Skip to main content
Top
Published in: Journal of Inequalities and Applications 1/2016

Open Access 01-12-2016 | Research

Certain inequalities associated with Hadamard k-fractional integral operators

Authors: Muharrem Tomar, Shahid Mubeen, Junesang Choi

Published in: Journal of Inequalities and Applications | Issue 1/2016

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

We aim to present some new Pólya-Szegö type inequalities associated with Hadamard k-fractional integral operators, which are also used to derive some Chebyshev type integral inequalities. Further we apply some of the results presented here to a function which is bounded by the Heaviside functions.
Notes

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors have contributed equally to this manuscript. They read and approved the final manuscript.

1 Introduction and preliminaries

We begin by recalling the following Chebyshev functional which has been investigated by many authors (see, e.g., [14]):
$$ T(f,g;a,b)=\frac{1}{b-a} \int_{a}^{b}f(x)g(x) \,\mathrm{d}x-\frac {1}{(b-a)^{2}} \int_{a}^{b}f(x) \,\mathrm{d}x \int_{a}^{b}g(x) \,\mathrm{d}x, $$
(1.1)
where \(f, g:[a,b]\rightarrow\mathbb{R}\) are integrable functions on \([a, b]\). Here and in the following, let \(\mathbb{R}\) and \(\mathbb{R}^{+}\) be the set of real and positive real numbers, respectively, and \(\mathbb{R}^{+}_{0}:= \mathbb{R}^{+} \cup\{0\} \). Under more conditions \(n \leq f ( x ) \leq N \) and \(m \leq g ( x ) \leq M\) for all \(x\in{}[ a,b]\), where n, m, N, M are real constants, the Chebyshev functional (1.1) satisfies the following inequality, which is known as Grüss integral inequality (see [5]; see also [6], p.236):
$$ \bigl\vert T(f,g;a,b) \bigr\vert \leq\frac{1}{4} ( M-m ) ( N-n ), $$
(1.2)
where the constant \(\frac{1}{4} \) is sharp. In fact, the equality in (1.2) holds, for example, by taking
$$ f(x)=g(x)=\operatorname {sgn}x-\frac{a+b}{2}\quad \bigl(x \in[a,b] \bigr). $$
The Grüss inequality (1.2) has been investigated a lot and a number of its generalizations have been presented (see, e.g., [710]).
Let f and g be two positive integrable functions on \([a,b]\) such that
$$ 0< m\leq f(x)\leq M< \infty \quad \text{and}\quad 0< n\leq f(x)\leq N< \infty. $$
Pólya and Szegö [11] established the following inequality:
$$ \frac{ \int_{a}^{b}f^{2}(x) \,\mathrm{d}x\int _{a}^{b}g^{2}(x) \,\mathrm{d}x}{ ( \int_{a}^{b}f(x)g(x) \,\mathrm{d}x )^{2}} \leq\frac{1}{4} \biggl(\sqrt{ \frac{MN}{mn}}+\sqrt{\frac {mn}{MN}} \biggr)^{2}, $$
(1.3)
which was used by Dragomir and Diamond [12] who proved the following inequality:
$$ \bigl\vert T(f,g;a,b) \bigr\vert \leq\frac {(M-m)(N-n)}{4(b-a)^{2}\sqrt{mMnN}} \int_{a}^{b}f(x) \,\mathrm{d}x \int_{a}^{b}g(x) \,\mathrm{d}x. $$
(1.4)
Fractional calculus is a very helpful tool to perform differentiation and integration of real or complex number orders. This subject has earned much attention from researchers and mathematicians during the last few decades (see, e.g., [1321]). Among a large number of the fractional integral operators developed, due to applications in many fields of sciences, the Riemann-Liouville fractional integral operator and Hadamard fractional integral operator have been extensively investigated.
Let \(f\in L[a,b]\). Then the left-sided and the right-sided Hadamard fractional integrals of order \(\alpha\geq0\) and \(a>0\) are defined, respectively, by
$$ H_{a^{+}}^{\alpha}f(t)=\frac{1}{\Gamma(\alpha)} \int_{a}^{t} \biggl(\ln \frac{t}{\tau} \biggr)^{\alpha-1}f(\tau)\frac{\mathrm{d}\tau}{\tau} \quad (0< a< t\leq b) $$
(1.5)
and
$$ H_{b^{-}}^{\alpha}f(t)=\frac{1}{\Gamma(\alpha)} \int_{t}^{b} \biggl(\ln \frac{\tau}{t} \biggr)^{\alpha-1}f(\tau)\frac{\mathrm{d}\tau}{\tau} \quad (0< a\leq t< b). $$
(1.6)
The theory of k-functions has been investigated since, about a decade ago, Diaz and Pariguan [22] introduced the following generalizations of the classical gamma and beta functions, with a new parameter \(k \in\mathbb{R}^{+}\), which are called k-gamma and k-beta functions, respectively:
$$ \Gamma_{k}(\alpha) = \int_{0}^{\infty}t^{\alpha-1}e^{-\frac{t^{k}}{k}} \, \mathrm{d}t \quad \bigl(\Re(\alpha) > 0 \bigr) $$
(1.7)
and
$$ B_{k} (\alpha,\beta)=\frac{1}{k} \int_{0}^{1} t^{\frac{\alpha }{k}-1} (1-t)^{\frac{\beta}{k}-1} \,\mathrm{d}t \quad \bigl(\min \bigl\{ \Re(\alpha), \Re(\beta) \bigr\} >0 \bigr). $$
(1.8)
The functions \(\Gamma_{k}\) defined on \(\mathbb{R}^{+}\) and \(B_{k}(x,y)\) on \((0,1) \) satisfy the following properties:
(1)
\(\Gamma_{k}(x+k)=x \Gamma_{k}(x)\);
 
(2)
\(\Gamma_{k}(k)=1\);
 
(3)
\(\Gamma_{k}(x)\) is logarithmically convex;
 
(4)
\(B_{k}(x,y)=\frac{\Gamma_{k}(x)\Gamma_{k}(y)}{\Gamma _{k}(x+y)}\).
 
During the past several years, certain interesting properties, identities, and inequalities involving k-functions have been presented (see, e.g., [2329]). Mubeen and Habibullah [30] used the k-gamma function \(\Gamma _{k}\) (1.7) to introduce the following Riemann-Liouville type k-fractional integral:
$$ I_{a,k}^{\alpha}f(t)=\frac{1}{k\Gamma_{k} (\alpha)} \int _{a}^{t}(t-x)^{\frac{\alpha}{k}-1} f(x) \, \mathrm{d}x \quad \bigl(t\in[a,b] \bigr). $$
(1.9)
Later, Romero et al. [31] also used the k-gamma function \(\Gamma_{k}\) (1.7) to introduce the k-Riemann-Liouville fractional derivative whose properties including a relationship with the k-fractional integral (1.9) were presented.
Using the k-gamma function with the parameter k, Mubeen et al. [32] have introduced left-sided and right-sided Hadamard k-fractional integrals of order \(\alpha\in\mathbb{R}^{+}\), respectively, as follows: For \(f\in L[a,b]\) and \(k, a \in\mathbb{R}^{+}\),
$$ \mathcal{H}_{a^{+},k}^{\alpha}\{f\}(t) = \frac{1}{k\Gamma_{k}(\alpha)} \int_{a}^{t} \biggl(\ln\frac{t}{\tau} \biggr)^{\frac{\alpha }{k}-1}f(\tau) \frac{\mathrm{d}\tau}{\tau} \quad (0< a< t\leq b) $$
(1.10)
and
$$ \mathcal{H}_{b^{-},k}^{\alpha}\{f\}(t) = \frac{1}{k\Gamma_{k}(\alpha)} \int_{t}^{b} \biggl(\ln\frac{\tau }{t} \biggr)^{\frac{\alpha}{k}-1}f(\tau) \frac{\mathrm{d}\tau}{\tau} \quad (0< a\leq t< b). $$
(1.11)
Using the Hadamard k-fractional integral and Proposition 6 in [22], we have
$$ \mathcal{H}_{a^{+},k}^{\alpha}\{1\}(t)= \frac{ (\ln(t/a) )^{\frac{\alpha}{k}}}{\Gamma_{k}(\alpha+k)}\quad \bigl(0< a< t\leq b; k, \alpha\in\mathbb{R}^{+} \bigr) $$
(1.12)
and
$$ \mathcal{H}_{1^{+},k}^{\alpha}\{1\}(t)= \frac{ (\ln(t) )^{\frac{\alpha}{k}}}{\Gamma_{k}(\alpha+k)} \quad \bigl(1< t\leq b; k, \alpha\in\mathbb{R}^{+} \bigr). $$
(1.13)

2 Some Pólya-Szegö and Chebyshev type inequalities involving the Hadamard k-fractional integrals

In this section, we derive some new Pólya-Szegö type inequalities associated with the Hadamard k-fractional integral operators which are also used to establish some Chebyshev type integral inequalities.
Lemma 2.1
Let f and g be two positive real integrable functions defined on \([a,\infty)\). Also let \(\varphi_{1}\), \(\varphi_{2}\), \(\psi_{1}\), and \(\psi_{2}\) be integrable functions on \([a,\infty)\) such that
$$ 0< \varphi_{1}(\tau)\leq f(\tau) \leq \varphi_{2}(\tau) \quad \textit{and}\quad 0< \psi_{1}(\tau) \leq g(\tau) \leq\psi_{2}(\tau) $$
(2.1)
for all \(\tau\in[a,t]\) (\(t>a\)). Then, for \(k, \alpha\in\mathbb{R}^{+}\), and \(a \in\mathbb{R}^{+}_{0}\), the following inequality holds true:
$$ \frac{\mathcal{H}_{a^{+},k}^{\alpha}\{\psi_{1}\psi_{2}f^{2}\}(t)\mathcal {H}_{a^{+},k}^{\alpha}\{\varphi_{1}\varphi_{2}g^{2}\}(t)}{ (\mathcal{H}_{a^{+},k}^{\alpha} \{ (\varphi_{1}\psi _{1}+\varphi_{2}\psi_{2} )fg \}(t) )^{2}} \leq\frac{1}{4}. $$
(2.2)
Proof
Under the given conditions, we find
$$ \frac{f(\tau)}{g(\tau)}\leq\frac{\varphi_{2}(\tau)}{\psi_{1}(\tau)} \quad \text{and}\quad \frac{\varphi_{1}(\tau)}{\psi_{2}(\tau)}\leq\frac{f(\tau)}{g(\tau )} \quad \bigl(\tau\in[a,t]\ (t>a) \bigr), $$
(2.3)
from which we have
$$ \biggl(\frac{\varphi_{2}(\tau)}{\psi_{1}(\tau)}-\frac{f(\tau )}{g(\tau)} \biggr) \biggl(\frac{f(\tau)}{g(\tau)}- \frac{\varphi_{1}(\tau)}{\psi _{2}(\tau)} \biggr)\geq0, $$
and so
$$ \biggl(\frac{\varphi_{2}(\tau)}{\psi_{1}(\tau)}+\frac{\varphi_{1}(\tau )}{\psi_{2}(\tau)} \biggr) \frac{f(\tau)}{g(\tau)}\geq \frac{f^{2}(\tau)}{g^{2}(\tau)}+\frac{\varphi_{1}(\tau)\varphi_{2}(\tau )}{\psi_{1}(\tau)\psi_{2}(\tau)}. $$
(2.4)
The inequality (2.4) can also be written as follows:
$$ \bigl(\varphi_{1}(\tau)\psi_{1}(\tau)+ \varphi_{2}(\tau)\psi_{2}(\tau ) \bigr)f(\tau)g(\tau) \geq \psi_{1}(\tau)\psi_{2}(\tau)f^{2}(\tau)+ \varphi_{1}(\tau)\varphi _{2}(\tau)g^{2}(\tau). $$
(2.5)
Here, multiplying each side of the inequality (2.5) by the following non-negative factor:
$$ \frac{1}{k\Gamma_{k}(\alpha)} \biggl(\ln\frac{t}{\tau} \biggr)^{\frac{\alpha}{k}-1} \frac{1}{\tau} \quad \bigl(\tau\in[a,t]\ (t>a) \bigr) $$
and integrating the resulting inequality with respective to τ on \([a,t]\), we obtain
$$ \mathcal{H}_{a^{+},k}^{\alpha} \bigl\{ ( \varphi_{1}\psi_{1}+\varphi _{2}\psi_{2} )fg \bigr\} (t) \geq\mathcal{H}_{a^{+},k}^{\alpha} \bigl\{ \psi_{1}\psi_{2}f^{2} \bigr\} (t)+\mathcal {H}_{a^{+},k}^{\alpha} \bigl\{ \varphi_{1} \varphi_{2}g^{2} \bigr\} (t). $$
(2.6)
Applying the AM-GM (the arithmetic-geometric mean) inequality,
$$ a+b\geq2\sqrt{ab} \quad \bigl(a,b\in\mathbb{R}_{0}^{+} \bigr) $$
(2.7)
to the right-hand side of (2.6), we have
$$ \mathcal{H}_{a^{+},k}^{\alpha} \bigl\{ ( \varphi_{1}\psi_{1}+\varphi _{2}\psi_{2} )fg \bigr\} (t) \geq2\sqrt{\mathcal{H}_{a^{+},k}^{\alpha} \bigl\{ \psi_{1}\psi_{2}f^{2} \bigr\} (t) \mathcal{H}_{a^{+},k}^{\alpha} \bigl\{ \varphi_{1} \varphi_{2}g^{2} \bigr\} (t)}, $$
(2.8)
which leads to
$$ \mathcal{H}_{a^{+},k}^{\alpha} \bigl\{ \psi_{1} \psi_{2}f^{2} \bigr\} (t)\mathcal {H}_{a^{+},k}^{\alpha} \bigl\{ \varphi_{1}\varphi_{2}g^{2} \bigr\} (t) \leq \frac{1}{4} \bigl(\mathcal{H}_{a^{+},k}^{\alpha} \bigl\{ ( \varphi_{1}\psi_{1}+\varphi_{2}\psi_{2} )fg \bigr\} (t) \bigr)^{2}. $$
This completes the proof. □
The following corollary is easily seen to be a special case of Lemma 2.1.
Corollary 1
Let f and g be two real positive integrable functions defined on \([a,\infty)\) such that
$$ 0< m\leq f(\tau) \leq M < \infty \quad \textit{and}\quad 0 < n\leq g(\tau) \leq N< \infty \quad \bigl( \tau\in[a,t]\ (t>a) \bigr), $$
(2.9)
where n, N, m, M are real constants. Then, for all \(t, k \in\mathbb{R}^{+}\) and \(\alpha\in\mathbb {R}^{+}\), we have
$$ \frac{\mathcal{H}_{a^{+},k}^{\alpha}\{f^{2}\}(t)\mathcal {H}_{a^{+},k}^{\alpha}\{g^{2}\}(t)}{ (\mathcal{H}_{a^{+},k}^{\alpha} \{fg \}(t) )^{2}} \leq\frac{1}{4} \biggl(\sqrt{ \frac{mn}{MN}}+\sqrt{\frac {MN}{nm}} \biggr)^{2}. $$
(2.10)
Lemma 2.2
Let f and g be two positive real integrable functions defined on \([a,\infty)\). Also let \(\varphi_{1}\), \(\varphi_{2}\), \(\psi_{1}\), and \(\psi_{2}\) be integrable functions on \([a,\infty)\) satisfying the condition (2.1). Then, for \(t>a\) (\(a \in\mathbb{R}_{0}^{+}\)) and \(k, \alpha , \beta\in\mathbb{R}^{+}\), the following inequality holds true:
$$ \frac{\mathcal{H}_{a^{+},k}^{\alpha}\{\varphi_{1}\varphi_{2}\}(t) \mathcal{H}_{a^{+},k}^{\beta}\{\psi_{1}\psi_{2}\}(t) \mathcal{H}_{a^{+},k}^{\alpha}\{f^{2}\}(t) \mathcal{H}_{a^{+},k}^{\beta}\{g^{2}\}(t)}{ (\mathcal{H}_{a^{+},k}^{\alpha}\{\varphi_{1}f\}(t)\mathcal {H}_{a^{+},k}^{\beta}\{\psi_{1}g\}(t) +\mathcal{H}_{a^{+},k}^{\alpha}\{\varphi_{2}f\}(t)\mathcal {H}_{a^{+},k}^{\beta}\{\psi_{2}g\}(t) )^{2}} \leq\frac{1}{4}. $$
(2.11)
Proof
We find from (2.1) that
$$ \biggl(\frac{\varphi_{2}(\tau)}{\psi_{1}(\rho)}-\frac{f(\tau )}{g(\rho)} \biggr)\geq0 \quad \text{and}\quad \biggl(\frac{f(\tau)}{g(\rho)}-\frac{\varphi_{1}(\tau)}{\psi _{2}(\rho)} \biggr)\geq0\quad \bigl(\tau, \rho\in[a,t]\ (t>a) \bigr), $$
which yields
$$\begin{aligned} \biggl(\frac{\varphi_{1}(\tau)}{\psi_{2}(\rho)}+\frac{\varphi_{2}(\tau )}{\psi_{1}(\rho)} \biggr) \frac{f(\tau)}{g(\rho)}\geq \frac{f^{2}(\tau)}{g^{2}(\rho)}+\frac{\varphi_{1}(\tau)\varphi_{2}(\tau )}{\psi_{1}(\rho)\psi_{2}(\rho)}. \end{aligned}$$
(2.12)
Multiplying each side of the inequality (2.12) by \(\psi_{1}(\rho )\psi_{2}(\rho)g^{2}(\rho)\), we get
$$ \varphi_{1}(\tau)f(\tau)\psi_{1}(\rho)g( \rho) +\varphi_{2}(\tau)f(\tau)\psi_{2}(\rho)g(\rho) \geq \psi_{1}(\rho)\psi_{2}(\rho)f^{2}(\tau)+ \varphi_{1}(\tau)\varphi _{2}(\tau)g^{2}(\rho). $$
(2.13)
Again multiplying each side of the inequality (2.13) by the following non-negative factor:
$$\frac{1}{k^{2}\Gamma_{k}(\alpha)\Gamma_{k}(\beta)} \biggl(\ln\frac{t}{\tau} \biggr)^{\frac{\alpha}{k}-1} \biggl( \ln\frac{t}{\rho} \biggr)^{\frac{\beta}{k}-1} \frac{1}{\tau\rho} \quad \bigl(\tau, \rho\in[a,t] (t>a) \bigr) $$
and integrating the resulting inequality with respect to τ and ρ on \([a,t]\), we have
$$\begin{aligned}& \mathcal{H}_{a^{+},k}^{\alpha}\{\varphi_{1}f \}(t)\mathcal {H}_{a^{+},k}^{\beta}\{\psi_{1}g\}(t) + \mathcal{H}_{a^{+},k}^{\alpha}\{\varphi_{2}f\}(t)\mathcal {H}_{a^{+},k}^{\beta}\{\psi_{2}g\}(t) \\& \quad \geq\mathcal{H}_{a^{+},k}^{\alpha} \bigl\{ f^{2} \bigr\} (t)\mathcal{H}_{a^{+},k}^{\beta}\{\psi_{1} \psi_{2}\}(t) +\mathcal{H}_{a^{+},k}^{\beta}\{ \varphi_{1}\varphi_{2}\}(t)\mathcal {H}_{a^{+},k}^{\alpha} \bigl\{ g^{2} \bigr\} (t). \end{aligned}$$
(2.14)
Applying the AM-GM inequality (2.7) to (2.14), we obtain
$$\begin{aligned}& \mathcal{H}_{a^{+},k}^{\alpha}\{\varphi_{1}f \}(t)\mathcal {H}_{a^{+},k}^{\beta}\{\psi_{1}g\}(t) + \mathcal{H}_{a^{+},k}^{\alpha}\{\varphi_{2}f\}(t)\mathcal {H}_{a^{+},k}^{\beta}\{\psi_{2}g\}(t) \\& \quad \geq2\sqrt{\mathcal{H}_{a^{+},k}^{\alpha} \bigl\{ f^{2} \bigr\} (t)\mathcal{H}_{a^{+},k}^{\beta}\{ \psi_{1}\psi_{2}\}(t) \mathcal{H}_{a^{+},k}^{\alpha} \{\varphi_{1}\varphi_{2}\}(t)\mathcal {H}_{a^{+},k}^{\beta} \bigl\{ g^{2} \bigr\} (t)}, \end{aligned}$$
(2.15)
which is easily seen to yield the desired inequality (2.11). Hence the proof is complete. □
Corollary 2
Let f and g be two positive integrable functions on interval \([a,\infty)\) satisfying the conditions in (2.9). Then, for \(t>1\) and \(k, \alpha, \beta\in\mathbb{R}^{+}\), we have
$$ \frac{ (\ln t )^{\frac{\alpha+\beta}{k}}}{\Gamma _{k}(\alpha+k)\Gamma_{k}(\beta+k)} \frac{\mathcal{H}_{1^{+},k}^{\alpha}\{f^{2}(t)\}\mathcal {H}_{1^{+},k}^{\beta}\{g^{2}(t)\}}{ (\mathcal{H}_{1^{+},k}^{\alpha}\{f(t)\}+\mathcal {H}_{1^{+},k}^{\beta}\{g(t)\} )^{2}} \leq\frac{1}{4} \biggl(\sqrt{ \frac{mn}{MN}}+\sqrt{\frac {MN}{mn}} \biggr)^{2}. $$
(2.16)
Lemma 2.3
Suppose that all assumptions of Lemma 2.2 are satisfied. Then, for \(t>a\) and \(\alpha, \beta\in\mathbb{R}^{+}\), the following inequality holds true:
$$ \mathcal{H}_{a^{+},k}^{\alpha} \bigl\{ f^{2} \bigr\} (t)\mathcal{H}_{a^{+},k}^{\beta} \bigl\{ g^{2} \bigr\} (t) \leq\mathcal{H}_{a^{+},k}^{\alpha} \bigl\{ (\varphi_{2} f g)/\psi_{1} \bigr\} (t) \mathcal{H}_{a^{+},k}^{\beta} \bigl\{ ( \psi_{2} f g)/\varphi_{1} \bigr\} (t). $$
(2.17)
Proof
Using the conditions (2.1), we get
$$ \frac{1}{k\Gamma_{k}(\alpha)} \int_{a}^{t} \biggl(\ln\frac{t}{\tau } \biggr)^{\frac{\alpha}{k}-1}f^{2}(\tau)\frac{\mathrm{d}\tau}{\tau} \leq \frac{1}{k\Gamma_{k}(\alpha)} \int_{a}^{t} \biggl(\ln\frac{t}{\tau } \biggr)^{\frac{\alpha}{k}-1} \frac{\varphi_{2}(\tau)}{\psi_{1}(\tau)}f(\tau)g(\tau)\frac{\mathrm{d}\tau}{\tau}, $$
which implies
$$ \mathcal{H}_{a^{+},k}^{\alpha} \bigl\{ f^{2} \bigr\} (t)\leq\mathcal {H}_{a^{+},k}^{\alpha} \bigl\{ ( \varphi_{2} f g)/\psi_{1} \bigr\} (t). $$
(2.18)
Similarly we have
$$ \frac{1}{k\Gamma_{k}(\beta)} \int_{a}^{t} \biggl(\ln\frac{t}{\rho} \biggr)^{\frac{\beta}{k}-1}g^{2}(\rho)\frac{\mathrm{d}\rho}{\rho} \leq \frac{1}{k\Gamma_{k}(\beta)} \int_{a}^{t} \biggl(\ln\frac{t}{\rho } \biggr)^{\frac{\beta}{k}-1} \frac{\psi_{2}(\rho)}{\varphi_{1}(\rho)}f(\rho)g(\rho)\frac{\mathrm{d}\rho}{\rho} $$
and so
$$ \mathcal{H}_{a^{+},k}^{\beta} \bigl\{ g^{2} \bigr\} (t)\leq\mathcal{H}_{a^{+},k}^{\beta } \bigl\{ ( \psi_{2} f g)/\varphi_{1} \bigr\} (t). $$
(2.19)
Multiplying the inequalities (2.18) and (2.19) side by side and considering all the involved terms are non-negative real numbers, we obtain the desired inequality (2.17). □
It is easy to see from Lemma 2.3 that the assertion in Corollary 3 holds true.
Corollary 3
Let f and g be two positive integrable functions on interval \([a,\infty)\) satisfying the conditions in (2.9). Then, for \(t>a\) and \(\alpha, \beta\in\mathbb{R}^{+}\), we have
$$ \frac{\mathcal{H}_{a^{+},k}^{\alpha}\{f^{2}\}(t)\mathcal {H}_{a^{+},k}^{\beta}\{g^{2}\}(t)}{ \mathcal{H}_{a^{+},k}^{\alpha}\{ f g\}(t) \mathcal{H}_{a^{+},k}^{\beta}\{f g\}(t)} \leq\frac{MN}{mn}. $$
(2.20)
Theorem 1
Let f and g be two positive integrable functions on interval \([a,\infty)\). Suppose that there exist four positive functions \(\varphi_{1}\), \(\varphi _{2}\), \(\psi_{1}\), and \(\psi_{2}\) satisfying the conditions (2.1). Then, for \(t>a\) and \(k, \alpha , \beta\in \mathbb{R}^{+}\), the following inequality holds true:
$$\begin{aligned}& \biggl\vert \frac{ (\ln(t/a) )^{\frac{\beta}{k}}}{\Gamma_{k}(\beta +k)}\mathcal{H}_{a^{+},k}^{\alpha} \{fg\}(t) +\frac{ (\ln(t/a) )^{\frac{\alpha}{k}}}{\Gamma_{k}(\alpha +k)}\mathcal{H}_{a^{+},k}^{\beta}\{fg\}(t) \\& \qquad {}-\mathcal{H}_{a^{+},k}^{\alpha}\{f\}(t)\mathcal {H}_{a^{+},k}^{\beta}\{g\}(t) -\mathcal{H}_{a^{+},k}^{\alpha} \{g\}(t) \mathcal{H}_{a^{+},k}^{\beta}\{f\}(t) \biggr\vert \\& \quad \leq \bigl\vert \mathrm{M}_{1}(f,\varphi_{1}, \varphi_{2}) (t)+\mathrm{M}_{2}(f,\varphi _{1}, \varphi_{2}) (t) \bigr\vert ^{\frac{1}{2}} \\& \qquad {}\times \bigl\vert \mathrm{M}_{1}(g,\psi_{1}, \psi_{2}) (t)+\mathrm{M}_{2}(g,\psi_{1}, \psi_{2}) (t) \bigr\vert ^{\frac{1}{2}}, \end{aligned}$$
(2.21)
where
$$\mathrm{M}_{1}(u,v,w) (t):= \frac{ (\ln(t/a) )^{\frac{\beta}{k}}}{4\Gamma_{k}(\beta+k)} \frac{ (\mathcal{H}_{a^{+},k}^{\alpha}\{(v+w)u\}(t) )^{2}}{ \mathcal{H}_{a^{+},k}^{\alpha}\{vw\}(t)} - \mathcal{H}_{a^{+},k}^{\alpha}\{u\}(t)\mathcal{H}_{a^{+},k}^{\beta} \{ u\}(t) $$
and
$$\mathrm{M}_{2}(u,v,w) (t):=\frac{ (\ln(t/a) )^{\frac {\alpha}{k}}}{4\Gamma_{k}(\alpha+k)} \frac{ (\mathcal{H}_{a^{+},k}^{\beta}\{(v+w)u\}(t) )^{2}}{ \mathcal{H}_{a^{+},k}^{\beta}\{vw\}(t)} - \mathcal{H}_{a^{+},k}^{\alpha}\{u\}(t)\mathcal{H}_{a^{+},k}^{\beta} \{ u\}(t). $$
Proof
Let
$$H(\tau,\rho):= \bigl(f(\tau)-f(\rho) \bigr) \bigl(g(\tau)-g(\rho) \bigr), $$
or, equivalently,
$$ H(\tau,\rho)=f(\tau)g(\tau)+f(\rho)g(\rho)-f(\tau)g(\rho )-f( \rho)g(\tau). $$
(2.22)
Upon multiplying each side of (2.22) by
$$\frac{1}{k^{2}\Gamma_{k}(\alpha)\Gamma_{k}(\beta)} \biggl(\ln\frac{x}{\tau} \biggr)^{\frac{\alpha}{k}-1} \biggl( \ln\frac{x}{\rho} \biggr)^{\frac{\beta}{k}-1} \frac{1}{\tau\rho} $$
and integrating the resulting identity with respect to τ and ρ on \([a,t]\), we get
$$\begin{aligned}& \frac{1}{k^{2}\Gamma_{k}(\alpha)\Gamma_{k}(\beta)} \int_{a}^{t} \int_{a}^{t} \biggl(\ln\frac{t}{\tau} \biggr)^{\frac{\alpha}{k}-1} \biggl(\ln\frac{t}{\rho} \biggr)^{\frac{\beta}{k}-1} H(\tau, \rho)\frac{\mathrm{d}\tau}{\tau}\frac{ \mathrm{d}\rho}{\rho} \\& \quad =\frac{ (\ln(t/a) )^{\frac{\beta }{k}}}{\Gamma_{k}(\beta+k)}\mathcal{H}_{a^{+},k}^{\alpha}\{fg\}(t) + \frac{ (\ln(t/a) )^{\frac{\alpha}{k}}}{\Gamma_{k}(\alpha +k)}\mathcal{H}_{a^{+},k}^{\beta}\{fg\}(t) \\& \qquad {}-\mathcal{H}_{a^{+},k}^{\alpha}\{f\}(t)\mathcal {H}_{a^{+},k}^{\beta}\{g\}(t) -\mathcal{H}_{a^{+},k}^{\beta} \{f\}(t)\mathcal{H}_{a^{+},k}^{\alpha}\{ g\}(t). \end{aligned}$$
(2.23)
Making use of the weighted Cauchy-Schwarz inequality for double integrals in (2.23), we have
$$\begin{aligned}& \biggl\vert \frac{1}{k^{2}\Gamma_{k}(\alpha)\Gamma_{k}(\beta)} \int _{a}^{t} \int_{a}^{t} \biggl(\ln\frac{t}{\tau} \biggr)^{\frac{\alpha}{k}-1} \biggl(\ln\frac{t}{\rho} \biggr)^{\frac{\beta}{k}-1} H(\tau, \rho)\frac{\mathrm{d}\tau}{\tau}\frac{\mathrm{d}\rho}{\rho } \biggr\vert \\& \quad \leq \biggl[ \frac{1}{k^{2}\Gamma_{k}(\alpha)\Gamma_{k}(\beta)} \int_{a}^{t} \int_{a}^{t} \biggl(\ln\frac{t}{\tau} \biggr)^{\frac{\alpha}{k}-1} \biggl(\ln\frac{t}{\rho} \biggr)^{\frac{\beta}{k}-1} f^{2}(\tau) \frac{\mathrm{d}\tau}{\tau}\frac{\mathrm{d}\rho}{\rho} \\& \qquad {} +\frac{1}{k^{2}\Gamma_{k}(\alpha)\Gamma_{k}(\beta)} \int_{a}^{t} \int_{a}^{t} \biggl(\ln\frac{t}{\tau} \biggr)^{\frac{\alpha}{k}-1} \biggl(\ln\frac{t}{\rho} \biggr)^{\frac{\beta}{k}-1} f^{2}(\rho) \frac{d\tau}{\tau}\frac{\mathrm{d}\rho}{\rho} \\& \qquad {} -\frac{2}{k^{2}\Gamma_{k}(\alpha)\Gamma_{k}(\beta)} \int_{a}^{t} \int_{a}^{t} \biggl(\ln\frac{t}{\tau} \biggr)^{\frac{\alpha}{k}-1} \biggl(\ln\frac{t}{\rho} \biggr)^{\frac{\beta}{k}-1} f( \tau)f(\rho) \frac{d\tau}{\tau}\frac{\mathrm{d}\rho}{\rho} \biggr]^{\frac{1}{2}} \\& \qquad {} \times \biggl[ \frac{1}{k^{2}\Gamma_{k}(\alpha)\Gamma_{k}(\beta)} \int_{a}^{t} \int_{a}^{t} \biggl(\ln\frac{t}{\tau} \biggr)^{\frac{\alpha}{k}-1} \biggl(\ln\frac{t}{\rho} \biggr)^{\frac{\beta}{k}-1} g^{2}(\tau) \frac{\mathrm{d}\tau}{\tau}\frac{\mathrm{d}\rho}{\rho} \\& \qquad {} +\frac{1}{k^{2}\Gamma_{k}(\alpha)\Gamma_{k}(\beta)} \int_{a}^{t} \int_{a}^{t} \biggl(\ln\frac{t}{\tau} \biggr)^{\frac{\alpha}{k}-1} \biggl(\ln\frac{t}{\rho} \biggr)^{\frac{\beta}{k}-1} g^{2}(\rho) \frac{\mathrm{d}\tau}{\tau}\frac{\mathrm{d}\rho}{\rho} \\& \qquad {} -\frac{2}{k^{2}\Gamma_{k}(\alpha)\Gamma_{k}(\beta)} \int_{a}^{t} \int_{a}^{t} \biggl(\ln\frac{t}{\tau} \biggr)^{\frac{\alpha}{k}-1} \biggl(\ln\frac{t}{\rho} \biggr)^{\frac{\beta}{k}-1} g( \tau)g(\rho) \frac{\mathrm{d}\tau}{\tau}\frac{\mathrm{d}\rho}{\rho} \biggr]^{\frac{1}{2}}. \end{aligned}$$
(2.24)
Then, upon using the Hadamard k-fractional integrals, we get
$$\begin{aligned}& \biggl\vert \frac{1}{k^{2}\Gamma_{k}(\alpha)\Gamma_{k}(\beta)} \int _{a}^{t} \int_{a}^{t} \biggl(\ln\frac{t}{\tau} \biggr)^{\frac{\alpha}{k}-1} \biggl(\ln\frac{t}{\rho} \biggr)^{\frac{\beta}{k}-1} H(\tau, \rho)\frac{\mathrm{d}\tau}{\tau}\frac{\mathrm{d}\rho}{\rho } \biggr\vert \\& \quad \leq \biggl[ \frac{ (\ln(t/a) )^{\frac{\beta}{k}}}{\Gamma_{k}(\beta+k)} \mathcal{H}_{a^{+},k}^{\alpha} \bigl\{ f^{2} \bigr\} (t) + \frac{ (\ln(t/a) )^{\frac{\alpha}{k}}}{\Gamma_{k}(\alpha+k)} \mathcal{H}_{a^{+},k}^{\beta} \bigl\{ f^{2} \bigr\} (t) -2\mathcal{H}_{a^{+},k}^{\alpha}\{f \}(t)\mathcal{H}_{a^{+},k}^{\beta}\{ f\}(t) \biggr]^{\frac{1}{2}} \\& \qquad {} \times \biggl[ \frac{ (\ln(t/a) )^{\frac{\beta}{k}}}{\Gamma_{k}(\beta+k)} \mathcal{H}_{a^{+},k}^{\alpha} \bigl\{ g^{2} \bigr\} (t) + \frac{ (\ln(t/a) )^{\frac{\alpha}{k}}}{\Gamma_{k}(\alpha+k)} \mathcal{H}_{a^{+},k}^{\beta} \bigl\{ g^{2} \bigr\} (t) \\& \qquad {}-2\mathcal{H}_{a^{+},k}^{\alpha}\{g \}(t)\mathcal{H}_{a^{+},k}^{\beta}\{ g\}(t) \biggr]^{\frac{1}{2}}. \end{aligned}$$
(2.25)
Setting \(\psi_{1}(t)=\psi_{2}(t)=g(t)=1\) in Lemma 2.1, we obtain
$$ \frac{ (\ln(t/a) )^{\frac{\beta}{k}}}{\Gamma_{k}(\beta+k)} \mathcal{H}_{a^{+},k}^{\alpha} \bigl\{ f^{2} \bigr\} (t) \leq\frac{ (\ln(t/a) )^{\frac{\beta}{k}}}{4\Gamma _{k}(\beta+k)} \frac{ (\mathcal{H}_{a^{+},k}^{\alpha}\{(\varphi_{1}+\varphi_{2})f\} (t) )^{2}}{\mathcal{H}_{a^{+},k}^{\alpha}\{\varphi_{1}\varphi_{2}\}(t)}, $$
which leads to
$$\begin{aligned}& \frac{ (\ln(t/a) )^{\frac{\beta}{k}}}{\Gamma_{k}(\beta+k)} \mathcal{H}_{a^{+},k}^{\alpha} \bigl\{ f^{2} \bigr\} (t) -\mathcal{H}_{a^{+},k}^{\alpha}\{f\}(t) \mathcal{H}_{a^{+},k}^{\beta}\{ f\}(t) \\& \quad \leq\frac{ (\ln(t/a) )^{\frac{\beta }{k}}}{4\Gamma_{k}(\beta+k)} \frac{ (\mathcal{H}_{a^{+},k}^{\alpha}\{(\varphi_{1}+\varphi_{2})f\} (t) )^{2}}{ \mathcal{H}_{a^{+},k}^{\alpha}\{\varphi_{1}\varphi_{2}\}(t)} -\mathcal{H}_{a^{+},k}^{\alpha} \{f\}(t)\mathcal{H}_{a^{+},k}^{\beta}\{ f\}(t) \\& \quad = \mathrm{M}_{1}(f,\varphi_{1},\varphi_{2}) (t) \end{aligned}$$
(2.26)
and
$$\begin{aligned}& \frac{ (\ln(t/a) )^{\frac{\alpha}{k}}}{\Gamma_{k}(\alpha+k)} \mathcal{H}_{a^{+},k}^{\beta} \bigl\{ f^{2} \bigr\} (t) -\mathcal{H}_{a^{+},k}^{\alpha}\{f \}(t) \mathcal{H}_{a^{+},k}^{\beta}\{ f\}(t) \\& \quad \leq\frac{ (\ln(t/a) )^{\frac{\alpha }{k}}}{4\Gamma_{k}(\alpha+k)} \frac{ (\mathcal{H}_{a^{+},k}^{\beta}\{(\varphi_{1}+\varphi_{2})f\} (t) )^{2}}{ \mathcal{H}_{a^{+},k}^{\beta}\{\varphi_{1}\varphi_{2}\}(t)} -\mathcal{H}_{a^{+},k}^{\alpha} \{f\}(t)\mathcal{H}_{a^{+},k}^{\beta}\{ f\}(t) \\& \quad =\mathrm{M}_{2}(f,\varphi_{1},\varphi_{2}) (t). \end{aligned}$$
(2.27)
Similarly, taking \(\varphi_{1}(t)=\varphi_{2}(t)=f(t)=1\) in Lemma 2.1, we get
$$ \frac{ (\ln(t/a) )^{\frac{\beta}{k}}}{\Gamma_{k}(\beta+k)} \mathcal{H}_{a^{+},k}^{\alpha} \bigl\{ g^{2} \bigr\} (t) -\mathcal{H}_{a^{+},k}^{\alpha}\{g\}(t) \mathcal{H}_{a^{+},k}^{\beta}\{ g\}(t) \leq\mathrm{M}_{1}(g, \psi_{1},\psi_{2}) (t) $$
(2.28)
and
$$ \frac{ (\ln(t/a) )^{\frac{\alpha}{k}}}{\Gamma_{k}(\alpha+k)} \mathcal{H}_{a^{+},k}^{\beta} \bigl\{ g^{2} \bigr\} (t) -\mathcal{H}_{a^{+},k}^{\alpha}\{g \}(t) \mathcal{H}_{a^{+},k}^{\beta}\{ g\}(t) \leq\mathrm{M}_{2}(g, \psi_{1},\psi_{2}) (t). $$
(2.29)
Finally, by combining the inequalities (2.25)-(2.29), we can get the desired inequality (2.21). This completes the proof. □
The following assertion is a special case of Theorem 1 when \(\alpha=\beta\).
Theorem 2
Suppose that the assumptions of Theorem 1 are satisfied. Then, for \(t>1\) and \(\alpha\in\mathbb{R}^{+}\), the following inequality holds true:
$$\begin{aligned}& \biggl\vert \frac{ (\ln(t) )^{\frac{\alpha}{k}}}{\Gamma_{k}(\alpha +k)}\mathcal{H}_{a^{+},k}^{\alpha} \{fg\}(t) -\mathcal{H}_{a^{+},k}^{\alpha}\{f\}(t)\mathcal{H}_{a^{+},k}^{\alpha} \{ g\}(t) \biggr\vert \\& \quad \leq \bigl\vert \mathcal{M}(f,\varphi_{1}, \varphi_{2}) (t)\mathcal{M}(g,\varphi _{1}, \varphi_{2}) (t) \bigr\vert ^{\frac{1}{2}}, \end{aligned}$$
(2.30)
where
$$\mathcal{M}(u,v,w) (t):= \frac{ (\ln(t) )^{\frac{\alpha}{k}}}{4\Gamma_{k}(\alpha+k)} \frac{ (\mathcal{H}_{a^{+},k}^{\alpha}\{(v+w)u\}(t) )^{2}}{ \mathcal{H}_{a^{+},k}^{\alpha}\{vw\}(t)} - \bigl( \mathcal{H}_{a^{+},k}^{\alpha}\{u\}(t) \bigr)^{2}. $$
Remark 2.1
Setting \(\varphi_{1}=m\), \(\varphi_{2}=M\), \(\psi_{1}=n\), and \(\psi_{2}=N\), we have
$$\mathcal{M}(f,m,M) (t)=\frac{(M-m)^{2}}{4mM} \bigl(\mathcal {H}_{a^{+},k}^{\alpha} \{f\}(t) \bigr)^{2} $$
and
$$\mathcal{M}(g,n,N) (t)=\frac{(N-n)^{2}}{4nN} \bigl(\mathcal {H}_{a^{+},k}^{\alpha} \{g\}(t) \bigr)^{2}. $$
Corollary 4
Let f and g be two positive integrable functions on \([a,\infty)\) satisfying the condition (2.9). Then, for \(t>a\) and \(\alpha\in\mathbb{R}^{+}\), we have
$$\begin{aligned}& \biggl\vert \frac{ (\ln(t/a) )^{\frac{\alpha}{k}}}{\Gamma_{k}(\alpha +k)}\mathcal{H}_{a^{+},k}^{\alpha}\{fg \}(t) -\mathcal{H}_{a^{+},k}^{\alpha}\{f\}(t)\mathcal{H}_{a^{+},k}^{\alpha} \{ g\}(t) \biggr\vert \\& \quad \leq\frac{(M-m)(N-n)}{4\sqrt{mMnN}} \mathcal{H}_{a^{+},k}^{\alpha}\{f\}(t) \mathcal{H}_{a^{+},k}^{\alpha}\{g\}(t). \end{aligned}$$
(2.31)

3 Applications

In this section we apply Hadamard k-fractional integrals to a function which is bounded by the Heaviside functions.
The simplest piecewise continuous function is the unit step function, which is known as the Heaviside function, defined by
$$u_{c}(t)= \left \{ \textstyle\begin{array}{l@{\quad}l} 1 & \text{if } u\geq c, \\ 0 & \text{if } u< c. \end{array}\displaystyle \right . $$
The unit step function is basically an on-off switch which is very useful in differential equations and piecewise functions when there is a large number of pieces, for example, Riemann sums as in Figure 1. Using Heaviside function, a piecewise continuous function \(\varphi_{1}(t)\) defined on an interval \([a,T]\) can be written as follows:
$$\begin{aligned} \varphi_{1}(t) =&m_{1} \bigl(u_{t_{0}}(t)-u_{t_{1}}(t) \bigr)+m_{2} \bigl(u_{t_{1}}(t)-u_{t_{2}}(t) \bigr) +m_{3} \bigl(u_{t_{3}}(t)-u_{t_{2}}(t) \bigr)+ \cdots+m_{p+1}u_{t_{p}}(t) \\ =&m_{1}u_{t_{0}}+(m_{2}-m_{1})u_{t_{1}}(t)+(m_{3}-m_{2})u_{t_{2}}(t)+ \cdots +(m_{p+1}-m_{p})u_{t_{p}}(t) \\ =&\sum_{k=0}^{p}(m_{k+1}-m_{k})u_{t_{k}}(t), \end{aligned}$$
(3.1)
where \(m_{0}=0\), \({m_{i}}\in\mathbb{R}\) (\(i=0, 1, \ldots, p+1\)) and \(a=t_{0}< t_{1}< t_{2}<\cdots<t_{p}<t_{p+1}=T\). Similarly we define the functions \(\varphi_{2}\), \(\psi_{1}\), and \(\psi _{2}\) as follows:
$$\begin{aligned}& \varphi_{2}(t)=\sum_{k=0}^{p}(M_{k+1}-M_{k})u_{t_{k}}(t), \end{aligned}$$
(3.2)
$$\begin{aligned}& \psi_{1}(t)=\sum_{k=0}^{p}(n_{k+1}-n_{k})u_{t_{k}}(t), \end{aligned}$$
(3.3)
$$\begin{aligned}& \psi_{2}(t)=\sum_{k=0}^{p}(N_{k+1}-N_{k})u_{t_{k}}(t), \end{aligned}$$
(3.4)
where \(n_{0}=N_{0}=M_{0}=0\) and \(n_{i}, N_{i}, M_{i} \in\mathbb{R}\) (\(i=0, 1, \ldots, p+1\)).
Let f be an integrable function on \([a,T]\) which satisfies the condition (2.1) with the functions \(\varphi_{1}\), \(\varphi_{2}\), \(\psi_{1}\), and \(\psi_{2}\) in (3.1), (3.2), (3.3) and (3.4), respectively. Then we get \(m_{j+1}\leq f(t)\leq M_{j+1}\) for each \(t\in(t_{j},t_{j+1})\) (\(j=0, 1, \ldots, p\)). For example, Figure 1 represents the case \(p=4\).
Then the Hadamard k-fractional integral of f on \([a, T]\) can be defined as follows:
$$ \mathcal{H}_{a^{+},k}^{\alpha}\{f\}(T)=\sum _{j=0}^{p}\mathcal {H}_{t_{j},t_{j+1},k}^{\alpha}\{f \}(t), $$
(3.5)
where
$$ \mathcal{H}_{t_{j},t_{j+1},k}^{\alpha}\{f\}(t):= \frac{1}{k\Gamma _{k}(\alpha)} \int_{t_{j}}^{t_{j+1}} \biggl(\ln\frac{t}{s} \biggr)^{\frac{\alpha}{k}-1}f(s) \frac{\mathrm{d}s}{s} \quad (j=0, 1, 2, \ldots, p). $$
(3.6)
Proposition 1
Let f and g be two positive integrable functions on \([a,T]\) which satisfy the condition (2.1) with the functions \(\varphi_{1}\), \(\varphi_{2}\), \(\psi_{1}\), and \(\psi_{2}\) in (3.1), (3.2), (3.3), and (3.4), respectively. Then, for \(\alpha\in\mathbb{R}^{+}\), the following inequality holds true:
$$\begin{aligned}& \Biggl(\sum_{j=0}^{p} n_{j+1}N_{j+1} \mathcal {H}_{t_{j},t_{j+1},k}^{\alpha} \bigl\{ f^{2} \bigr\} (T) \Biggr) \Biggl(\sum_{j=0}^{p} m_{j+1}M_{j+1} \mathcal {H}_{t_{j},t_{j+1},k}^{\alpha} \bigl\{ g^{2} \bigr\} (T) \Biggr) \\& \quad \leq\frac{1}{4}\sum_{j=0}^{p} (n_{j+1}N_{j+1}+m_{j+1}M_{j+1} ) \bigl( \mathcal{H}_{a^{+},k}^{\alpha}\{fg\}(T) \bigr)^{2}. \end{aligned}$$
(3.7)
Proof
Using the Hadamard k-fractional integral in (3.5), we get
$$\begin{aligned}& \mathcal{H}_{a^{+},k} \bigl\{ \psi_{1} \psi_{2}f^{2} \bigr\} (T)=\sum_{j=0}^{p}n_{j+1}N_{j+1} \mathcal{H}_{t_{j},t_{j+1},k}^{\alpha} \bigl\{ f^{2} \bigr\} (T), \end{aligned}$$
(3.8)
$$\begin{aligned}& \mathcal{H}_{a^{+},k} \bigl\{ \varphi_{1} \varphi_{2}g^{2} \bigr\} (T)=\sum_{j=0}^{p}m_{j+1}M_{j+1} \mathcal{H}_{t_{j},t_{j+1},k}^{\alpha} \bigl\{ g^{2} \bigr\} (T), \end{aligned}$$
(3.9)
and
$$ \mathcal{H}_{a^{+},k} \bigl\{ (\varphi_{1} \psi_{1}+\varphi_{2}\psi_{2}fg) \bigr\} (T) =\sum _{j=0}^{p} (m_{j+1}n_{j+1}+M_{j+1}N_{j+1}) \mathcal{H}_{t_{j},t_{j+1},k}^{\alpha}\{fg\}(T). $$
(3.10)
Then substituting equalities (3.8), (3.9), and (3.10) for the result in Lemma 2.1 yields the desired result (3.7). □
Proposition 2
Suppose that assumptions of Proposition 1 are satisfied. Then, for \(k, \alpha,\beta \in\mathbb{R}^{+}\), we have
$$\begin{aligned}& \biggl\vert \frac{ (\ln(t/a) )^{\frac{\beta}{k}}}{\Gamma_{k}(\beta +k)}\mathcal{H}_{a^{+},k}^{\alpha} \{fg\}(T) +\frac{ (\ln(t/a) )^{\frac{\alpha}{k}}}{\Gamma_{k}(\alpha +k)}\mathcal{H}_{a^{+},k}^{\beta}\{fg\}(T) \\& \qquad {} -\mathcal{H}_{a^{+},k}^{\alpha}\{f\}(t)\mathcal {H}_{a^{+},k}^{\beta}\{g\}(T) -\mathcal{H}_{a^{+},k}^{\beta} \{f\}(t)\mathcal{H}_{a^{+},k}^{\alpha}\{ f\}(T) \biggr\vert \\& \quad \leq \bigl\vert \mathrm{M}_{1}^{*}(f,m_{j+1},M_{j+1}) (t)+\mathrm{M}_{2}^{*}(f,m_{j+1},M_{j+1}) (T) \bigr\vert ^{\frac{1}{2}} \\& \qquad {}\times \bigl\vert \mathrm{M}_{1}^{*}(g,n_{j+1},N_{j+1}) (t)+\mathrm{M}_{2}^{*}(g,n_{j+1},N_{j+1}) (T) \bigr\vert ^{\frac{1}{2}}, \end{aligned}$$
(3.11)
where
$$\begin{aligned}& \mathrm{M}_{1}^{*}(u,v,w) (t) := \frac{ (\ln(t/a) )^{\frac{\beta}{k}}\Gamma_{k}(\alpha +k)}{4\Gamma_{k}(\beta+k)} \frac{ \sum_{j=0}^{p}(v+w) (\mathcal{H}_{t_{j},t_{j+1},k}^{\alpha}\{u\}(t) )^{2}}{ \sum_{j=0}^{p} vw [ (\ln(t/t_{j}) ]^{\frac{\alpha}{k}} - [\ln(t/t_{j+1}) )^{\frac{\alpha}{k}} ]} \\& \hphantom{\mathrm{M}_{1}^{*}(u,v,w)(t) :={}}{}- \bigl(\mathcal{H}_{a^{+},k}^{\alpha}\{u\}(T) \bigr) \bigl(\mathcal{H}_{a^{+},k}^{\beta}\{u\}(T) \bigr), \\& \mathrm{M}_{2}^{*}(u,v,w) (t) := \frac{ (\ln(t/a) )^{\frac{\alpha}{k}}\Gamma_{k}(\beta +k)}{4\Gamma_{k}(\alpha+k)} \frac{ \sum_{j=0}^{p}(v+w) (\mathcal{H}_{t_{j},t_{j+1},k}^{\beta}\{u\}(t) )^{2}}{ \sum_{j=0}^{p} vw [ (\ln(t/t_{j}) ]^{\frac{\beta}{k}} - [\ln(t/t_{j+1}) )^{\frac{\beta}{k}} ]} \\& \hphantom{\mathrm{M}_{2}^{*}(u,v,w)(t) :={}}{}- \bigl(\mathcal{H}_{a^{+},k}^{\beta}\{u\}(t) \bigr) \bigl(\mathcal{H}_{a^{+},k}^{\alpha}\{u\}(t) \bigr). \end{aligned}$$
Proof
Since
$$\begin{aligned} \mathcal{H}_{t_{j},t_{j+1},k}^{\alpha}\{f\}(T) =& \frac{1}{k\Gamma _{k}(\alpha)} \int_{t_{j}}^{t_{j+1}} \biggl(\ln\frac{t}{s} \biggr)^{\frac{\alpha}{k}-1}f(s) \frac {\mathrm{d}s}{s} \\ =&\frac{ (\ln(t/t_{j}) )^{\frac{\alpha}{k}}- (\ln(t/t_{j+1}) )^{\frac{\alpha}{k}}}{\Gamma_{k}(\alpha+k)}, \end{aligned}$$
we get
$$\mathcal{H}_{a^{+},k}\{\varphi_{1}\varphi_{2}\} \{T\} = \sum_{j=0}^{p}\frac{m_{j+1}M_{j+1}}{\Gamma_{k}(\alpha+k)} \bigl[ \bigl(\ln(t/t_{j}) \bigr)^{\frac{\alpha}{k}}- \bigl(\ln(t/t_{j+1}) \bigr)^{\frac{\alpha}{k}} \bigr] $$
and
$$\mathcal{H}_{a^{+},k}\{\psi_{1}\psi_{2}\} \{T\} = \sum _{j=0}^{p}\frac{n_{j+1}N_{j+1}}{\Gamma_{k}(\alpha+k)} \bigl[ \bigl( \ln(t/t_{j}) \bigr)^{\frac{\alpha}{k}}- \bigl(\ln(t/t_{j+1}) \bigr)^{\frac{\alpha}{k}} \bigr]. $$
After some computations, we have
$$\begin{aligned}& \mathrm{M}_{1}(f,\varphi_{1},\varphi_{2}) (T) = \frac{ (\ln(t/a) )^{\frac{\beta}{k}}\Gamma_{k}(\alpha +k)}{4\Gamma_{k}(\beta+k)} \frac{ \sum_{j=0}^{p}(m_{j+1}+M_{j+1}) (\mathcal{H}_{t_{j},t_{j+1},k}^{\alpha}\{f\}(t) )^{2}}{ \sum_{j=0}^{p} m_{j+1}M_{j+1} [ (\ln(t/t_{j}) ]^{\frac{\alpha}{k}} - [\ln(t/t_{j+1}) )^{\frac{\alpha}{k}} ]} \\& \hphantom{\mathrm{M}_{1}(f,\varphi_{1},\varphi_{2})(T) ={}}{} - \bigl(\mathcal{H}_{a^{+},k}^{\alpha}\{f\}(T) \bigr) \bigl(\mathcal{H}_{a^{+},k}^{\beta}\{f\}(T) \bigr), \\& \mathrm{M}_{1}(g,\psi_{1},\psi_{2}) (T) = \frac{ (\ln(t/a) )^{\frac{\beta}{k}}\Gamma_{k}(\alpha +k)}{4\Gamma_{k}(\beta+k)} \frac{ \sum_{j=0}^{p}(n_{j+1}+N_{j+1}) (\mathcal{H}_{t_{j},t_{j+1},k}^{\alpha}\{g\}(t) )^{2}}{ \sum_{j=0}^{p} n_{j+1}N_{j+1} [ (\ln(t/t_{j}) ]^{\frac{\alpha}{k}} - [\ln(t/t_{j+1}) )^{\frac{\alpha}{k}} ]} \\& \hphantom{\mathrm{M}_{1}(g,\psi_{1},\psi_{2})(T) ={}}{} - \bigl(\mathcal{H}_{a^{+},k}^{\alpha}\{g\}(T) \bigr) \bigl(\mathcal{H}_{a^{+},k}^{\beta}\{g\}(T) \bigr), \\& \mathrm{M}_{2}(f,\varphi_{1},\varphi_{2}) (T) = \frac{ (\ln(t/a) )^{\frac{\alpha}{k}}\Gamma_{k}(\beta +k)}{4\Gamma_{k}(\alpha+k)} \frac{ \sum_{j=0}^{p}(m_{j+1}+M_{j+1}) (\mathcal{H}_{t_{j},t_{j+1},k}^{\beta}\{f\}(t) )^{2}}{ \sum_{j=0}^{p} m_{j+1}M_{j+1} [ (\ln(t/t_{j}) ]^{\frac{\beta}{k}} - [\ln(t/t_{j+1}) )^{\frac{\beta}{k}} ]} \\& \hphantom{\mathrm{M}_{2}(f,\varphi_{1},\varphi_{2})(T) ={}}{} - \bigl(\mathcal{H}_{a^{+},k}^{\alpha}\{g\}(T) \bigr) \bigl(\mathcal{H}_{a^{+},k}^{\beta}\{g\}(T) \bigr), \end{aligned}$$
and
$$\begin{aligned} \mathrm{M}_{2}(g,\psi_{1},\psi_{2}) (t) =& \frac{ (\ln(t/a) )^{\frac{\alpha}{k}}\Gamma_{k}(\beta +k)}{4\Gamma_{k}(\alpha+k)} \frac{ \sum_{j=0}^{p}(n_{j+1}+N_{j+1}) (\mathcal{H}_{t_{j},t_{j+1},k}^{\beta}\{g\}(T) )^{2}}{ \sum_{j=0}^{p} n_{j+1}N_{j+1} [ (\ln(t/t_{j}) ]^{\frac{\beta}{k}} - [\ln(t/t_{j+1}) )^{\frac{\beta}{k}} ]} \\ &{}- \bigl(\mathcal{H}_{a^{+},k}^{\alpha}\{g\}(T) \bigr) \bigl( \mathcal{H}_{a^{+},k}^{\beta}\{g\}(T) \bigr). \end{aligned}$$
By applying the results here to Theorem 1, we obtain the desired inequality (3.11). Hence the proof is complete. □
The special case of Proposition 2 when \(\alpha=\beta\) is seen immediately to reduce to the result in Corollary 5.
Corollary 5
Suppose that the assumptions of Proposition 2 are satisfied. Then, for \(k, \alpha\in\mathbb{R}^{+}\), the following inequality holds true:
$$\begin{aligned}& \biggl\vert \frac{ (\ln(t/a) )^{\frac{\alpha}{k}}}{\Gamma_{k}(\alpha +k)}\mathcal{H}_{a^{+},k}^{\alpha}\{fg \}(T) -\mathcal{H}_{a^{+},k}^{\alpha}\{f\}(T)\mathcal{H}_{a^{+},k}^{\alpha} \{ f\}(T) \biggr\vert \\& \quad \leq \bigl\vert \mathrm{M}^{*}(f,m_{j+1},M_{j+1}) (T) \mathrm{M}^{*}(g,n_{j+1},N_{j+1}) (T) \bigr\vert ^{\frac{1}{2}}, \end{aligned}$$
(3.12)
where
$$ \mathrm{M}^{*}(u,v,w) (t) = \frac{ (\ln(t/a) )^{\frac{\alpha}{k}}}{4} \frac{ \sum_{j=0}^{p}(v+w) (\mathcal{H}_{t_{j},t_{j+1},k}^{\alpha}\{u\}(t) )^{2}}{ \sum_{j=0}^{p} vw [ (\ln(t/t_{j}) ]^{\frac{\alpha}{k}} - [\ln(t/t_{j+1}) )^{\frac{\alpha}{k}} ]} - \bigl( \mathcal{H}_{a^{+},k}^{\alpha}\{u\}(t) \bigr)^{2}. $$
We conclude this paper by remarking that all the results presented in this paper can be converted into those for the right-sided Hadamard k-fractional integral.

Acknowledgements

This work was supported by Dongguk University Research Fund (Gyeongju). The authors would like to express their deep-felt thanks for the reviewers’ helpful comments.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors have contributed equally to this manuscript. They read and approved the final manuscript.
Literature
1.
go back to reference Cerone, P, Dragomir, SS: New upper and lower bounds for the Chebyshev functional. J. Inequal. Pure Appl. Math. 3(5), Article 77 (2002) MathSciNetMATH Cerone, P, Dragomir, SS: New upper and lower bounds for the Chebyshev functional. J. Inequal. Pure Appl. Math. 3(5), Article 77 (2002) MathSciNetMATH
2.
go back to reference Dahmani, Z, Mechouar, O, Brahami, S: Certain inequalities related to the Chebyshev’s functional involving a Riemann-Liouville operator. Bull. Math. Anal. Appl. 3(4), 38-44 (2011) MathSciNetMATH Dahmani, Z, Mechouar, O, Brahami, S: Certain inequalities related to the Chebyshev’s functional involving a Riemann-Liouville operator. Bull. Math. Anal. Appl. 3(4), 38-44 (2011) MathSciNetMATH
3.
go back to reference Pečarić, J, Perić, I: Identities for the Chebyshev functional involving derivatives of arbitrary order and applications. J. Math. Anal. Appl. 313, 475-483 (2006) MathSciNetCrossRefMATH Pečarić, J, Perić, I: Identities for the Chebyshev functional involving derivatives of arbitrary order and applications. J. Math. Anal. Appl. 313, 475-483 (2006) MathSciNetCrossRefMATH
4.
go back to reference Purohit, SD, Kalla, SL: Certain inequalities related to the Chebyshev’s functional involving Erdélyi-Kober operators. Scientia, Ser. A, Math. Sci. 25, 55-63 (2014) MATH Purohit, SD, Kalla, SL: Certain inequalities related to the Chebyshev’s functional involving Erdélyi-Kober operators. Scientia, Ser. A, Math. Sci. 25, 55-63 (2014) MATH
5.
go back to reference Grüss, G: Über das maximum des absoluten betrages von \(\frac {1}{b-a} \int_{a}^{b} f(x)g(x)\, dx - \frac{1}{(b-a)^{2}} \int_{a}^{b} f(x)\, dx \int_{a}^{b} g(x)\, dx\). Math. Z. 39, 215-226 (1935) MathSciNetCrossRefMATH Grüss, G: Über das maximum des absoluten betrages von \(\frac {1}{b-a} \int_{a}^{b} f(x)g(x)\, dx - \frac{1}{(b-a)^{2}} \int_{a}^{b} f(x)\, dx \int_{a}^{b} g(x)\, dx\). Math. Z. 39, 215-226 (1935) MathSciNetCrossRefMATH
6.
go back to reference Mitrinović, DS, Pečarić, JE, Fink, AM: Classical and New Inequalities in Analysis. Kluwer Academic, Dordrecht (1993) CrossRefMATH Mitrinović, DS, Pečarić, JE, Fink, AM: Classical and New Inequalities in Analysis. Kluwer Academic, Dordrecht (1993) CrossRefMATH
7.
go back to reference Dragomir, SS: A generalization of Grüss inequality in inner product spaces and applications. J. Math. Anal. Appl. 237, 74-82 (1999) MathSciNetCrossRefMATH Dragomir, SS: A generalization of Grüss inequality in inner product spaces and applications. J. Math. Anal. Appl. 237, 74-82 (1999) MathSciNetCrossRefMATH
8.
9.
go back to reference Pachpatte, BG: On multidimensional Grüss type inequalities. J. Inequal. Pure Appl. Math. 3(2), Article 27 (2002) MathSciNetMATH Pachpatte, BG: On multidimensional Grüss type inequalities. J. Inequal. Pure Appl. Math. 3(2), Article 27 (2002) MathSciNetMATH
11.
go back to reference Pólya, G, Szegö, G: Aufgaben und Lehrsatze aus der Analysis, vol. 1. Die Grundlehren der mathmatischen Wissenschaften, vol. 19. Springer, Berlin (1925) CrossRefMATH Pólya, G, Szegö, G: Aufgaben und Lehrsatze aus der Analysis, vol. 1. Die Grundlehren der mathmatischen Wissenschaften, vol. 19. Springer, Berlin (1925) CrossRefMATH
12.
go back to reference Dragomir, SS, Diamond, NT: Integral inequalities of Grüss type via Pólya-Szegö and Shisha-Mond results. East Asian Math. J. 19(1), 27-39 (2003) MATH Dragomir, SS, Diamond, NT: Integral inequalities of Grüss type via Pólya-Szegö and Shisha-Mond results. East Asian Math. J. 19(1), 27-39 (2003) MATH
13.
go back to reference Belarbi, S, Dahmani, Z: On some new fractional integral inequalities. J. Inequal. Pure Appl. Math. 10(3), Article 86 (2009) MathSciNetMATH Belarbi, S, Dahmani, Z: On some new fractional integral inequalities. J. Inequal. Pure Appl. Math. 10(3), Article 86 (2009) MathSciNetMATH
14.
go back to reference Chebyshev, PL: Sur les expressions approximatives des integrales definies par les autres prises entre les mmes limites. Proc. Math. Soc. Charkov 2, 93-98 (1882) Chebyshev, PL: Sur les expressions approximatives des integrales definies par les autres prises entre les mmes limites. Proc. Math. Soc. Charkov 2, 93-98 (1882)
15.
go back to reference Dahmani, Z: New inequalities in fractional integrals. Int. J. Nonlinear Sci. 9(4), 493-497 (2010) MathSciNet Dahmani, Z: New inequalities in fractional integrals. Int. J. Nonlinear Sci. 9(4), 493-497 (2010) MathSciNet
16.
go back to reference Dahmani, Z, Tabharit, L: On weighted Grüss type inequalities via fractional integration. J. Adv. Res. Pure Math. 2, 31-38 (2010) MathSciNetCrossRef Dahmani, Z, Tabharit, L: On weighted Grüss type inequalities via fractional integration. J. Adv. Res. Pure Math. 2, 31-38 (2010) MathSciNetCrossRef
17.
go back to reference Kiryakova, V: Generalized Fractional Calculus and Applications. Pitman Res. Notes Math. Ser., vol. 301. Longman, New York (1994) MATH Kiryakova, V: Generalized Fractional Calculus and Applications. Pitman Res. Notes Math. Ser., vol. 301. Longman, New York (1994) MATH
18.
go back to reference Ntouyas, KS, Agarwal, P, Tariboon, J: On Pólya-Szegö and Chebyshev types inequalities involving the Riemann-Liouville fractional integral operators. J. Math. Inequal. 10(2), 491-504 (2016) MathSciNetCrossRefMATH Ntouyas, KS, Agarwal, P, Tariboon, J: On Pólya-Szegö and Chebyshev types inequalities involving the Riemann-Liouville fractional integral operators. J. Math. Inequal. 10(2), 491-504 (2016) MathSciNetCrossRefMATH
19.
go back to reference Podlubny, I: Fractional Differential Equations. Academic Press, London (1999) MATH Podlubny, I: Fractional Differential Equations. Academic Press, London (1999) MATH
20.
go back to reference Sarıkaya, MZ, Dahmani, Z, Kiriş, ME, Ahmad, F: \((k,s)\)-Riemann-Liouville fractional integral and applications. Hacet. J. Math. Stat. 45(1), 77-89 (2016) MATH Sarıkaya, MZ, Dahmani, Z, Kiriş, ME, Ahmad, F: \((k,s)\)-Riemann-Liouville fractional integral and applications. Hacet. J. Math. Stat. 45(1), 77-89 (2016) MATH
21.
go back to reference Set, E, Tomar, M, Sarıkaya, MZ: On generalized Grüss type inequalities for k-fractional integrals. Appl. Math. Comput. 269, 29-34 (2015) MathSciNetCrossRef Set, E, Tomar, M, Sarıkaya, MZ: On generalized Grüss type inequalities for k-fractional integrals. Appl. Math. Comput. 269, 29-34 (2015) MathSciNetCrossRef
22.
go back to reference Diaz, R, Pariguan, E: On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 15, 179-192 (2007) MathSciNetMATH Diaz, R, Pariguan, E: On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 15, 179-192 (2007) MathSciNetMATH
23.
go back to reference Kokologiannaki, CG: Properties and inequalities of generalized k-gamma, beta and zeta functions. Int. J. Contemp. Math. Sci. 5(14), 653-660 (2010) MathSciNetMATH Kokologiannaki, CG: Properties and inequalities of generalized k-gamma, beta and zeta functions. Int. J. Contemp. Math. Sci. 5(14), 653-660 (2010) MathSciNetMATH
24.
go back to reference Kokologiannaki, CG, Karasniqi, V: Some properties of k-gamma function. Matematiche LXVIII, 13-22 (2013) MathSciNetMATH Kokologiannaki, CG, Karasniqi, V: Some properties of k-gamma function. Matematiche LXVIII, 13-22 (2013) MathSciNetMATH
25.
go back to reference Kokologiannaki, CG, Sourla, VD: Bounds for k-gamma and k-beta functions. J. Inequal. Spec. Funct. 4(3), 1-5 (2013) MathSciNetMATH Kokologiannaki, CG, Sourla, VD: Bounds for k-gamma and k-beta functions. J. Inequal. Spec. Funct. 4(3), 1-5 (2013) MathSciNetMATH
26.
go back to reference Krasniqi, V: Inequalities and monotonicity for the ratio of k-gamma function. Sci. Magna 6, 40-45 (2010) MathSciNet Krasniqi, V: Inequalities and monotonicity for the ratio of k-gamma function. Sci. Magna 6, 40-45 (2010) MathSciNet
27.
28.
go back to reference Suryanarayana, R, Rao, C: Some new inequalities for the generalized ϵ-gamma, beta and zeta functions. Int. J. Eng. Res. Technol. 1(9), 1-4 (2012) Suryanarayana, R, Rao, C: Some new inequalities for the generalized ϵ-gamma, beta and zeta functions. Int. J. Eng. Res. Technol. 1(9), 1-4 (2012)
29.
30.
go back to reference Mubeen, S, Habibullah, GM: k-Fractional integrals and application. Int. J. Contemp. Math. Sci. 7, 89-94 (2012) MathSciNetMATH Mubeen, S, Habibullah, GM: k-Fractional integrals and application. Int. J. Contemp. Math. Sci. 7, 89-94 (2012) MathSciNetMATH
31.
go back to reference Romero, LG, Luque, LL, Dorrego, GA, Cerutti, RA: On the k-Riemann-Liouville fractional derivative. Int. J. Contemp. Math. Sci. 8(1), 41-51 (2013) MathSciNetCrossRefMATH Romero, LG, Luque, LL, Dorrego, GA, Cerutti, RA: On the k-Riemann-Liouville fractional derivative. Int. J. Contemp. Math. Sci. 8(1), 41-51 (2013) MathSciNetCrossRefMATH
32.
go back to reference Mubeen, S, Iqbal, S, Tomar, M: On Hadamard k-fractional integrals and applications (submitted) Mubeen, S, Iqbal, S, Tomar, M: On Hadamard k-fractional integrals and applications (submitted)
Metadata
Title
Certain inequalities associated with Hadamard k-fractional integral operators
Authors
Muharrem Tomar
Shahid Mubeen
Junesang Choi
Publication date
01-12-2016
Publisher
Springer International Publishing
Published in
Journal of Inequalities and Applications / Issue 1/2016
Electronic ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-016-1178-x

Other articles of this Issue 1/2016

Journal of Inequalities and Applications 1/2016 Go to the issue

Premium Partner