Skip to main content
Top

2024 | OriginalPaper | Chapter

20. CFD Analysis of Combustion of Gasoline, Hydrogen, CNG and HCNG Blends in Internal Combustion Engine

Authors : Soumil Sahu, Soumay Srivastava, Akhil Ailaboina, Krishnakant Agrawal, Kaushik Saha

Published in: IGEC Transactions, Volume 1: Energy Conversion and Management

Publisher: Springer Nature Switzerland

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Despite the rise of renewables and EVs, IC engines are expected to be useful in applications requiring a reliable, compact, remote and scalable power source. As a result, improving engine performance and addressing environmental concerns associated with NOx and soot emissions becomes important. The current study explores viability of alternative fuels like H2 and CNG to achieve lower emissions and better efficiency. CFD simulations using CONVERGE software with detailed chemical kinetics are used to model engine combustion and predict heat release rate and pressure rise for a canonical geometry in spark ignited mode. In the first part of the study, gasoline fuel combustion is simulated to validate the CFD tool with previous experiments and predictions and good agreement has been observed. In the second part of the project, simulations for the same engine geometry were performed with the fuels as: pure CH4, 50/50 CH4/H2 by volume and pure H2. Due to high-flame speed and extremely low ‘minimum ignition energy requirement’ of H2, combustion duration is low and pressure rise is extremely steep. Consequently, for H2 case the piston ends up working against the hot gases, while for a similar operating condition, peak pressure is considerably low for pure methane. The engine with the HCNG blend as the fuel can achieve higher cycle work than either of the two cases by the fuels compensating for shortcomings of the individual fuels: H2 and CH4. The amount of NOx produced was predicted to undergo a non-linear increment with hydrogen enrichment. Therefore, higher engine power can be achieved in the 50/50 mixture with less than half of the NOx produced for pure hydrogen.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference J. Wang, Z. Huang, B. Liu, X. Wang, Simulation of combustion in spark-ignition engine fuelled with natural gas-hydrogen blends combined with EGR. Front. Energy Power Eng. Chin. 3, 204–211 (2009)CrossRef J. Wang, Z. Huang, B. Liu, X. Wang, Simulation of combustion in spark-ignition engine fuelled with natural gas-hydrogen blends combined with EGR. Front. Energy Power Eng. Chin. 3, 204–211 (2009)CrossRef
2.
go back to reference R. Saaidia, M.A. Jemni, M.S. Abid, Simulation and empirical studies of the commercial SI engine performance and its emission levels when running on a CNG and hydrogen blend. Energies 11(1), 29 (2017)CrossRef R. Saaidia, M.A. Jemni, M.S. Abid, Simulation and empirical studies of the commercial SI engine performance and its emission levels when running on a CNG and hydrogen blend. Energies 11(1), 29 (2017)CrossRef
3.
go back to reference A.J. Chaudhari, N. Sahoo, V. Kulkarni, Simulation models for spark ignition engine: a comparative performance study. Energy Procedia 54, 330–341 (2014)CrossRef A.J. Chaudhari, N. Sahoo, V. Kulkarni, Simulation models for spark ignition engine: a comparative performance study. Energy Procedia 54, 330–341 (2014)CrossRef
4.
go back to reference H. Li, G.A. Karim, Hydrogen fueled spark-ignition engines predictive and experimental performance. J. Eng. Gas Turbines Power 128, 230–236 (2006)CrossRef H. Li, G.A. Karim, Hydrogen fueled spark-ignition engines predictive and experimental performance. J. Eng. Gas Turbines Power 128, 230–236 (2006)CrossRef
5.
go back to reference M. Baratta, S. Chiriches, P. Goel, D. Misul, CFD modelling of natural gas combustion in IC engines under different EGR dilution and H2-doping conditions. Transp. Eng. 2, 100018 (2020)CrossRef M. Baratta, S. Chiriches, P. Goel, D. Misul, CFD modelling of natural gas combustion in IC engines under different EGR dilution and H2-doping conditions. Transp. Eng. 2, 100018 (2020)CrossRef
6.
go back to reference N.M. Hafiz, R.A. Mansor, W.M.F. Wan Mahmood, Simulation of the combustion process for a CI hydrogen engine in an argon-oxygen atmosphere. Int. J. Hydrogen Energy 43, 11286–11297 (2018)CrossRef N.M. Hafiz, R.A. Mansor, W.M.F. Wan Mahmood, Simulation of the combustion process for a CI hydrogen engine in an argon-oxygen atmosphere. Int. J. Hydrogen Energy 43, 11286–11297 (2018)CrossRef
7.
go back to reference N. Zettervall, C. Fureby, E.J.K. Nilsson, Evaluation of chemical kinetic mechanisms for methane combustion: a review from a CFD perspective. Fuels 2, 210–240 (2021)CrossRef N. Zettervall, C. Fureby, E.J.K. Nilsson, Evaluation of chemical kinetic mechanisms for methane combustion: a review from a CFD perspective. Fuels 2, 210–240 (2021)CrossRef
8.
go back to reference A. Larsson, N. Zettervall, T. Hurtig, E.J.K. Nilsson, A. Ehn, P. Petersson, M. Alden, J. Larfeldt, C. Fureby, Skeletal methane-air reaction mechanism for large eddy simulation of turbulent microwave-assisted combustion. Energy Fuels 31, 1904–1926 (2017)CrossRef A. Larsson, N. Zettervall, T. Hurtig, E.J.K. Nilsson, A. Ehn, P. Petersson, M. Alden, J. Larfeldt, C. Fureby, Skeletal methane-air reaction mechanism for large eddy simulation of turbulent microwave-assisted combustion. Energy Fuels 31, 1904–1926 (2017)CrossRef
9.
go back to reference P. Pal, C. Kolodziej, S. Choi, S. Som, A. Broatch, J. Gomez-Soriano, Y. Wu, T. Lu, Y. Chee, Development of a virtual CFR engine model for knocking combustion analysis. SAE Int. J. Engines 11, 1069–1082 (2018)CrossRef P. Pal, C. Kolodziej, S. Choi, S. Som, A. Broatch, J. Gomez-Soriano, Y. Wu, T. Lu, Y. Chee, Development of a virtual CFR engine model for knocking combustion analysis. SAE Int. J. Engines 11, 1069–1082 (2018)CrossRef
Metadata
Title
CFD Analysis of Combustion of Gasoline, Hydrogen, CNG and HCNG Blends in Internal Combustion Engine
Authors
Soumil Sahu
Soumay Srivastava
Akhil Ailaboina
Krishnakant Agrawal
Kaushik Saha
Copyright Year
2024
DOI
https://doi.org/10.1007/978-3-031-48902-0_20