_2(\mathbb {R};H)\) as n →, we may choose a subsequence (again denoted by (a n)n) such that
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/MediaObjects/514400_1_En_8_Equp_HTML.png
for almost every \(x\in \mathbb {R}\). Hence, \(f=\mathrm {e}^{(\cdot )}f_{1}=\exp (\rho \mathrm {m})f_{\rho }\) for each ρ > 0 and thus,
$$\displaystyle \begin{aligned} \intop_{\mathbb{R}}\left\Vert f(t) \right\Vert {}_{H}^{2}\mathrm{e}^{-2\rho t}\,\mathrm{d} t=\intop_{\mathbb{R}}\left\Vert f_{\rho}(t) \right\Vert {}_{H}^{2}\,\mathrm{d} t<\infty \end{aligned}$$
which shows \(f\in \bigcap _{\rho >0}L_{2,\rho }(\mathbb {R};H)\) with
$$\displaystyle \begin{aligned} \sup_{\rho>0}\left\Vert f \right\Vert {}_{L_{2,\rho}(\mathbb{R};H)}=\sup_{\rho>0}\left\Vert f_{\rho} \right\Vert {}_{L_2(\mathbb{R};H)}=\sup_{\rho>0}\left\Vert g_{\rho} \right\Vert {}_{L_2(\mathbb{R};H)}=\left\Vert g \right\Vert {}_{\mathcal{H}_2(\mathbb{C}_{\operatorname{Re}>0};H)}. \end{aligned}$$
Thus, \(f\in L_2(\mathbb {R}_{\geqslant 0};H)\) with \(\left \Vert f \right \Vert { }_{L_2(\mathbb {R}_{\geqslant 0};H)}=\left \Vert g \right \Vert { }_{\mathcal {H}_2(\mathbb {C}_{\operatorname {Re}>0};H)}\) by Lemma 8.1.1. Moreover,
$$\displaystyle \begin{aligned} \mathcal{L}_{\nu}f=\mathcal{F}\exp(-\nu\mathrm{m})f=\mathcal{F}\exp(-\nu m)\exp(\nu \mathrm{m})f_{\nu}=\mathcal{F}f_{\nu}=g_{\nu}=g(\mathrm{i}\cdot+\nu) \end{aligned}$$
for each ν > 0, which shows the representation formula for g. □
Summarising the results of Theorem 8.1.2 and the arguments carried out just before Theorem 8.1.2, we obtain the following statement.
Corollary 8.1.3
Let \(\nu \in \mathbb {R}\) . Then the mapping
$$\displaystyle \begin{aligned} \mathcal{L}\colon L_{2,\nu}(\mathbb{R}_{\geqslant0};H) & \to\mathcal{H}_2(\mathbb{C}_{\operatorname{Re}>\nu};H)\\ f & \mapsto\big(z\mapsto\left(\mathcal{L}_{\operatorname{Re} z}f\right)(\operatorname{Im} z)\big) \end{aligned} $$
is an isometric isomorphism. In particular, \(\mathcal {H}_2(\mathbb {C}_{\operatorname {Re}>\nu };H)\) is a Hilbert space.
Proof
We have argued already that \(\mathcal {L}\) is well-defined and isometric. Thus, we show that \(\mathcal {L}\) is onto, next. For this, let \(g\in \mathcal {H}_2(\mathbb {C}_{\operatorname {Re}>\nu };H)\) and define https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq57_HTML.gif for \(z\in \mathbb {C}_{\operatorname {Re}>0}\). Then \(\widetilde {g}\in \mathcal {H}_2(\mathbb {C}_{\operatorname {Re}>0};H)\) and thus, Theorem 8.1.2 yields the existence of \(\widetilde {f}\in L_2(\mathbb {R}_{\geqslant 0};H)\) with
$$\displaystyle \begin{aligned} g(\mathrm{i}\cdot+\rho)=\widetilde{g}(\mathrm{i}\cdot+\rho-\nu)=\mathcal{L}_{\rho-\nu}\widetilde{f}=\mathcal{L}_{\rho}\big(\mathrm{e}^{\nu\cdot}\widetilde{f}\,\big)\quad (\rho>\nu). \end{aligned}$$
Hence, setting https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq61_HTML.gif , we obtain \(\mathcal {L}f=g\). □
We can now provide an alternative proof of Theorem 5.​3.​6 by proving causality with the help of the Theorem of Paley–Wiener.
Proposition 8.1.4
Let \(M\colon \operatorname {dom}(M)\subseteq \mathbb {C}\to L(H)\) be a material law. Then for \(\nu >\mathrm {s}_{\mathrm {b}}\left ( M \right )\) we have \(M(\partial _{t,\nu })\in L(L_{2,\nu }(\mathbb {R};H))\) and M( t,ν) is causal and autonomous (see Exercise 5.7 ).
Proof
Let \(\nu >\mathrm {s}_{\mathrm {b}}\left ( M \right )\). Then \(M\colon \mathbb {C}_{\operatorname {Re}\geqslant \nu }\to L(H)\) is bounded and holomorphic on \(\mathbb {C}_{\operatorname {Re}>\nu }\). Hence, by unitary equivalence, \(M(\partial _{t,\nu })\in L(L_{2,\nu }(\mathbb {R};H))\). Moreover, M( t,ν) is autonomous by Exercise 5.​7. Thus, for causality it suffices to check that \( \operatorname {\mathrm {spt}} M(\partial _{t,\nu })f\subseteq \mathbb {R}_{\geqslant 0}\) whenever \(f\in L_{2,\nu }(\mathbb {R}_{\geqslant 0};H)\). So let \(f\in L_{2,\nu }(\mathbb {R}_{\geqslant 0};H)\). Then \(\mathcal {L}f\in \mathcal {H}_2(\mathbb {C}_{\operatorname {Re}>\nu };H)\) by Corollary 8.1.3 and since M is bounded and holomorphic on \(\mathbb {C}_{\operatorname {Re}>\nu }\), we infer also that
$$\displaystyle \begin{aligned} \big(z\mapsto M(z)\left(\mathcal{L}f\right)(z)\big)\in\mathcal{H}_2(\mathbb{C}_{\operatorname{Re}>\nu};H). \end{aligned}$$
Again by Corollary 8.1.3 there exists \(g\in L_{2,\nu }(\mathbb {R}_{\geqslant 0};H)\) such that
$$\displaystyle \begin{aligned} \mathcal{L}g(z)=M(z)\left(\mathcal{L}f\right)(z)\quad (z\in\mathbb{C}_{\operatorname{Re}>\nu}). \end{aligned}$$
Thus, in particular
$$\displaystyle \begin{aligned} \mathcal{L}_{\rho}g=M(\mathrm{i}\mathrm{m}+\rho)\mathcal{L}_{\rho}f\quad (\rho>\nu). \end{aligned}$$
Since \(f,g\in L_{2,\nu }(\mathbb {R}_{\geqslant 0};H)\) we infer that \(\mathcal {L}_{\rho }g\to \mathcal {L}_{\nu }g\) and \(\mathcal {L}_{\rho }f\to \mathcal {L}_{\nu }f\) in \(L_2(\mathbb {R};H)\) as ρ → ν by dominated convergence. Moreover, M(im + ρ) → M(im + ν) strongly on \(L_2(\mathbb {R};H)\) as ρ → ν (cf. Exercise 8.2). Hence, we derive
$$\displaystyle \begin{aligned} \mathcal{L}_{\nu}g=M(\mathrm{i}\mathrm{m}+\nu)\mathcal{L}_{\nu}f, \end{aligned}$$
and thus, g = M( t,ν)f which shows causality. □

8.2 A Representation Result

In this section we argue that our solution theory needs holomorphy as a central property for the material law. There are two key properties for rendering \(T\in L(L_{2,\nu _{0}}(\mathbb {R};H))\) a material law operator. The first one is causality (i.e., https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq82_HTML.gif for all \(a\in \mathbb {R}\)) and, secondly, T needs to be autonomous (i.e., τ h T =  h for all \(h\in \mathbb {R}\) where τ h f = f(⋅ + h)). The main theorem of this section reads as follows:
Theorem 8.2.1
Let \(\nu _{0}\in \mathbb {R}\) and let \(T\in L(L_{2,\nu _{0}}(\mathbb {R};H))\) be causal and autonomous. Then \(T|{ }_{L_{2,\nu _{0}}\cap L_{2,\nu }}\) has a unique extension \(T_{\nu }\in L(L_{2,\nu }(\mathbb {R};H))\) for each ν > ν 0 and there exists a unique \(M\colon \mathbb {C}_{\operatorname {Re}>\nu _{0}}\to L(H)\) holomorphic and bounded such that T ν = M( t,ν) for each ν > ν 0.
We consider the following (shifted) variant of Theorem 8.2.1 first.
Theorem 8.2.2
Let \(T\in L(L_2(\mathbb {R};H))\) be causal and autonomous. Then there exists \(M\colon \mathbb {C}_{\operatorname {Re}>0}\to L(H)\) , a material law (i.e., holomorphic and bounded), such that
$$\displaystyle \begin{aligned} \left(\mathcal{L}Tf\right)(z)=M(z)\left(\mathcal{L}f\right)(z)\quad (f\in L_2(\mathbb{R}_{\geqslant0};H),z\in\mathbb{C}_{\operatorname{Re}>0}). \end{aligned}$$
Proof
For s > 0 and x ∈ H we define https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq92_HTML.gif and compute
$$\displaystyle \begin{aligned} \mathcal{L}f_{x,s}(z) = \frac{1}{\sqrt{2\pi}}\int_0^s \mathrm{e}^{-z t}x \,\mathrm{d} t =\frac{1}{\sqrt{2\pi}} \frac{1-\mathrm{e}^{-z s}}{z}x \quad (z\in \mathbb{C}_{\operatorname{Re}>0}). \end{aligned} $$
(8.3)
We define \(M\colon \mathbb {C}_{\operatorname {Re}>0}\to L(H)\) via
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/MediaObjects/514400_1_En_8_Equaa_HTML.png
which is well-defined since \( \operatorname {\mathrm {spt}} Tf_{x,1} \subseteq [0,\infty )\) (use causality of T); M(z) ∈ L(H), since T is bounded. Also, M(⋅)x is evidently holomorphic for every x ∈ H as a product of two holomorphic mappings and thus by Exercise 5.​3, M is holomorphic itself. Next, we show that for all \(z\in \mathbb {C}_{\operatorname {Re}>0}\) and \(f\in L_2(\mathbb {R}_{\geqslant 0};H)\), we have
$$\displaystyle \begin{aligned} \left(\mathcal{L}Tf\right)(z)=M(z)\left(\mathcal{L}f\right)(z). \end{aligned} $$
(8.4)
By definition of M, the equality is true for f replaced by f x,1, x ∈ H. Next, observe that https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq97_HTML.gif is dense in \(L_2(\mathbb {R}_{\geqslant 0};H)\). Hence, for (8.4), it suffices to show
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/MediaObjects/514400_1_En_8_Equ5_HTML.png
(8.5)
for all \(a\geqslant 0\), \(n\in \mathbb {N}\), x ∈ H, and \(z\in \mathbb {C}_{\operatorname {Re}>0}\). Next, using that T is autonomous in the situation of (8.5), we see https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq102_HTML.gif and, by a straightforward computation, \((\mathcal {L}\tau _{-a}f)(z)=\mathrm {e}^{-za}\mathcal {L}f(z)\) for all \(f\in L_2(\mathbb {R}_{\geqslant 0};H)\). Thus,
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/MediaObjects/514400_1_En_8_Equab_HTML.png
which yields that it suffices to show (8.5) for a = 0 only, that is, for f = f x,1∕n. Furthermore, we compute for \(n\in \mathbb {N}\) and \(z\in \mathbb {C}_{\operatorname {Re}>0}\)
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/MediaObjects/514400_1_En_8_Equac_HTML.png
Thus, using (8.3) for s = 1∕n, we deduce from the definition of M,
$$\displaystyle \begin{aligned} \mathcal{L}Tf_{x,1/n}(z) &= \frac{1-\mathrm{e}^{-z/n}}{\sqrt{2\pi}z}\frac{\sqrt{2\pi}z}{1-\mathrm{e}^{-z}} \mathcal{L}Tf_{x,1}(z) = \frac{1-\mathrm{e}^{-z/n}}{\sqrt{2\pi}z}M(z)x \\ & = M(z) \mathcal{L}f_{x,1/n}(z). \end{aligned} $$
Hence, (8.4) holds for all \(f\in L_2(\mathbb {R}_{\geqslant 0};H)\). It remains to show boundedness of M. For this, let \(z\in \mathbb {C}_{\operatorname {Re}>0}\) and x ∈ H. Set https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq109_HTML.gif as well as https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq110_HTML.gif . Then
$$\displaystyle \begin{aligned} \mathcal{L}f(z) = \frac{1}{\sqrt{2\pi}}\int_0^\infty \mathrm{e}^{-zt-z^*t}x\,\mathrm{d} t = \frac{x}{c}. \end{aligned}$$
By virtue of (8.4), we get \(\mathcal {L}Tf(z)=M(z)\mathcal {L}f(z)\) and thus \(M(z)x=c\mathcal {L}Tf(z)\). This leads to
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/MediaObjects/514400_1_En_8_Equaf_HTML.png
where we used that https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq113_HTML.gif . Thus, \(\left \Vert M(z) \right \Vert \leqslant \left \Vert T \right \Vert \), which yields boundedness of M and the assertion of the theorem. □
We can now prove our main result of this section.
Proof of Theorem 8.2.1
We just prove the existence of a function M. The proof of its uniqueness is left as Exercise 8.3.We first prove the assertion for ν 0 = 0. So, let \(T\in L(L_2(\mathbb {R};H))\) be causal and autonomous. According to Theorem 8.2.2 we find \(M\colon \mathbb {C}_{\operatorname {Re}>0}\to L(H)\) holomorphic and bounded such that
$$\displaystyle \begin{aligned} \left(\mathcal{L}Tf\right)(z)=M(z)\left(\mathcal{L}f\right)(z)\quad (f\in L_2(\mathbb{R}_{\geqslant0};H),z\in\mathbb{C}_{\operatorname{Re}>0}). \end{aligned}$$
Let now \(\varphi \in C_{\mathrm {c}}^\infty (\mathbb {R};H)\) and set https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq118_HTML.gif . Then \(\tau _{a}\varphi \in L_2(\mathbb {R}_{\geqslant 0};H)\), and for ν > 0 we compute
$$\displaystyle \begin{aligned} \mathcal{L}_{\nu}T\varphi & =\mathcal{L}_{\nu}\tau_{-a}T\tau_{a}\varphi =\mathrm{e}^{-(\mathrm{i}\mathrm{m}+\nu)a}\mathcal{L}_{\nu}T\tau_{a}\varphi =\mathrm{e}^{-(\mathrm{i}\mathrm{m}+\nu)a}M(\mathrm{i}\mathrm{m}+\nu)\mathcal{L}_{\nu}\tau_{a}\varphi \\ & =M(\mathrm{i}\mathrm{m}+\nu)\mathcal{L}_{\nu}\varphi.{} \end{aligned} $$
(8.6)
The latter implies
$$\displaystyle \begin{aligned} \left\Vert T\varphi \right\Vert {}_{L_{2,\nu}(\mathbb{R};H)} &=\left\Vert \mathcal{L}_{\nu}T\varphi \right\Vert {}_{L_2(\mathbb{R};H)} =\left\Vert M(\mathrm{i}\mathrm{m}+\nu)\mathcal{L}_{\nu}\varphi \right\Vert {}_{L_2(\mathbb{R};H)}\\ &\leqslant\left\Vert M \right\Vert {}_{\infty,\mathbb{C}_{\operatorname{Re}>0}}\left\Vert \varphi \right\Vert {}_{L_{2,\nu}(\mathbb{R};H)} \end{aligned} $$
and hence, \(T|{ }_{C_{\mathrm {c}}^\infty (\mathbb {R};H)}\) has a unique continuous extension \(T_{\nu }\in L(L_{2,\nu }(\mathbb {R};H))\). Using (8.6) we obtain
$$\displaystyle \begin{aligned} T_\nu=\mathcal{L}_{\nu}^{\ast}M(\mathrm{i}\mathrm{m}+\nu)\mathcal{L}_{\nu}=M(\partial_{t,\nu}) \end{aligned}$$
by approximation.
Let now \(\nu _{0}\in \mathbb {R}\). Then the operator
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/MediaObjects/514400_1_En_8_Equaj_HTML.png
is causal and autonomous as well. Thus, \(\widetilde {T}|{ }_{C_{\mathrm {c}}^\infty (\mathbb {R};H)}\) has continuous extensions \(\widetilde {T}_{\rho }\in L(L_{2,\rho }(\mathbb {R};H))\) for each ρ > 0 and there is \(\widetilde {M}\colon \mathbb {C}_{\operatorname {Re}>0}\to L(H)\) holomorphic and bounded such that \(\widetilde {T}_{\rho }=\widetilde {M}(\partial _{t,\rho })\) for each ρ > 0. Using \(T|{ }_{C_{\mathrm {c}}^\infty (\mathbb {R};H)}=\mathrm {e}^{\nu _{0}\mathrm {m}}\widetilde {T}|{ }_{C_{\mathrm {c}}^\infty (\mathbb {R};H)}\mathrm {e}^{-\nu _{0}\mathrm {m}}\), we derive that \(T|{ }_{C_{\mathrm {c}}^\infty (\mathbb {R};H)}\) has the unique continuous extension \(T_{\nu }=\mathrm {e}^{\nu _{0}\mathrm {m}}\widetilde {T}_{\nu -\nu _{0}}\mathrm {e}^{-\nu _{0}\mathrm {m}}\in L(L_{2,\nu }(\mathbb {R};H))\) for each ν > ν 0 and
$$\displaystyle \begin{aligned} \mathcal{L}_{\nu}T_{\nu} & =\mathcal{L}_{\nu}\mathrm{e}^{\nu_{0}\mathrm{m}}\widetilde{T}_{\nu-\nu_{0}}\mathrm{e}^{-\nu_{0}\mathrm{m}} =\mathcal{L}_{\nu-\nu_{0}}\widetilde{T}_{\nu-\nu_{0}}\mathrm{e}^{-\nu_{0}\mathrm{m}} =\widetilde{M}(\mathrm{i}\mathrm{m}+\nu-\nu_{0})\mathcal{L}_{\nu-\nu_{0}}\mathrm{e}^{-\nu_{0}\mathrm{m}}\\ & =\widetilde{M}(\mathrm{i}\mathrm{m}+\nu-\nu_{0})\mathcal{L}_{\nu}. \end{aligned} $$
Hence,
$$\displaystyle \begin{aligned} T_{\nu}=M(\partial_{t,\nu}) \end{aligned}$$
for the holomorphic and bounded function M given by https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq130_HTML.gif for \(z\in \mathbb {C}_{\operatorname {Re}>\nu _{0}}\). □

8.3 Comments

The stated Theorem of Paley and Wiener is of course not the only theorem characterising properties of the support of L 2-functions in terms of their Fourier or Laplace transform. For instance, a similar result holds for functions having compact support, see e.g. [101, 19.3 Theorem] and Exercise 8.7. These theorems provide a nice connection between L 2-functions and spaces of holomorphic functions in form of Hardy spaces. In this chapter we just introduced the Hardy space \(\mathcal {H}_2\) and it is not surprising that there are also the Hardy spaces \(\mathcal {H}_{p}\) for \(1\leqslant p\leqslant \infty \). We refer to [35] for this topic.
The representation result presented in the second part of this chapter was originally proved by Fourès and Segal in 1955, [41]. In this article the authors prove an analogous representation result for causal operators on \(L_2(\mathbb {R}^{d};H)\), where causality is defined with respect to a closed and convex cone on \(\mathbb {R}^{d}\). The quite elementary proof of Theorem 8.2.2 for d = 1 presented here was kindly communicated to us by Hendrik Vogt.
Exercises
Exercise 8.1
Let \(\Lambda \subseteq \mathbb {R}_{>0}\) be a set with an accumulation point in \(\mathbb {R}_{>0}\). Prove that \(\{\left (x\mapsto \mathrm {e}^{-\lambda x}\right )\,;\,\lambda \in \Lambda \}\) is a total set in \(L_{1}(\mathbb {R}_{\geqslant 0})\).
Hint: Use that the set is total if and only if
$$\displaystyle \begin{aligned} \forall f\in L_{\infty}(\mathbb{R}_{\geqslant0}):\:\left(\forall\lambda\in\Lambda:\,\intop_{\mathbb{R}_{\geqslant0}}\mathrm{e}^{-\lambda x}f(x)\,\mathrm{d} x=0\Rightarrow f=0\right). \end{aligned}$$
Exercise 8.2
Let \(M\colon \operatorname {dom}(M)\subseteq \mathbb {C}\to L(H)\) be a material law. Moreover, let \(\nu >\mathrm {s}_{\mathrm {b}}\left ( M \right )\). Show that https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq143_HTML.gif where the limit is meant in the strong operator topology on \(L_2(\mathbb {R};H)\).
Exercise 8.3
Prove the uniqueness statement in Theorem 8.2.1.
Exercise 8.4
Give an example of a continuous and bounded function \(M\colon \mathbb {C}_{\operatorname {Re}>0}\to L(H)\) such that the corresponding operator M( t,ν) is not causal for any ν > 0.
Exercise 8.5
Prove the following distributional variant of the Paley–Wiener theorem: Let ν 0 > 0, \(k\in \mathbb {N}\), \(f\colon \mathbb {C}_{\operatorname {Re}>\nu _0}\to \mathbb {C}\), and set https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq148_HTML.gif for \(z\in \mathbb {C}_{\operatorname {Re}>\nu _0}\). We assume that \(h\in \mathcal {H}_2(\mathbb {C}_{\operatorname {Re}>\nu _0};\mathbb {C})\). For ν > ν 0 we define the distribution \(u\colon C_{\mathrm {c}}^\infty (\mathbb {R})\to \mathbb {C}\) by
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/MediaObjects/514400_1_En_8_Equan_HTML.png
Prove that \( \operatorname {\mathrm {spt}} u\subseteq \mathbb {R}_{\geqslant 0}\), where
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/MediaObjects/514400_1_En_8_Equao_HTML.png
What is u if https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq153_HTML.gif ?
Exercise 8.6
Let \(g\in L_2(\mathbb {R}),a>0\) such that \( \operatorname {\mathrm {spt}} g\subseteq \left [-a,a\right ]\). Show that https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq156_HTML.gif extends to a holomorphic function \(\widetilde {f}\colon \mathbb {C}\to \mathbb {C}\) with \(\widetilde {f}(\mathrm {i} t)=f(t)\) for each \(t\in \mathbb {R}\) such that
$$\displaystyle \begin{aligned} \exists C\geqslant 0\,\forall z\in \mathbb{C}:\, |f(z)|\leqslant C\mathrm{e}^{a|\operatorname{Re} z|}. \end{aligned}$$
Exercise 8.7
Let \(f:\mathbb {C}\to \mathbb {C}\) be holomorphic such that
(a)
\(\exists C\geqslant 0,\, a>0\, \forall z\in \mathbb {C}:\, |f(z)|\leqslant C\mathrm {e}^{a|\operatorname {Re} z|}\),
 
(b)
\(f(\mathrm {i} \cdot )\in L_2(\mathbb {R})\).
 
Prove that https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/514400_1_En_8_IEq163_HTML.gif satisfies \( \operatorname {\mathrm {spt}} g\subseteq \left [-a,a\right ]\).
Hint: Apply Theorem 8.1.2 to the function \(h:\mathbb {C}_{\operatorname {Re}>0} \to \mathbb {C}\) given by
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-89397-2_8/MediaObjects/514400_1_En_8_Equaq_HTML.png
to derive that \( \operatorname {\mathrm {spt}} g\subseteq \mathbb {R}_{\geqslant -a}\).
Remark: The assertion even holds true if one replaces condition (a) by
$$\displaystyle \begin{aligned} \exists C\geqslant 0,\, a>0\, \forall z\in \mathbb{C}:\, |f(z)|\leqslant C\mathrm{e}^{a|z|}. \end{aligned}$$
Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Literature
35.
go back to reference P.L. Duren, Theory of H p Spaces, vol. XII (Academic, New York, London, 1970), 258 p. 1970. P.L. Duren, Theory of H p Spaces, vol. XII (Academic, New York, London, 1970), 258 p. 1970.
78.
go back to reference R.E. Paley, N. Wiener, Fourier Transforms in the Complex Domain, vols. 19, VIII. American Mathematical Society Colloquium publications (American Mathematical Society, New York, 1934) R.E. Paley, N. Wiener, Fourier Transforms in the Complex Domain, vols. 19, VIII. American Mathematical Society Colloquium publications (American Mathematical Society, New York, 1934)
101.
go back to reference W. Rudin, Real and Complex Analysis. Mathematics Series (McGraw-Hill, New York, 1987)MATH W. Rudin, Real and Complex Analysis. Mathematics Series (McGraw-Hill, New York, 1987)MATH
Metadata
Title
Causality and a Theorem of Paley and Wiener
Authors
Christian Seifert
Sascha Trostorff
Marcus Waurick
Copyright Year
2022
DOI
https://doi.org/10.1007/978-3-030-89397-2_8

Premium Partner