Skip to main content
Top

2020 | OriginalPaper | Chapter

Challenges and Adaptations of Life in Alkaline Habitats

Author : Gashaw Mamo

Published in: Alkaliphiles in Biotechnology

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A vast array of organisms is known thriving in high pH environments. The biotechnological, medical, and environmental importance of this remarkable group of organisms has attracted a great deal of interest among researchers and industrialists. One of the most intriguing phenomena of alkaliphiles that engrossed researchers’ attention is their adaptation to high pH and ability to thrive in the “extreme” condition which is often lethal to other organisms. Studies made in this line revealed that alkaliphiles deployed a range of adaptive strategies to overcome the various challenges of life in high pH environments. This chapter highlights some of the challenges and the most important structural and functional adaptations that alkaliphiles evolved to circumvent the hurdles and flourish in alkaline habitats. The fascinating alkaliphiles’ pH homeostasis that effectively maintains a lower cytoplasmic pH than its extracellular environment and the remarkable bioenergetics that produce ATP much faster than non-alkaliphiles systems are reviewed in detail. Moreover, the adaptive mechanisms that alkaliphiles employ to keep the structural and functional integrity of their biomolecules at elevated pH are assessed.
It is undeniable that our understanding of alkaliphiles adaptation mechanisms to high pH is expanding with time. However, considering that little is known so far about the adaptation of life in alkaline milieu, it seems that this is just the beginning. Probably, there is a lot more waiting for discovery, and some of these issues are raised in the chapter, which not only summarizes the relevant literature but also forwards new insights regarding high pH adaptation. Moreover, an effort is made to include the largely neglected eukaryotic organisms’ adaptation to high pH habitats.

Graphical Abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:3191–3200 Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:3191–3200
2.
go back to reference Sorokin DY, Berben T, Melton EM, Overmars L, Vavourakis CD, Muyzer G (2014) Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18:791–809PubMedPubMedCentral Sorokin DY, Berben T, Melton EM, Overmars L, Vavourakis CD, Muyzer G (2014) Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18:791–809PubMedPubMedCentral
3.
go back to reference Borsodi AK, Korponai K, Schumann P, Spröer C, Felföldi T, Márialigeti K, Szili-Kovács T, Tóth E (2017) Nitrincola alkalilacustris sp. nov. and Nitrincola schmidtii sp. nov., alkaliphilic bacteria isolated from soda pans, and emended description of the genus Nitrincola. Int J Syst Evol Microbiol 67:5159–5164PubMed Borsodi AK, Korponai K, Schumann P, Spröer C, Felföldi T, Márialigeti K, Szili-Kovács T, Tóth E (2017) Nitrincola alkalilacustris sp. nov. and Nitrincola schmidtii sp. nov., alkaliphilic bacteria isolated from soda pans, and emended description of the genus Nitrincola. Int J Syst Evol Microbiol 67:5159–5164PubMed
4.
go back to reference Olivera N, Siňeriz F, Breccia JD (2005) Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from Atriplex lampa rhizosphere, Patagonia, Argentina. Int J Syst Evol Microbiol 55:443–447PubMed Olivera N, Siňeriz F, Breccia JD (2005) Bacillus patagoniensis sp. nov., a novel alkalitolerant bacterium from Atriplex lampa rhizosphere, Patagonia, Argentina. Int J Syst Evol Microbiol 55:443–447PubMed
5.
go back to reference Szabo A, Korponai K, erepesi Cs K, Somogyi B, Vörös L, Bartha D et al (2017) Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 21:639–649PubMed Szabo A, Korponai K, erepesi Cs K, Somogyi B, Vörös L, Bartha D et al (2017) Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 21:639–649PubMed
6.
go back to reference Zhang G, Yang Y, Wang S, Sun Z, Jiao K (2015) Alkalimicrobium pacificum gen. nov., sp. nov., a marine bacterium in the family Rhodobacteraceae. Int J Syst Evol Microbiol 65:2453–2458PubMed Zhang G, Yang Y, Wang S, Sun Z, Jiao K (2015) Alkalimicrobium pacificum gen. nov., sp. nov., a marine bacterium in the family Rhodobacteraceae. Int J Syst Evol Microbiol 65:2453–2458PubMed
7.
go back to reference Zhang YG, Lu XH, Ding YB, Wang SJ, Zhou XK, Wang HF et al (2016) Lipingzhangella halophila gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 66:4071–4076PubMed Zhang YG, Lu XH, Ding YB, Wang SJ, Zhou XK, Wang HF et al (2016) Lipingzhangella halophila gen. nov., sp. nov., a new member of the family Nocardiopsaceae. Int J Syst Evol Microbiol 66:4071–4076PubMed
8.
go back to reference Ohkuma M, Shimizu H, Thongaram T, Kosono S, Moriya K, Trakulnaleam S et al (2003) An alkaliphilic and xylanolytic Paenibacillus species isolated from the gut of a soil-feeding termite. Microbes Environ 18:145–151 Ohkuma M, Shimizu H, Thongaram T, Kosono S, Moriya K, Trakulnaleam S et al (2003) An alkaliphilic and xylanolytic Paenibacillus species isolated from the gut of a soil-feeding termite. Microbes Environ 18:145–151
9.
go back to reference Donovan SE, Purdy KJ, Kane MD, Eggleton P (2004) Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl Environ Microbiol 70:3884–3892PubMedPubMedCentral Donovan SE, Purdy KJ, Kane MD, Eggleton P (2004) Comparison of Euryarchaea strains in the guts and food-soil of the soil-feeding termite Cubitermes fungifaber across different soil types. Appl Environ Microbiol 70:3884–3892PubMedPubMedCentral
10.
go back to reference Liang X, Sun C, Chen B, Du K, Yu T, Luang-In V, Lu X, Shao Y (2018) Insect symbionts as valuable grist for the biotechnological mill: an alkaliphilic silkworm gut bacterium for efficient lactic acid production. Appl Microbiol Biotechnol 102:4951–4962PubMed Liang X, Sun C, Chen B, Du K, Yu T, Luang-In V, Lu X, Shao Y (2018) Insect symbionts as valuable grist for the biotechnological mill: an alkaliphilic silkworm gut bacterium for efficient lactic acid production. Appl Microbiol Biotechnol 102:4951–4962PubMed
11.
go back to reference Chavagnac V, Monnin C, Ceuleneer G, Boulart C, Hoareau G (2013) Characterization of hyperalkaline fluids produced by low-temperature serpentinization of mantleperidotites in the Oman and Ligurian ophiolites. Geochem Geophys Geosyst 14:2496–2522 Chavagnac V, Monnin C, Ceuleneer G, Boulart C, Hoareau G (2013) Characterization of hyperalkaline fluids produced by low-temperature serpentinization of mantleperidotites in the Oman and Ligurian ophiolites. Geochem Geophys Geosyst 14:2496–2522
12.
go back to reference Ben Aissa F, Postec A, Erauso G, Payri C, Pelletier B, Hamdi M, Fardeau M-L, Ollivier B (2015) Characterization of Alkaliphilus hydrothermalis sp. nov., a novel alkaliphilic anaerobic bacterium, isolated from a carbonaceous chimney of the Prony hydrothermal field, New Caledonia. Extremophiles 19:183–188PubMed Ben Aissa F, Postec A, Erauso G, Payri C, Pelletier B, Hamdi M, Fardeau M-L, Ollivier B (2015) Characterization of Alkaliphilus hydrothermalis sp. nov., a novel alkaliphilic anaerobic bacterium, isolated from a carbonaceous chimney of the Prony hydrothermal field, New Caledonia. Extremophiles 19:183–188PubMed
13.
go back to reference Mei N, Postec A, Erauso G, Joseph M, Pelletier B, Payri C et al (2016) Serpentinicella alkaliphila gen. nov., sp. nov., a novel alkaliphilic anaerobic bacterium isolated from the serpentinite-hosted Prony hydrothermal field, New Caledonia. Int J Syst Evol Microbiol 66:4464–4470PubMed Mei N, Postec A, Erauso G, Joseph M, Pelletier B, Payri C et al (2016) Serpentinicella alkaliphila gen. nov., sp. nov., a novel alkaliphilic anaerobic bacterium isolated from the serpentinite-hosted Prony hydrothermal field, New Caledonia. Int J Syst Evol Microbiol 66:4464–4470PubMed
14.
go back to reference Agnew MD, Koval SF, Jarrell KF (1995) Isolation and characterisation of novel alkaliphiles from bauxite-processing waste and description of Bacillus vedderi sp. nov. Syst Appl Microbiol 18:221–230 Agnew MD, Koval SF, Jarrell KF (1995) Isolation and characterisation of novel alkaliphiles from bauxite-processing waste and description of Bacillus vedderi sp. nov. Syst Appl Microbiol 18:221–230
15.
go back to reference Gee JM, Lund BM, Metcalf G, Peel JL (1980) Properties of a new group of alkalophilic bacteria. J Gen Microbiol 117:9–17 Gee JM, Lund BM, Metcalf G, Peel JL (1980) Properties of a new group of alkalophilic bacteria. J Gen Microbiol 117:9–17
16.
go back to reference Kisková J, Stramová Z, Javorský P, Sedláková-Kaduková J, Pristaš P (2019) Analysis of the bacterial community from high alkaline (pH > 13) drainage water at a brown mud disposal site near Žiar nad Hronom (Banská Bystrica region, Slovakia) using 454 pyrosequencing. Folia Microbiol 64:83–90 Kisková J, Stramová Z, Javorský P, Sedláková-Kaduková J, Pristaš P (2019) Analysis of the bacterial community from high alkaline (pH > 13) drainage water at a brown mud disposal site near Žiar nad Hronom (Banská Bystrica region, Slovakia) using 454 pyrosequencing. Folia Microbiol 64:83–90
17.
go back to reference Mueller RH, Jorks S, Kleinsteuber S, Babel W (1998) Degradation of various chlorophenols under alkaline conditions by Gram-negative bacteria closely related to Ochrobactrum anthropi. J Microbiol 38:269–281 Mueller RH, Jorks S, Kleinsteuber S, Babel W (1998) Degradation of various chlorophenols under alkaline conditions by Gram-negative bacteria closely related to Ochrobactrum anthropi. J Microbiol 38:269–281
18.
go back to reference Takahara Y, Tanabe O (1962) Studies on the reduction of indigo in industrial fermentation vat (XIX). Taxonomic characterisation of strain No. S-8. J Ferment Technol 40:77–80 Takahara Y, Tanabe O (1962) Studies on the reduction of indigo in industrial fermentation vat (XIX). Taxonomic characterisation of strain No. S-8. J Ferment Technol 40:77–80
20.
go back to reference Krulwich TA, Hicks DB, Swartz TH, Ito M (2007) Bioenergetic adaptations that support alkaliphily. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, pp 311–329 Krulwich TA, Hicks DB, Swartz TH, Ito M (2007) Bioenergetic adaptations that support alkaliphily. In: Gerday C, Glansdorff N (eds) Physiology and biochemistry of extremophiles. ASM Press, Washington, pp 311–329
21.
go back to reference Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88PubMedPubMedCentral Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88PubMedPubMedCentral
22.
go back to reference Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55:1–317PubMed Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55:1–317PubMed
23.
go back to reference Greenwood JE, Tan JL, Ming JCT, Abell AD (2016) Alkalis and skin. J Burn Care Res 37:135–141PubMed Greenwood JE, Tan JL, Ming JCT, Abell AD (2016) Alkalis and skin. J Burn Care Res 37:135–141PubMed
24.
go back to reference Hirata Y, Ito H, Furuta T, Ikuta K, Sakudo A (2010) Degradation and destabilization of abnormal prion protein using alkaline detergents and proteases. Int J Mol Med 25:267–270PubMed Hirata Y, Ito H, Furuta T, Ikuta K, Sakudo A (2010) Degradation and destabilization of abnormal prion protein using alkaline detergents and proteases. Int J Mol Med 25:267–270PubMed
25.
go back to reference Shooter KV (1976) The kinetics of the alkaline hydrolysis of phosphotriesters in DNA. Chem Biol Interact 13:151–163PubMed Shooter KV (1976) The kinetics of the alkaline hydrolysis of phosphotriesters in DNA. Chem Biol Interact 13:151–163PubMed
26.
go back to reference Hunt KA, Flynn JM, Naranjo B, Shikhare ID, Gralnick JA (2010) Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J Bacteriol 192:3345–3351PubMedPubMedCentral Hunt KA, Flynn JM, Naranjo B, Shikhare ID, Gralnick JA (2010) Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J Bacteriol 192:3345–3351PubMedPubMedCentral
27.
go back to reference Hicks DB, Liu J, Fujisawa M, Krulwich TA (2010) F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochim Biophys Acta 1797:1362–1377PubMedPubMedCentral Hicks DB, Liu J, Fujisawa M, Krulwich TA (2010) F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochim Biophys Acta 1797:1362–1377PubMedPubMedCentral
28.
go back to reference Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148PubMed Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148PubMed
29.
go back to reference Chiego B, Silver H (1942) The effect of alkalis on the stability of keratins. J Invest Dermatol 5:95–103 Chiego B, Silver H (1942) The effect of alkalis on the stability of keratins. J Invest Dermatol 5:95–103
30.
go back to reference Krachle RF, Krachler R, Stojanovic A, Wielander B, Herzig A (2009) Effects of pH on aquatic biodegradation. Biogeosci Discuss 6:491–514 Krachle RF, Krachler R, Stojanovic A, Wielander B, Herzig A (2009) Effects of pH on aquatic biodegradation. Biogeosci Discuss 6:491–514
31.
go back to reference Block SS (1991) Disinfection, sterilization, and preservation. Lea & Febiger, Philadelphia Block SS (1991) Disinfection, sterilization, and preservation. Lea & Febiger, Philadelphia
32.
go back to reference GE Healthcare Bio-Sciences AB (2014) Use of sodium hydroxide for cleaning and sanitization of chromatography media and systems. Application note 18-1124-57 AI GE Healthcare Bio-Sciences AB (2014) Use of sodium hydroxide for cleaning and sanitization of chromatography media and systems. Application note 18-1124-57 AI
35.
go back to reference Arnosti C, Bell C, Moorhead DL, Sinsabaugh RL, Steen AD, Stromberger M et al (2013) Extracellular enzymes in terrestrial, freshwater, and marine environments: perspectives on system variability and common research needs. Biogeochemistry 117:5–21 Arnosti C, Bell C, Moorhead DL, Sinsabaugh RL, Steen AD, Stromberger M et al (2013) Extracellular enzymes in terrestrial, freshwater, and marine environments: perspectives on system variability and common research needs. Biogeochemistry 117:5–21
36.
go back to reference Bogino PC, Oliva MM, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14:15838–15859PubMedPubMedCentral Bogino PC, Oliva MM, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14:15838–15859PubMedPubMedCentral
37.
go back to reference Castrec J, Soudant P, Payton L, Tran D, Miner P, Lambert C et al (2018) Bioactive extracellular compounds produced by the dinoflagellate Alexandrium minutum are highly detrimental for oysters. Aquat Toxicol 199:188–198PubMed Castrec J, Soudant P, Payton L, Tran D, Miner P, Lambert C et al (2018) Bioactive extracellular compounds produced by the dinoflagellate Alexandrium minutum are highly detrimental for oysters. Aquat Toxicol 199:188–198PubMed
38.
go back to reference Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015PubMedPubMedCentral Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015PubMedPubMedCentral
39.
go back to reference Sebastian Engel S, Jensen PR, Fenical W (2002) Chemical ecology of marine microbial defense. J Chem Ecol 28:1971–1985PubMed Sebastian Engel S, Jensen PR, Fenical W (2002) Chemical ecology of marine microbial defense. J Chem Ecol 28:1971–1985PubMed
40.
go back to reference Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMed Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346PubMed
42.
go back to reference Grant WD, Jones BE (2016) Bacteria, archaea and viruses of soda lakes. In: Schager LM (ed) Soda lakes of East Africa. Springer, Cham, pp 97–148 Grant WD, Jones BE (2016) Bacteria, archaea and viruses of soda lakes. In: Schager LM (ed) Soda lakes of East Africa. Springer, Cham, pp 97–148
44.
go back to reference Garland PB (1977) Energy transduction and transmission in microbial systems. In: Haddock BA, Hamilton WA (eds) 27th symposium of the Society for General Microbiology. Microbial energetics. Cambridge University Press, Cambridge, pp 1–21 Garland PB (1977) Energy transduction and transmission in microbial systems. In: Haddock BA, Hamilton WA (eds) 27th symposium of the Society for General Microbiology. Microbial energetics. Cambridge University Press, Cambridge, pp 1–21
45.
go back to reference McLaggan D, Selwyn MJ, Dawson AP (1984) Dependence on Naþ of control of cytoplasmic pH in a facultative alkalophile. FEBS Lett 165:254–258 McLaggan D, Selwyn MJ, Dawson AP (1984) Dependence on Naþ of control of cytoplasmic pH in a facultative alkalophile. FEBS Lett 165:254–258
46.
go back to reference Cook GM, Russell JB, Reichert A, Wiegel J (1996) The intracellular pH of Clostridium paradoxum, an anaerobic, alkaliphilic, and thermophilic bacterium. Appl Environ Microbiol 62:4576–4579PubMedPubMedCentral Cook GM, Russell JB, Reichert A, Wiegel J (1996) The intracellular pH of Clostridium paradoxum, an anaerobic, alkaliphilic, and thermophilic bacterium. Appl Environ Microbiol 62:4576–4579PubMedPubMedCentral
47.
go back to reference Guffanti AA, Hicks DB (1991) Molar growth yields and bioenergetic parameters of extremely alkaliphilic Bacillus species in batch cultures, and growth in a chemostat at pH 10.5. J Gen Microbiol 137:2375–2379PubMed Guffanti AA, Hicks DB (1991) Molar growth yields and bioenergetic parameters of extremely alkaliphilic Bacillus species in batch cultures, and growth in a chemostat at pH 10.5. J Gen Microbiol 137:2375–2379PubMed
48.
go back to reference Sturr MG, Guffanti AA, Krulwich TA (1994) Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH. J Bacteriol 176:3111–3116PubMedPubMedCentral Sturr MG, Guffanti AA, Krulwich TA (1994) Growth and bioenergetics of alkaliphilic Bacillus firmus OF4 in continuous culture at high pH. J Bacteriol 176:3111–3116PubMedPubMedCentral
49.
go back to reference Aono R, Ito M, Horikoshi K (1997) Measurement of cytoplasmic pH of the alkaliphile Bacillus lentus C-125 with a fluorescent pH probe. Microbiology 143:2531–2536PubMed Aono R, Ito M, Horikoshi K (1997) Measurement of cytoplasmic pH of the alkaliphile Bacillus lentus C-125 with a fluorescent pH probe. Microbiology 143:2531–2536PubMed
50.
go back to reference Olsson K, Keis S, Morgan HW, Dimroth P, Cook GM (2003) Bioenergetic properties of the thermoalkaliphilic Bacillus sp. strain TA2.A1. J Bacteriol 185:461–465PubMedPubMedCentral Olsson K, Keis S, Morgan HW, Dimroth P, Cook GM (2003) Bioenergetic properties of the thermoalkaliphilic Bacillus sp. strain TA2.A1. J Bacteriol 185:461–465PubMedPubMedCentral
51.
go back to reference Yumoto I (2002) Bioenergetics of alkaliphilic Bacillus spp. J Biosci Bioeng 93:342–353PubMed Yumoto I (2002) Bioenergetics of alkaliphilic Bacillus spp. J Biosci Bioeng 93:342–353PubMed
52.
go back to reference Krulwich TA, Guffanti AA, Ito M (1999) Mechanisms by which bacterial cells respond to pH. Novartis Foundation Symposia, vol 221. Wiley, Chichester, pp 167–182 Krulwich TA, Guffanti AA, Ito M (1999) Mechanisms by which bacterial cells respond to pH. Novartis Foundation Symposia, vol 221. Wiley, Chichester, pp 167–182
53.
go back to reference Krulwich TA, Ito M, Gilmour R, Hicks DB, Guffanti AA (1998) Energetics of alkaliphilic Bacillus species: physiology and molecules. Adv Microb Physiol 40:401–438PubMed Krulwich TA, Ito M, Gilmour R, Hicks DB, Guffanti AA (1998) Energetics of alkaliphilic Bacillus species: physiology and molecules. Adv Microb Physiol 40:401–438PubMed
54.
go back to reference Krulwich TA, Liu J, Morino M, Fujisawa M, Ito M, Hicks DB (2011) Adaptive mechanisms of extreme alkaliphiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer, Tokyo, pp 119–139 Krulwich TA, Liu J, Morino M, Fujisawa M, Ito M, Hicks DB (2011) Adaptive mechanisms of extreme alkaliphiles. In: Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO (eds) Extremophiles handbook. Springer, Tokyo, pp 119–139
55.
go back to reference Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330–343PubMedPubMedCentral Krulwich TA, Sachs G, Padan E (2011) Molecular aspects of bacterial pH sensing and homeostasis. Nat Rev Microbiol 9:330–343PubMedPubMedCentral
56.
go back to reference Paavilainen S, Helistö P, Korpela T (1994) Conversion of carbohydrates to organic acids by alkaliphilic bacilli. J Ferment Bioeng 78(3):217–222 Paavilainen S, Helistö P, Korpela T (1994) Conversion of carbohydrates to organic acids by alkaliphilic bacilli. J Ferment Bioeng 78(3):217–222
57.
go back to reference Padan E, Gerchman Y, Rimon A, Rothman A, Dover N, Carmel-Harel O (1999) The molecular mechanism of regulation of the NhaA Naþ/Hþ antiporter of Escherichia coli, a key transporter in the adaptation to Naþ and Hþ. Novartis Foundation Symposia, vol 221. Wiley, Chichester, pp 183–196 Padan E, Gerchman Y, Rimon A, Rothman A, Dover N, Carmel-Harel O (1999) The molecular mechanism of regulation of the NhaA Naþ/Hþ antiporter of Escherichia coli, a key transporter in the adaptation to Naþ and Hþ. Novartis Foundation Symposia, vol 221. Wiley, Chichester, pp 183–196
58.
go back to reference Padan E, Venturi M, Gerchman Y, Dover N (2001) Na+/H+ antiporters. Biochim Biophys Acta 1505:144–157PubMed Padan E, Venturi M, Gerchman Y, Dover N (2001) Na+/H+ antiporters. Biochim Biophys Acta 1505:144–157PubMed
59.
go back to reference Slonczewski JL, Rosen BP, Alger JR, Macnab RM (1981) pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate. Proc Natl Acad Sci U S A 78:6271–6275PubMedPubMedCentral Slonczewski JL, Rosen BP, Alger JR, Macnab RM (1981) pH homeostasis in Escherichia coli: measurement by 31P nuclear magnetic resonance of methylphosphonate and phosphate. Proc Natl Acad Sci U S A 78:6271–6275PubMedPubMedCentral
60.
go back to reference Hamamoto T, Hashimoto M, Hino M, Kitada M, Seto Y, Kudo T, Horikoshi K (1994) Characterization of a gene responsible for the Na+/H+ antiporter system of alkalophilic Bacillus species strain C-125. Mol Microbiol 14:939–946PubMed Hamamoto T, Hashimoto M, Hino M, Kitada M, Seto Y, Kudo T, Horikoshi K (1994) Characterization of a gene responsible for the Na+/H+ antiporter system of alkalophilic Bacillus species strain C-125. Mol Microbiol 14:939–946PubMed
61.
go back to reference Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G (2016) The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res 44:D372–D379PubMed Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G (2016) The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res 44:D372–D379PubMed
62.
go back to reference Krulwich TA, Hicks DB, Ito M (2009) Cation/proton antiporter complements of bacteria: why so large and diverse? Mol Microbiol 74:257–260PubMedPubMedCentral Krulwich TA, Hicks DB, Ito M (2009) Cation/proton antiporter complements of bacteria: why so large and diverse? Mol Microbiol 74:257–260PubMedPubMedCentral
63.
go back to reference Brett CL, Donowitz M, Rao R (2005) Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 288:C223–C239PubMed Brett CL, Donowitz M, Rao R (2005) Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 288:C223–C239PubMed
64.
go back to reference Counillon L, Pouyssegur J (2000) The expanding family of eucaryotic Na+/H+ exchangers. J Biol Chem 275:1–4PubMed Counillon L, Pouyssegur J (2000) The expanding family of eucaryotic Na+/H+ exchangers. J Biol Chem 275:1–4PubMed
65.
go back to reference Fliegel L (2005) The Na+/H+ exchanger isoform 1. Int J Biochem Cell Biol 37:33–37PubMed Fliegel L (2005) The Na+/H+ exchanger isoform 1. Int J Biochem Cell Biol 37:33–37PubMed
66.
go back to reference Orlowski J, Grinstein S (2004) Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch 447:549–565PubMed Orlowski J, Grinstein S (2004) Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch 447:549–565PubMed
67.
go back to reference Ito M, Guffanti AA, Oudega B, Krulwich TA (1999) Mrp, a multigene, multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na+ and in pH homeostasis. J Bacteriol 181:2394–2402PubMedPubMedCentral Ito M, Guffanti AA, Oudega B, Krulwich TA (1999) Mrp, a multigene, multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na+ and in pH homeostasis. J Bacteriol 181:2394–2402PubMedPubMedCentral
68.
go back to reference Fuster DG, Alexander RT (2014) Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch 466:61–76PubMed Fuster DG, Alexander RT (2014) Traditional and emerging roles for the SLC9 Na+/H+ exchangers. Pflugers Arch 466:61–76PubMed
69.
go back to reference Padan E, Landau M (2016) Sodium-proton (Na+/H+) antiporters: properties and roles in health and disease. Met Ions Life Sci 16:391–458PubMed Padan E, Landau M (2016) Sodium-proton (Na+/H+) antiporters: properties and roles in health and disease. Met Ions Life Sci 16:391–458PubMed
70.
go back to reference Harel-Bronstein M, Dibrov P, Olami Y, Pinner E, Schuldiner S, Padan E (1995) MH1, a second-site revertant of an Escherichia coli mutant lacking Na+/H+ antiporters (DnhaADnhaB), regains Na+ resistance and a capacity to excrete Na+ in a ΔμH+-independent fashion. J Biol Chem 270:3816–3822PubMed Harel-Bronstein M, Dibrov P, Olami Y, Pinner E, Schuldiner S, Padan E (1995) MH1, a second-site revertant of an Escherichia coli mutant lacking Na+/H+ antiporters (DnhaADnhaB), regains Na+ resistance and a capacity to excrete Na+ in a ΔμH+-independent fashion. J Biol Chem 270:3816–3822PubMed
71.
go back to reference Wei Y, Liu J, Ma Y, Krulwich TA (2007) Three putative cation/proton antiporters from the soda lake alkaliphile Alkalimonas amylolytica N10 complement an alkali-sensitive Escherichia coli mutant. Microbiology 153:2168–2179PubMed Wei Y, Liu J, Ma Y, Krulwich TA (2007) Three putative cation/proton antiporters from the soda lake alkaliphile Alkalimonas amylolytica N10 complement an alkali-sensitive Escherichia coli mutant. Microbiology 153:2168–2179PubMed
72.
go back to reference Krulwich TA, Ito M, Guffanti AA (2001) The Na+-dependence of alkaliphily in Bacillus. Biochim Biophys Acta 1501:158–168 Krulwich TA, Ito M, Guffanti AA (2001) The Na+-dependence of alkaliphily in Bacillus. Biochim Biophys Acta 1501:158–168
73.
go back to reference Kitada M, Kosono S, Kudo T (2000) The Na+/H+ antiporter of alkaliphilic Bacillus sp. Extremophiles 4:253–258PubMed Kitada M, Kosono S, Kudo T (2000) The Na+/H+ antiporter of alkaliphilic Bacillus sp. Extremophiles 4:253–258PubMed
74.
go back to reference Ran S, He Z, Liang J (2013) Survival of Enterococcus faecalis during alkaline stress: changes in morphology, ultrastructure, physiochemical properties of the cell wall and specific gene transcripts. Arch Oral Biol l58:1667–1676 Ran S, He Z, Liang J (2013) Survival of Enterococcus faecalis during alkaline stress: changes in morphology, ultrastructure, physiochemical properties of the cell wall and specific gene transcripts. Arch Oral Biol l58:1667–1676
75.
go back to reference Harold FM, Van Brunt J (1977) Circulation of H+ and K+ across the plasma membrane is not obligatory for bacterial growth. Science 197:372–373PubMed Harold FM, Van Brunt J (1977) Circulation of H+ and K+ across the plasma membrane is not obligatory for bacterial growth. Science 197:372–373PubMed
76.
go back to reference Speelmans G, Poolman B, Abee T, Konings WN (1993) Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions. Proc Natl Acad Sci U S A 90:7975–7979PubMedPubMedCentral Speelmans G, Poolman B, Abee T, Konings WN (1993) Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions. Proc Natl Acad Sci U S A 90:7975–7979PubMedPubMedCentral
77.
go back to reference Swartz TH, Ikewada S, Ishikawa O, Ito M, Krulwich TA (2005) The Mrp system: a giant among monovalent cation/proton antiporters? Extremophiles 9:345–354PubMed Swartz TH, Ikewada S, Ishikawa O, Ito M, Krulwich TA (2005) The Mrp system: a giant among monovalent cation/proton antiporters? Extremophiles 9:345–354PubMed
79.
go back to reference Kajiyama Y, Otagiri M, Sekiguchi J, Kosono S, Kudo T (2007) Complex formation by the mrpABCDEFG gene products, which constitute a principal Na+/H+ antiporter in Bacillus subtilis. J Bacteriol 189:7511–7514PubMedPubMedCentral Kajiyama Y, Otagiri M, Sekiguchi J, Kosono S, Kudo T (2007) Complex formation by the mrpABCDEFG gene products, which constitute a principal Na+/H+ antiporter in Bacillus subtilis. J Bacteriol 189:7511–7514PubMedPubMedCentral
80.
go back to reference Morino M, Natsui S, Swartz TH, Krulwich TA, Ito M (2008) Single gene deletions of mrpA to mrpG and mrpE point mutations affect activity of the Mrp Na+/H+ antiporter of alkaliphilic Bacillus and formation of hetero-oligomeric Mrp complexes. J Bacteriol 190:4162–4172PubMedPubMedCentral Morino M, Natsui S, Swartz TH, Krulwich TA, Ito M (2008) Single gene deletions of mrpA to mrpG and mrpE point mutations affect activity of the Mrp Na+/H+ antiporter of alkaliphilic Bacillus and formation of hetero-oligomeric Mrp complexes. J Bacteriol 190:4162–4172PubMedPubMedCentral
81.
go back to reference Aono R, Ito M, Horikoshi K (1992) Instability of the protoplast membrane of facultative alkaliphilic Bacillus sp. C-125 at alkaline pH values below the pH optimum for growth. Biochem J 285:99–103PubMedPubMedCentral Aono R, Ito M, Horikoshi K (1992) Instability of the protoplast membrane of facultative alkaliphilic Bacillus sp. C-125 at alkaline pH values below the pH optimum for growth. Biochem J 285:99–103PubMedPubMedCentral
82.
go back to reference Aono R, Ito M, Machida T (1999) Contribution of the cell wall component teichuronopeptide to pH homeostasis and alkaliphily in the alkaliphile Bacillus lentus C-125. J Bacteriol 181:6600–6606PubMedPubMedCentral Aono R, Ito M, Machida T (1999) Contribution of the cell wall component teichuronopeptide to pH homeostasis and alkaliphily in the alkaliphile Bacillus lentus C-125. J Bacteriol 181:6600–6606PubMedPubMedCentral
83.
go back to reference Aono R, Ogino H, Horikoshi K (1992) pH-dependent flagella formation by facultative alkaliphilic Bacillus sp. C-125. Biosci Biotechnol Biochem 56:48–53PubMed Aono R, Ogino H, Horikoshi K (1992) pH-dependent flagella formation by facultative alkaliphilic Bacillus sp. C-125. Biosci Biotechnol Biochem 56:48–53PubMed
84.
go back to reference Aono R, Ohtani M (1990) Loss of alkalophily in cell-wall-component-defective mutants derived from alkalophilic Bacillus C-125. Isolation and partial characterization of the mutants. Biochem J 266:933–936PubMedPubMedCentral Aono R, Ohtani M (1990) Loss of alkalophily in cell-wall-component-defective mutants derived from alkalophilic Bacillus C-125. Isolation and partial characterization of the mutants. Biochem J 266:933–936PubMedPubMedCentral
85.
go back to reference Gilmour r, Messner P, Guffanti AA, Kent R, Scheberl A, Kendrick N, Krulwich TA (2000) Two-dimensional gel electrophoresis analyses of pH-dependent protein expression in facultatively alkaliphilic Bacillus pseudofirmus OF4 lead to characterization of an S-layer protein with a role in alkaliphily. J Bacteriol 182:5969–5981PubMedPubMedCentral Gilmour r, Messner P, Guffanti AA, Kent R, Scheberl A, Kendrick N, Krulwich TA (2000) Two-dimensional gel electrophoresis analyses of pH-dependent protein expression in facultatively alkaliphilic Bacillus pseudofirmus OF4 lead to characterization of an S-layer protein with a role in alkaliphily. J Bacteriol 182:5969–5981PubMedPubMedCentral
86.
go back to reference Ito M, Hicks DB, Henkin TM, Guffanti AA, Powers B, Zvi L, Uematsu K, Krulwich TA (2004) MotPS is the stator-force generator for motility of alkaliphilic Bacillus and its homologue is a second functional Mot in Bacillus subtilis. Mol Microbiol 53:1035–1049PubMed Ito M, Hicks DB, Henkin TM, Guffanti AA, Powers B, Zvi L, Uematsu K, Krulwich TA (2004) MotPS is the stator-force generator for motility of alkaliphilic Bacillus and its homologue is a second functional Mot in Bacillus subtilis. Mol Microbiol 53:1035–1049PubMed
87.
go back to reference Terahara N, Kodera N, Uchihashi T, Ando T, Namba K, Minamino T (2017) Na+-induced structural transition of MotPS for stator assembly of the Bacillus flagellar motor. Sci Adv 3:eaao4119PubMedPubMedCentral Terahara N, Kodera N, Uchihashi T, Ando T, Namba K, Minamino T (2017) Na+-induced structural transition of MotPS for stator assembly of the Bacillus flagellar motor. Sci Adv 3:eaao4119PubMedPubMedCentral
88.
go back to reference Fujinami S, Terahara N, Lee S, Ito M (2007) Na+ and flagella-dependent swimming of alkaliphilic Bacillus pseudofirmus OF4: a basis for poor motility at low pH and enhancement in viscous media in an “up-motile” variant. Arch Microbiol 187:239PubMed Fujinami S, Terahara N, Lee S, Ito M (2007) Na+ and flagella-dependent swimming of alkaliphilic Bacillus pseudofirmus OF4: a basis for poor motility at low pH and enhancement in viscous media in an “up-motile” variant. Arch Microbiol 187:239PubMed
89.
go back to reference Chahine M, Pilote S, Pouliot V, Takami H, Sato C (2004) Role of arginine residues on the S4 segment of the Bacillus halodurans Na+ channel in voltage-sensing. J Membr Biol 201:9–24PubMed Chahine M, Pilote S, Pouliot V, Takami H, Sato C (2004) Role of arginine residues on the S4 segment of the Bacillus halodurans Na+ channel in voltage-sensing. J Membr Biol 201:9–24PubMed
90.
go back to reference Koishi RXH, Ren D, Navarro B, Spiller BW, Shi Q, Clapham DE (2004) A superfamily of voltage-gated sodium channels in bacteria. J Biol Chem 279:9532–9538PubMed Koishi RXH, Ren D, Navarro B, Spiller BW, Shi Q, Clapham DE (2004) A superfamily of voltage-gated sodium channels in bacteria. J Biol Chem 279:9532–9538PubMed
91.
go back to reference Ito M, Xu H, Guffanti AA, Wei Y, Zvi L, Clapham DE, Krulwich TA (2004) The voltage-gated Na+ channel NavBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc Natl Acad Sci U S A 101:10566–10571PubMedPubMedCentral Ito M, Xu H, Guffanti AA, Wei Y, Zvi L, Clapham DE, Krulwich TA (2004) The voltage-gated Na+ channel NavBP has a role in motility, chemotaxis, and pH homeostasis of an alkaliphilic Bacillus. Proc Natl Acad Sci U S A 101:10566–10571PubMedPubMedCentral
92.
go back to reference Morino M, Suzuki T, Ito M, Krulwich TA (2014) Purification and functional reconstitution of a seven-subunit mrp-type Na+/H+ antiporter. J Bacteriol 196:28–35PubMedPubMedCentral Morino M, Suzuki T, Ito M, Krulwich TA (2014) Purification and functional reconstitution of a seven-subunit mrp-type Na+/H+ antiporter. J Bacteriol 196:28–35PubMedPubMedCentral
93.
go back to reference Fujinami S, Sato T, Trimmer JS, Spiller BW, Clapham DE, Krulwich TA et al (2007) The voltage-gated Na+ channel NaVBP co-localizes with methyl-accepting chemotaxis protein at cell poles of alkaliphilic Bacillus pseudofirmus OF4. Microbiology 153:4027–4038PubMed Fujinami S, Sato T, Trimmer JS, Spiller BW, Clapham DE, Krulwich TA et al (2007) The voltage-gated Na+ channel NaVBP co-localizes with methyl-accepting chemotaxis protein at cell poles of alkaliphilic Bacillus pseudofirmus OF4. Microbiology 153:4027–4038PubMed
94.
go back to reference McMillan DGG, Keis S, Dimroth P, Gregory M, Cook GM (2007) A specific adaptation in the a-subunit of thermoalkaliphilic F1FO-ATP synthase enables ATP synthesis at high pH but not at neutral pH values. J Biol Chem 282:17395–17404PubMed McMillan DGG, Keis S, Dimroth P, Gregory M, Cook GM (2007) A specific adaptation in the a-subunit of thermoalkaliphilic F1FO-ATP synthase enables ATP synthesis at high pH but not at neutral pH values. J Biol Chem 282:17395–17404PubMed
95.
go back to reference Fujisawa F, Fackelmayer OJ, Liu J, Krulwich TA, Hicks DB (2010) The ATP synthase a-subunit of extreme alkaliphiles is a distinct variant: mutations in the critical alkaliphile-specific residue Lys180 and other residues that support alkaliphile oxidative phosphorylation. J Biol Chem 285:32105–32115PubMedPubMedCentral Fujisawa F, Fackelmayer OJ, Liu J, Krulwich TA, Hicks DB (2010) The ATP synthase a-subunit of extreme alkaliphiles is a distinct variant: mutations in the critical alkaliphile-specific residue Lys180 and other residues that support alkaliphile oxidative phosphorylation. J Biol Chem 285:32105–32115PubMedPubMedCentral
96.
go back to reference Cook GM, Keis S, Morgan HW, von Ballmoos C, Matthey U, Kaim G, Dimroth P (2003) Purification and biochemical characterization of the F1Fo-ATP synthase from thermoalkaliphilic Bacillus sp. strain TA2.A1. J Bacteriol 85:4442–4449 Cook GM, Keis S, Morgan HW, von Ballmoos C, Matthey U, Kaim G, Dimroth P (2003) Purification and biochemical characterization of the F1Fo-ATP synthase from thermoalkaliphilic Bacillus sp. strain TA2.A1. J Bacteriol 85:4442–4449
97.
go back to reference Dimroth P, Cook GM (2004) Bacterial Na+- or H+-coupled ATP synthases operating at low electrochemical potential. Adv Microb Physiol 49:175–218PubMed Dimroth P, Cook GM (2004) Bacterial Na+- or H+-coupled ATP synthases operating at low electrochemical potential. Adv Microb Physiol 49:175–218PubMed
98.
go back to reference Hicks DB, Krulwich TA (1990) Purification and reconstitution of the F1FO-ATP synthase from alkaliphilic Bacillus firmus OF4. Evidence that the enzyme translocates H+ but not Na+. J Biol Chem 265:20547–20554PubMed Hicks DB, Krulwich TA (1990) Purification and reconstitution of the F1FO-ATP synthase from alkaliphilic Bacillus firmus OF4. Evidence that the enzyme translocates H+ but not Na+. J Biol Chem 265:20547–20554PubMed
99.
go back to reference Hoffmann A, Dimroth P (1990) The ATPase of Bacillus alcalophilus. Purification and properties of the enzyme. Eur J Biochem 194:423–430PubMed Hoffmann A, Dimroth P (1990) The ATPase of Bacillus alcalophilus. Purification and properties of the enzyme. Eur J Biochem 194:423–430PubMed
100.
go back to reference Burne RA, Marquis RE (2000) Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett 193:1–6PubMed Burne RA, Marquis RE (2000) Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett 193:1–6PubMed
101.
go back to reference Yokaryo H, Tokiwa Y (2014) Isolation of alkaliphilic bacteria for production of high optically pure L-(+)-lactic acid. J Gen Appl Microbiol 60:270–275PubMed Yokaryo H, Tokiwa Y (2014) Isolation of alkaliphilic bacteria for production of high optically pure L-(+)-lactic acid. J Gen Appl Microbiol 60:270–275PubMed
102.
go back to reference Wilks JC, Kitko RD, Cleeton SH, Lee GE, Ugwu CS, Jones BD, BonDurant SS, Slonczewski JL (2009) Acid and base stress and transcriptomic responses in Bacillus subtilis. Appl Environ Microbiol 75:981–990PubMed Wilks JC, Kitko RD, Cleeton SH, Lee GE, Ugwu CS, Jones BD, BonDurant SS, Slonczewski JL (2009) Acid and base stress and transcriptomic responses in Bacillus subtilis. Appl Environ Microbiol 75:981–990PubMed
103.
go back to reference Graham AF, Lund BM (1983) The effect of alkaline pH on growth and metabolic products of a motile, yellow-pigmented Streptococcus sp. J Gen Microbiol 129:2429–2435 Graham AF, Lund BM (1983) The effect of alkaline pH on growth and metabolic products of a motile, yellow-pigmented Streptococcus sp. J Gen Microbiol 129:2429–2435
104.
go back to reference Hirota K, Aino K, Yumoto I (2013) Amphibacillus iburiensis sp. nov., an alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 63:4303–4308PubMed Hirota K, Aino K, Yumoto I (2013) Amphibacillus iburiensis sp. nov., an alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 63:4303–4308PubMed
105.
go back to reference Horikoshi K (2006) Alkaliphiles. Kodansha, New York Horikoshi K (2006) Alkaliphiles. Kodansha, New York
106.
go back to reference Aono R, Ito M, Joblin KN, Horikoshi K (1995) A high cell wall negative charge is necessary for the growth of the alkaliphile Bacillus lentus C-125 at elevated pH. Microbiology 141:2955–2964 Aono R, Ito M, Joblin KN, Horikoshi K (1995) A high cell wall negative charge is necessary for the growth of the alkaliphile Bacillus lentus C-125 at elevated pH. Microbiology 141:2955–2964
107.
go back to reference Hancock IC, Baddiley J (1985) Biosynthesis of the bacterial envelope polymers teichoic acid and teichuronic acid. In: Martonosi NA (ed) The enzymes of biological membranes, vol 2. 2nd edn. Plenum, New York, pp 279–307 Hancock IC, Baddiley J (1985) Biosynthesis of the bacterial envelope polymers teichoic acid and teichuronic acid. In: Martonosi NA (ed) The enzymes of biological membranes, vol 2. 2nd edn. Plenum, New York, pp 279–307
108.
109.
go back to reference Archibald AR, Baddiley J, Blumsom NL (1968) The teichoic acids. Adv Enzymol Relat Areas Mol Biol 30:223–253PubMed Archibald AR, Baddiley J, Blumsom NL (1968) The teichoic acids. Adv Enzymol Relat Areas Mol Biol 30:223–253PubMed
110.
go back to reference Archibald AR, Hancock IC, Harwood CR (1993) Cell wall structure, synthesis and turnover. In: Sonenshein A, Hoch JA, Losick R (eds) Bacillus subtilis and other Gram-positive bacteria. American Society for Microbiology, Washington, pp 381–410 Archibald AR, Hancock IC, Harwood CR (1993) Cell wall structure, synthesis and turnover. In: Sonenshein A, Hoch JA, Losick R (eds) Bacillus subtilis and other Gram-positive bacteria. American Society for Microbiology, Washington, pp 381–410
111.
go back to reference Araki Y, Ito E (1989) Linkage units in cell walls of Gram-positive bacteria. CRC Crit Rev Microbiol 17:121–135 Araki Y, Ito E (1989) Linkage units in cell walls of Gram-positive bacteria. CRC Crit Rev Microbiol 17:121–135
112.
go back to reference Naumova IB, Shashkov AS (1997) Anionic polymers in cell walls of Gram-positive bacteria. Biochemistry 62:809–840PubMed Naumova IB, Shashkov AS (1997) Anionic polymers in cell walls of Gram-positive bacteria. Biochemistry 62:809–840PubMed
113.
go back to reference Aono R, Horikoshi K (1983) Chemical composition of cell walls of alkalophilic strains of Bacillus. J Gen Microbiol 129:1083–1087 Aono R, Horikoshi K (1983) Chemical composition of cell walls of alkalophilic strains of Bacillus. J Gen Microbiol 129:1083–1087
114.
go back to reference Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750PubMedPubMedCentral Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750PubMedPubMedCentral
115.
go back to reference Koch AL (1986) The pH in the neighborhood of membranes generating a protonmotive force. J Theor Biol 120:73–84PubMed Koch AL (1986) The pH in the neighborhood of membranes generating a protonmotive force. J Theor Biol 120:73–84PubMed
116.
go back to reference Aono R (1985) Isolation and partial characterization of structural components of the walls of alkalophilic Bacillus strain C-125. J Gen Microbiol 131:105–111 Aono R (1985) Isolation and partial characterization of structural components of the walls of alkalophilic Bacillus strain C-125. J Gen Microbiol 131:105–111
117.
go back to reference Ito M, Aono R (2002) Decrease in cytoplasmic pH-homeostastatic activity of the alkaliphile Bacillus lentus C-125 by a cell wall defect. Biosci Biotechnol Biochem 66:218–220PubMed Ito M, Aono R (2002) Decrease in cytoplasmic pH-homeostastatic activity of the alkaliphile Bacillus lentus C-125 by a cell wall defect. Biosci Biotechnol Biochem 66:218–220PubMed
118.
go back to reference Corsaro MM, Gambacorta A, Iadonisi A, Lanzetta R, Naldi T, Nicolaus B et al (2006) Structural determination of the O-chain polysaccharide from the lipopolysaccharide of the haloalkaliphilic Halomonas pantelleriensis bacterium. Eur J Org Chem 2006:1801–1808 Corsaro MM, Gambacorta A, Iadonisi A, Lanzetta R, Naldi T, Nicolaus B et al (2006) Structural determination of the O-chain polysaccharide from the lipopolysaccharide of the haloalkaliphilic Halomonas pantelleriensis bacterium. Eur J Org Chem 2006:1801–1808
119.
go back to reference Silipo A, Sturiale L, Garozzo D, de Castro C, Lanzetta R, Parrilli M et al (2004) Structure elucidation of the highly heterogeneous lipid A from the lipopolysaccharide of the Gram-negative extremophile bacterium Halomonas Magadiensis strain 21 M1. Eur J Org Chem 2004:2263–2271 Silipo A, Sturiale L, Garozzo D, de Castro C, Lanzetta R, Parrilli M et al (2004) Structure elucidation of the highly heterogeneous lipid A from the lipopolysaccharide of the Gram-negative extremophile bacterium Halomonas Magadiensis strain 21 M1. Eur J Org Chem 2004:2263–2271
120.
go back to reference Messner P, Schäffer C (2003) Prokaryotic glycoproteins. In: Herz W, Falk H, Kirby GW (eds) Progress in the chemistry of organic natural products, vol 85. Springer, Wien, pp 51–124 Messner P, Schäffer C (2003) Prokaryotic glycoproteins. In: Herz W, Falk H, Kirby GW (eds) Progress in the chemistry of organic natural products, vol 85. Springer, Wien, pp 51–124
121.
go back to reference Sleytr UB, Sara M, Pum D, Schuster B, Messner P, Schäffer C (2002) Self-assembly protein systems: microbial slayers. In: Steinbuchel A, Fahnestock SR (eds) Biopolymers, polyamides and complex proteinaceous matrices I, vol 7. Wiley, Weinheim, pp 285–338 Sleytr UB, Sara M, Pum D, Schuster B, Messner P, Schäffer C (2002) Self-assembly protein systems: microbial slayers. In: Steinbuchel A, Fahnestock SR (eds) Biopolymers, polyamides and complex proteinaceous matrices I, vol 7. Wiley, Weinheim, pp 285–338
122.
go back to reference Schäffer C, Messner P (2005) The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. Microbiology 151:643–651PubMed Schäffer C, Messner P (2005) The structure of secondary cell wall polymers: how Gram-positive bacteria stick their cell walls together. Microbiology 151:643–651PubMed
124.
go back to reference Janto B, Ahmed A, Ito M, Liu J, Hicks DB, Pagni S et al (2011) The genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. Environ Microbiol 13:3289–3309PubMedPubMedCentral Janto B, Ahmed A, Ito M, Liu J, Hicks DB, Pagni S et al (2011) The genome of alkaliphilic Bacillus pseudofirmus OF4 reveals adaptations that support the ability to grow in an external pH range from 7.5 to 11.4. Environ Microbiol 13:3289–3309PubMedPubMedCentral
125.
go back to reference Krulwich TA, Ito M (2013) Prokaryotic alkaliphiles. In: Rosenberg E (ed) The prokaryotes, 4th edn. Springer, Berlin, Heidelberg, pp 441–470 Krulwich TA, Ito M (2013) Prokaryotic alkaliphiles. In: Rosenberg E (ed) The prokaryotes, 4th edn. Springer, Berlin, Heidelberg, pp 441–470
126.
go back to reference Sara M, Sleytr UB (2000) S-layer proteins: minireview. Microbiology 51:349–355 Sara M, Sleytr UB (2000) S-layer proteins: minireview. Microbiology 51:349–355
127.
go back to reference Yumoto I, Yamazaki K, Hishinuma M, Nodasaka Y, Suemori A, Nakajima K et al (2001) Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51:349–355PubMed Yumoto I, Yamazaki K, Hishinuma M, Nodasaka Y, Suemori A, Nakajima K et al (2001) Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51:349–355PubMed
128.
go back to reference Clejan S, Krulwich TA, Mondrus KR, Seto-Young D (1986) Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J Bacteriol 168:334–340PubMedPubMedCentral Clejan S, Krulwich TA, Mondrus KR, Seto-Young D (1986) Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J Bacteriol 168:334–340PubMedPubMedCentral
129.
go back to reference Bodnaruk PW, Golden DA (1996) Influence of pH and incubation temperature on fatty acid composition and virulence factors of Yersinia enterocolitica. Food Microbiol 13:17–22 Bodnaruk PW, Golden DA (1996) Influence of pH and incubation temperature on fatty acid composition and virulence factors of Yersinia enterocolitica. Food Microbiol 13:17–22
130.
go back to reference Banciu H, Sorokin DY, Rijpstra WIC, Damste JSS, Galinski EA, Takaichi S et al (2005) Fatty acid, compatible solute and pigment composition of obligately chemolithoautotrophic alkaliphilic sulfur-oxidizing bacteria from soda lakes. FEMS Microbiol Lett 243:181–187PubMed Banciu H, Sorokin DY, Rijpstra WIC, Damste JSS, Galinski EA, Takaichi S et al (2005) Fatty acid, compatible solute and pigment composition of obligately chemolithoautotrophic alkaliphilic sulfur-oxidizing bacteria from soda lakes. FEMS Microbiol Lett 243:181–187PubMed
131.
go back to reference Dunkley EA, Guffanti AA, Clejan S, Krulwich TA (1991) Facultative alkaliphiles lack fatty acid desaturase activity and lose the ability to grow at near-neutral pH when supplemented with an unsaturated fatty acid. J Bacteriol 173:1331–1334PubMedPubMedCentral Dunkley EA, Guffanti AA, Clejan S, Krulwich TA (1991) Facultative alkaliphiles lack fatty acid desaturase activity and lose the ability to grow at near-neutral pH when supplemented with an unsaturated fatty acid. J Bacteriol 173:1331–1334PubMedPubMedCentral
132.
go back to reference Aono R, Kaneko H, Horikoshi K (1996) Alkaline growth pH-dependent increase of respiratory and NADH-oxidation activities of the facultatively alkaliphilic strain Bacillus lentus C-125. Biosci Biotechnol Biochem 60:1243–1247 Aono R, Kaneko H, Horikoshi K (1996) Alkaline growth pH-dependent increase of respiratory and NADH-oxidation activities of the facultatively alkaliphilic strain Bacillus lentus C-125. Biosci Biotechnol Biochem 60:1243–1247
133.
go back to reference Hicks DB, Plass RJ, Quirk PG (1991) Evidence for multiple terminal oxidases, including cytochrome d, in facultatively alkaliphilic Bacillus firmus OF4. J Bacteriol 173:5010–5016PubMedPubMedCentral Hicks DB, Plass RJ, Quirk PG (1991) Evidence for multiple terminal oxidases, including cytochrome d, in facultatively alkaliphilic Bacillus firmus OF4. J Bacteriol 173:5010–5016PubMedPubMedCentral
134.
go back to reference Nishihara M, Morii H, Koga Y (1982) Bis(monoacylglycero)phosphate in alkalophilic bacteria. J Biochem 92:1469–1479PubMed Nishihara M, Morii H, Koga Y (1982) Bis(monoacylglycero)phosphate in alkalophilic bacteria. J Biochem 92:1469–1479PubMed
135.
go back to reference Hauß T, Dante S, Dencher NA, Haines TH (2002) Squalane is in the midplane of the lipid bilayer: implications for its function as a proton permeability barrier. Biochim Biophys Acta 1556:149–154PubMed Hauß T, Dante S, Dencher NA, Haines TH (2002) Squalane is in the midplane of the lipid bilayer: implications for its function as a proton permeability barrier. Biochim Biophys Acta 1556:149–154PubMed
136.
go back to reference Haines TH (2001) Do sterols reduce proton and sodium leaks through lipid bilayers? Prog Lipid Res 40:299–324PubMed Haines TH (2001) Do sterols reduce proton and sodium leaks through lipid bilayers? Prog Lipid Res 40:299–324PubMed
137.
go back to reference Yumoto I, Yamazaki K, Hishinuma M, Nodasaka Y, Suemori A, Nakajima K, Inoue N, Kawasaki K (2001) Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51:349–355PubMed Yumoto I, Yamazaki K, Hishinuma M, Nodasaka Y, Suemori A, Nakajima K, Inoue N, Kawasaki K (2001) Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51:349–355PubMed
139.
go back to reference Loffeld B, Keweloh H (1996) Cis-trans isomerization fatty acids as possible control mechanism of membrane fluidity in Pseudomonas putida P8. Lipids 31:811–815PubMed Loffeld B, Keweloh H (1996) Cis-trans isomerization fatty acids as possible control mechanism of membrane fluidity in Pseudomonas putida P8. Lipids 31:811–815PubMed
140.
go back to reference Okuyama H, Enari D, Shibahara A, Yamamoto K, Morita N (1996) Identification of activities that catalyze the cis-transisomerization of the double bond of a mono unsaturated fatty acid in Pseudomonas sp. strain E-3. Arch Microbiol 165:415–417PubMed Okuyama H, Enari D, Shibahara A, Yamamoto K, Morita N (1996) Identification of activities that catalyze the cis-transisomerization of the double bond of a mono unsaturated fatty acid in Pseudomonas sp. strain E-3. Arch Microbiol 165:415–417PubMed
141.
go back to reference Yuk YG, Marshall DL (2004) Adaptation of Escherichia coli O157:H7 to pH alters membrane lipid composition, verotoxin secretion, and resistance to simulated gastric fluid acid. Appl Environ Microbiol 70:3500–3505PubMedPubMedCentral Yuk YG, Marshall DL (2004) Adaptation of Escherichia coli O157:H7 to pH alters membrane lipid composition, verotoxin secretion, and resistance to simulated gastric fluid acid. Appl Environ Microbiol 70:3500–3505PubMedPubMedCentral
142.
go back to reference Koga Y, Nishihara M, Mori H (1982) Lipids of alkaliphilic bacteria: identification, composition and metabolism. J Univ Occup Environ Health 4:227–240 Koga Y, Nishihara M, Mori H (1982) Lipids of alkaliphilic bacteria: identification, composition and metabolism. J Univ Occup Environ Health 4:227–240
143.
go back to reference Clejan S, Krulwich TA (1988) Permeability studies of lipid vesicles from alkalophilic Bacillus firmus showing opposing effects of membrane isoprenoid and diacylglycerol fractions and suggesting a possible basis for obligate alkalophily. Biochim Biophys Acta 946:40–48PubMed Clejan S, Krulwich TA (1988) Permeability studies of lipid vesicles from alkalophilic Bacillus firmus showing opposing effects of membrane isoprenoid and diacylglycerol fractions and suggesting a possible basis for obligate alkalophily. Biochim Biophys Acta 946:40–48PubMed
144.
go back to reference Haines TH, Dencher NA (2002) Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett 528:35–39PubMed Haines TH, Dencher NA (2002) Cardiolipin: a proton trap for oxidative phosphorylation. FEBS Lett 528:35–39PubMed
145.
go back to reference Kitada M, Guffanti AA, Krulwich TA (1982) Bioenergetic properties and viability of the alkalophilic Bacillus firmus RAB as a function of pH and Na+ contents of the incubation medium. J Bacteriol 152:1096–1104PubMedPubMedCentral Kitada M, Guffanti AA, Krulwich TA (1982) Bioenergetic properties and viability of the alkalophilic Bacillus firmus RAB as a function of pH and Na+ contents of the incubation medium. J Bacteriol 152:1096–1104PubMedPubMedCentral
146.
go back to reference Krulwich TA, Agus R, Schneier M, Guffanti AA (1985) Buffering capacity of bacilli that grow at different pH ranges. J Bacteriol 162:768–772PubMedPubMedCentral Krulwich TA, Agus R, Schneier M, Guffanti AA (1985) Buffering capacity of bacilli that grow at different pH ranges. J Bacteriol 162:768–772PubMedPubMedCentral
147.
go back to reference Krulwich TA, Hicks DB, Seto-Young D, Guffanti AA (1988) The bioenergetics of alkalophilic bacilli. Crit Rev Microbiol 16:15–36PubMed Krulwich TA, Hicks DB, Seto-Young D, Guffanti AA (1988) The bioenergetics of alkalophilic bacilli. Crit Rev Microbiol 16:15–36PubMed
148.
go back to reference Stolyar S, He Q, Joachimiak MP, He Z, Yang ZK, Borglin SE et al (2007) Response of Desulfovibrio vulgaris to alkaline stress. J Bacteriol 189:8944–8952PubMedPubMedCentral Stolyar S, He Q, Joachimiak MP, He Z, Yang ZK, Borglin SE et al (2007) Response of Desulfovibrio vulgaris to alkaline stress. J Bacteriol 189:8944–8952PubMedPubMedCentral
149.
go back to reference Nah T, Kessler SH, Daumit KE, Kroll JH, Leone SR, Wilson KR (2013) OH-initiated oxidation of sub-micron unsaturated fatty acid particles. Phys Chem Chem Phys 15:18649–18663PubMed Nah T, Kessler SH, Daumit KE, Kroll JH, Leone SR, Wilson KR (2013) OH-initiated oxidation of sub-micron unsaturated fatty acid particles. Phys Chem Chem Phys 15:18649–18663PubMed
150.
go back to reference Eble KS, Coleman WB, Hantgan RR, Cunningham CC (1990) Tightly associated cardiolipin in the bovine heart mitochondrial ATP synthase as analyzed by 31P nuclear magnetic resonance spectroscopy. J Biol Chem 265:19434–19440PubMed Eble KS, Coleman WB, Hantgan RR, Cunningham CC (1990) Tightly associated cardiolipin in the bovine heart mitochondrial ATP synthase as analyzed by 31P nuclear magnetic resonance spectroscopy. J Biol Chem 265:19434–19440PubMed
151.
go back to reference Fry M, Green DE (1981) Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J Biol Chem 256:1874–1880PubMed Fry M, Green DE (1981) Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J Biol Chem 256:1874–1880PubMed
152.
go back to reference Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G (2014) Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta 1837:408–417PubMed Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G (2014) Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta 1837:408–417PubMed
153.
go back to reference Robinson NC (1993) Functional binding of cardiolipin to cytochrome c oxidase. J Bioenerg Biomembr 25:153–163PubMed Robinson NC (1993) Functional binding of cardiolipin to cytochrome c oxidase. J Bioenerg Biomembr 25:153–163PubMed
154.
go back to reference von Ballmoos C, Cook GM, Dimroth P (2008) Unique rotary ATP synthase and its biological diversity. Annu Rev Biophys 37:43–64 von Ballmoos C, Cook GM, Dimroth P (2008) Unique rotary ATP synthase and its biological diversity. Annu Rev Biophys 37:43–64
155.
go back to reference Liberton M, Berg RH, Heuser J, Roth R, Pakrasi HB (2006) Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma 227:129–138PubMed Liberton M, Berg RH, Heuser J, Roth R, Pakrasi HB (2006) Ultrastructure of the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. Protoplasma 227:129–138PubMed
156.
go back to reference Nevo R, Charuvi D, Shimoni E, Schwarz R, Kaplan A, Ohad I, Riech Z (2007) Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. EMBO J 26:1467–1473PubMedPubMedCentral Nevo R, Charuvi D, Shimoni E, Schwarz R, Kaplan A, Ohad I, Riech Z (2007) Thylakoid membrane perforations and connectivity enable intracellular traffic in cyanobacteria. EMBO J 26:1467–1473PubMedPubMedCentral
158.
go back to reference Belkin S, Boussiba S (1991) Resistance of Spirulina platensis to ammonia at high pH values. Plant Cell Physiol 32:953–958 Belkin S, Boussiba S (1991) Resistance of Spirulina platensis to ammonia at high pH values. Plant Cell Physiol 32:953–958
159.
go back to reference Pogoryelov D, Sudhir PR, Kovacs L, Gombos Z, Brown I, Garab G (2003) Sodium dependency of the photosynthetic electron transport in the alkaliphilic cyanobacterium Arthrospira platensis. J Bioenerg Biomembr 35:427–437PubMed Pogoryelov D, Sudhir PR, Kovacs L, Gombos Z, Brown I, Garab G (2003) Sodium dependency of the photosynthetic electron transport in the alkaliphilic cyanobacterium Arthrospira platensis. J Bioenerg Biomembr 35:427–437PubMed
160.
go back to reference Hirabayashi T, Goto T, Morimoto H, Yoshimune K, Matsyama H, Yumoto I (2012) Relationship between rates of respiratory proton extrusion and ATP synthesis in obligately alkaliphilic Bacillus clarkii DSM 8720. J Bioenerg Biomembr 44:265–272PubMed Hirabayashi T, Goto T, Morimoto H, Yoshimune K, Matsyama H, Yumoto I (2012) Relationship between rates of respiratory proton extrusion and ATP synthesis in obligately alkaliphilic Bacillus clarkii DSM 8720. J Bioenerg Biomembr 44:265–272PubMed
161.
go back to reference Goto T, Matsuno T, Hishinuma-Narisawa M, Yamazaki K, Matsuyama H, Inoue N, Yumoto I (2005) Cytochrome c and bioenergetic hypothetical model for alkaliphilic Bacillus spp. J Biosci Bioeng 100:365–379PubMed Goto T, Matsuno T, Hishinuma-Narisawa M, Yamazaki K, Matsuyama H, Inoue N, Yumoto I (2005) Cytochrome c and bioenergetic hypothetical model for alkaliphilic Bacillus spp. J Biosci Bioeng 100:365–379PubMed
162.
go back to reference Dimroth P, von Ballmoos C, Meier T (2006) Catalytic and mechanical cycles in F-ATP synthases: fourth in the cycles review series. EMBO Rep 7:276–282PubMedPubMedCentral Dimroth P, von Ballmoos C, Meier T (2006) Catalytic and mechanical cycles in F-ATP synthases: fourth in the cycles review series. EMBO Rep 7:276–282PubMedPubMedCentral
163.
go back to reference Hoffmann A, Dimroth P (1991) The ATPase of Bacillus alcalophilus. Reconstitution of energy-transducing functions. Eur J Biochem 196:493–497PubMed Hoffmann A, Dimroth P (1991) The ATPase of Bacillus alcalophilus. Reconstitution of energy-transducing functions. Eur J Biochem 196:493–497PubMed
164.
go back to reference Krulwich TA (1995) Alkaliphiles: ‘basic’ molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15:403–410PubMed Krulwich TA (1995) Alkaliphiles: ‘basic’ molecular problems of pH tolerance and bioenergetics. Mol Microbiol 15:403–410PubMed
165.
go back to reference Barriuso-Iglesias M, Barreiro C, Flechoso F, Martin JF (2006) Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH. Microbiology 152:11–21PubMed Barriuso-Iglesias M, Barreiro C, Flechoso F, Martin JF (2006) Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH. Microbiology 152:11–21PubMed
166.
go back to reference Hayes ET, Wilks JC, Sanfilippo P, Yohannes E, Tate DP, Jones BD, Radmacher MD, BonDurant SS, Slonczewski JL et al (2006) Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiol 6:89PubMedPubMedCentral Hayes ET, Wilks JC, Sanfilippo P, Yohannes E, Tate DP, Jones BD, Radmacher MD, BonDurant SS, Slonczewski JL et al (2006) Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiol 6:89PubMedPubMedCentral
167.
go back to reference Maurer LM, Yohannes E, Bondurant SS, Radmacher M, Slonczewski JL (2005) pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol 187:304–319PubMedPubMedCentral Maurer LM, Yohannes E, Bondurant SS, Radmacher M, Slonczewski JL (2005) pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol 187:304–319PubMedPubMedCentral
168.
go back to reference Kosono S, Asai K, Sadaie Y, Kudo T (2004) Altered gene expression in the transition phase by disruption of a Na+/H+ antiporter gene (shaA) in Bacillus subtilis. FEMS Microbiol Lett 232:93–99PubMed Kosono S, Asai K, Sadaie Y, Kudo T (2004) Altered gene expression in the transition phase by disruption of a Na+/H+ antiporter gene (shaA) in Bacillus subtilis. FEMS Microbiol Lett 232:93–99PubMed
171.
go back to reference Dong H, Fillingame RH (2010) Chemical reactivities of cysteine substitutions in subunit a of ATP synthase define residues gating H+ transport from each side of the membrane. J Biol Chem 285:39811–39818PubMedPubMedCentral Dong H, Fillingame RH (2010) Chemical reactivities of cysteine substitutions in subunit a of ATP synthase define residues gating H+ transport from each side of the membrane. J Biol Chem 285:39811–39818PubMedPubMedCentral
172.
go back to reference Arechaga I, Jones PC (2001) The rotor in the membrane of the ATP synthase and relatives. FEBS Lett 494:1–5PubMed Arechaga I, Jones PC (2001) The rotor in the membrane of the ATP synthase and relatives. FEBS Lett 494:1–5PubMed
173.
go back to reference Liu J, Fujisawa M, Hicks DB, Krulwich TA (2009) Characterization of the functionally critical AXAXAXA and PXXEXXP motifs of the ATP synthase c-subunit from an alkaliphilic Bacillus. J Biol Chem 284:8714–8725PubMedPubMedCentral Liu J, Fujisawa M, Hicks DB, Krulwich TA (2009) Characterization of the functionally critical AXAXAXA and PXXEXXP motifs of the ATP synthase c-subunit from an alkaliphilic Bacillus. J Biol Chem 284:8714–8725PubMedPubMedCentral
175.
go back to reference Hicks DB, Krulwich TA (1995) The respiratory chain of alkaliphilic bacteria. Biochim Biophys Acta 1229:303–314PubMed Hicks DB, Krulwich TA (1995) The respiratory chain of alkaliphilic bacteria. Biochim Biophys Acta 1229:303–314PubMed
176.
go back to reference Muntyan MS, Bloch DA (2008) Study of redox potential in cytochrome c covalently bound to terminal oxidase of alkaliphilic Bacillus pseudofirmus FTU. Biochemistry (Mosc) 73:107–111 Muntyan MS, Bloch DA (2008) Study of redox potential in cytochrome c covalently bound to terminal oxidase of alkaliphilic Bacillus pseudofirmus FTU. Biochemistry (Mosc) 73:107–111
178.
go back to reference Matsuno T, Yoshimune K, Yumoto I (2011) Physiological function of soluble cytochrome c-552 from alkaliphilic Pseudomonas alcaliphila AL15-21T. J Bioenerg Biomembr 43:473–481PubMed Matsuno T, Yoshimune K, Yumoto I (2011) Physiological function of soluble cytochrome c-552 from alkaliphilic Pseudomonas alcaliphila AL15-21T. J Bioenerg Biomembr 43:473–481PubMed
179.
go back to reference Mulkidjanian AY, Dibrov P, Galperin MY (2008) The past and present of sodium energetics: may the sodium-motive force be with you. Biochim Biophys Acta 1777:985–992PubMedPubMedCentral Mulkidjanian AY, Dibrov P, Galperin MY (2008) The past and present of sodium energetics: may the sodium-motive force be with you. Biochim Biophys Acta 1777:985–992PubMedPubMedCentral
180.
go back to reference Liu X, Gong X, Hicks DB, Krulwich TA, Yu L, Yu CA (2007) Interaction between cytochrome caa3 and F1F0-ATP synthase of alkaliphilic Bacillus pseudofirmus OF4 is demonstrated by saturation transfer electron paramagnetic resonance and differential scanning calorimetry assays. Biochemistry 46:306–313PubMed Liu X, Gong X, Hicks DB, Krulwich TA, Yu L, Yu CA (2007) Interaction between cytochrome caa3 and F1F0-ATP synthase of alkaliphilic Bacillus pseudofirmus OF4 is demonstrated by saturation transfer electron paramagnetic resonance and differential scanning calorimetry assays. Biochemistry 46:306–313PubMed
181.
go back to reference Ling HL, Rahmat Z, Bakar FDA, Murad AMA, Illias RM (2018) Secretome analysis of alkaliphilic bacterium Bacillus lehensis G1 in response to pH changes. Microbiol Res 215:46–54PubMed Ling HL, Rahmat Z, Bakar FDA, Murad AMA, Illias RM (2018) Secretome analysis of alkaliphilic bacterium Bacillus lehensis G1 in response to pH changes. Microbiol Res 215:46–54PubMed
182.
go back to reference Saito H, Kobayashi H (2003) Bacterial responses to alkaline stress. Sci Prog 86:271–282PubMed Saito H, Kobayashi H (2003) Bacterial responses to alkaline stress. Sci Prog 86:271–282PubMed
183.
go back to reference Serra-Cardona A, Canadell D, Ariño J (2015) Coordinate responses to alkaline pH stress in budding yeast. Microb Cell 2:182–196PubMedPubMedCentral Serra-Cardona A, Canadell D, Ariño J (2015) Coordinate responses to alkaline pH stress in budding yeast. Microb Cell 2:182–196PubMedPubMedCentral
184.
go back to reference Canadell D, Garcia-Martinez J, Alepuz P, Perez-Ortin JE, Arino J (2015) Impact of high pH stress on yeast gene expression: a comprehensive analysis of mRNA turnover during stress responses. Biochim Biophys Acta 1849:653–664PubMed Canadell D, Garcia-Martinez J, Alepuz P, Perez-Ortin JE, Arino J (2015) Impact of high pH stress on yeast gene expression: a comprehensive analysis of mRNA turnover during stress responses. Biochim Biophys Acta 1849:653–664PubMed
185.
go back to reference Flahaut S, Hartke A, Giard JC, Auffray Y (1997) Alkaline stress response in Enterococcus faecalis: adaptation, cross-protection, and changes in protein synthesis. Appl Environ Microbiol 63:812–814PubMedPubMedCentral Flahaut S, Hartke A, Giard JC, Auffray Y (1997) Alkaline stress response in Enterococcus faecalis: adaptation, cross-protection, and changes in protein synthesis. Appl Environ Microbiol 63:812–814PubMedPubMedCentral
186.
go back to reference Clarke S, Stephenson RC, Lowenson JD (1992) Lability of asparagine and aspartic acid residues in proteins and peptides. In: Ahern TJ, Manning MC (eds) Stability of protein pharmaceuticals, part A: chemical and physical pathways of protein degradation. Plenum, New York, pp 1–29 Clarke S, Stephenson RC, Lowenson JD (1992) Lability of asparagine and aspartic acid residues in proteins and peptides. In: Ahern TJ, Manning MC (eds) Stability of protein pharmaceuticals, part A: chemical and physical pathways of protein degradation. Plenum, New York, pp 1–29
187.
go back to reference Shimizu T, Matsuoka Y, Shirasawa T (2005) Biological significance of isoaspartate and its repair system. Biol Pharm Bull 28:1590–159610PubMed Shimizu T, Matsuoka Y, Shirasawa T (2005) Biological significance of isoaspartate and its repair system. Biol Pharm Bull 28:1590–159610PubMed
188.
go back to reference Szymanska G, Leszyk JD, O’Connor CM (1998) Carboxyl methylation of deamidated calmodulin increases its stability in Xenopus oocyte cytoplasm: implications for protein repair. J Biol Chem 273:28516–28523PubMed Szymanska G, Leszyk JD, O’Connor CM (1998) Carboxyl methylation of deamidated calmodulin increases its stability in Xenopus oocyte cytoplasm: implications for protein repair. J Biol Chem 273:28516–28523PubMed
189.
go back to reference Riggs DL, Gomez SV, Julian RR (2017) Sequence and solution effects on the prevalence of d-isomers produced by deamidation. ACS Chem Biol 12:2875–2882PubMedPubMedCentral Riggs DL, Gomez SV, Julian RR (2017) Sequence and solution effects on the prevalence of d-isomers produced by deamidation. ACS Chem Biol 12:2875–2882PubMedPubMedCentral
190.
go back to reference Yang H, Zubarev RA (2010) Mass spectrometric analysis of asparagine deamidation and aspartate isomerization in polypeptides. Electrophoresis 31:1764–1772PubMedPubMedCentral Yang H, Zubarev RA (2010) Mass spectrometric analysis of asparagine deamidation and aspartate isomerization in polypeptides. Electrophoresis 31:1764–1772PubMedPubMedCentral
191.
go back to reference Visick JE, Clarke S (1995) Repair, refold, recycle: how bacteria can deal with spontaneous and environmental damage to proteins. Mol Microbiol 16:835–845PubMed Visick JE, Clarke S (1995) Repair, refold, recycle: how bacteria can deal with spontaneous and environmental damage to proteins. Mol Microbiol 16:835–845PubMed
192.
go back to reference Li C, Clarke S (1992) Distribution of an L-isoaspartyl protein methyltransferase in eubacteria. J Bacteriol 174:355–361PubMedPubMedCentral Li C, Clarke S (1992) Distribution of an L-isoaspartyl protein methyltransferase in eubacteria. J Bacteriol 174:355–361PubMedPubMedCentral
193.
go back to reference Visick JE, Cai H, Clarke S (1998) The L-isoaspartyl protein repair methyltransferase enhances survival of aging Escherichia coli subjected to secondary environmental stresses. J Bacteriol 180:2623–2629PubMedPubMedCentral Visick JE, Cai H, Clarke S (1998) The L-isoaspartyl protein repair methyltransferase enhances survival of aging Escherichia coli subjected to secondary environmental stresses. J Bacteriol 180:2623–2629PubMedPubMedCentral
194.
go back to reference Johnson BA, Shirokawa JM, Aswad DW (1989) Deamidation of calmodulin at neutral and alkaline pH: quantitative relationships between ammonia loss and the susceptibility of calmodulin to modification by protein carboxyl methyltransferase. Arch Biochem Biophys 268:276–286PubMed Johnson BA, Shirokawa JM, Aswad DW (1989) Deamidation of calmodulin at neutral and alkaline pH: quantitative relationships between ammonia loss and the susceptibility of calmodulin to modification by protein carboxyl methyltransferase. Arch Biochem Biophys 268:276–286PubMed
195.
go back to reference Suh MJ, Alami H, Clark DJ, Parmar PP, Robinson JM, Huang ST et al (2008) Widespread occurrence of non-enzymatic deamidations of asparagine residues in Yersinia pestis proteins resulting from alkaline pH membrane extraction conditions. Open Proteomics J 1:106–115PubMedPubMedCentral Suh MJ, Alami H, Clark DJ, Parmar PP, Robinson JM, Huang ST et al (2008) Widespread occurrence of non-enzymatic deamidations of asparagine residues in Yersinia pestis proteins resulting from alkaline pH membrane extraction conditions. Open Proteomics J 1:106–115PubMedPubMedCentral
196.
go back to reference Yan Q, Huang M, Lewis MJ, Hu P (2018) Structure based prediction of asparagine deamidation propensity in monoclonal antibodies. MAbs 10:901–912PubMedPubMedCentral Yan Q, Huang M, Lewis MJ, Hu P (2018) Structure based prediction of asparagine deamidation propensity in monoclonal antibodies. MAbs 10:901–912PubMedPubMedCentral
197.
go back to reference Hicks WM, Kotlajich MV, Visick JE (2005) Recovery from long-term stationary phase and stress survival in Escherichia coli require the L-isoaspartyl protein carboxyl methyltransferase at alkaline pH. Microbiology 151:2151–2158PubMed Hicks WM, Kotlajich MV, Visick JE (2005) Recovery from long-term stationary phase and stress survival in Escherichia coli require the L-isoaspartyl protein carboxyl methyltransferase at alkaline pH. Microbiology 151:2151–2158PubMed
198.
go back to reference Dahl JU, Koldewey P, Salmon L, Horowitz S, Bardwell JCA, Jakob U (2015) HdeB functions as an acid-protective chaperone in bacteria. J Biol Chem 290:65–75PubMed Dahl JU, Koldewey P, Salmon L, Horowitz S, Bardwell JCA, Jakob U (2015) HdeB functions as an acid-protective chaperone in bacteria. J Biol Chem 290:65–75PubMed
199.
go back to reference Hong W, Wu YE, Fu X, Chang Z (2012) Chaperone-dependent mechanisms for acid resistance in enteric bacteria. Trends Microbiol 20:328–335PubMed Hong W, Wu YE, Fu X, Chang Z (2012) Chaperone-dependent mechanisms for acid resistance in enteric bacteria. Trends Microbiol 20:328–335PubMed
200.
go back to reference Kern R, Malki A, Abdallah J, Tagourti J, Richarme G (2007) Escherichia coli HdeB is an acid stress chaperone. J Bacteriol 189:603–610PubMed Kern R, Malki A, Abdallah J, Tagourti J, Richarme G (2007) Escherichia coli HdeB is an acid stress chaperone. J Bacteriol 189:603–610PubMed
201.
go back to reference Taglicht D, Padan E, Oppenheim AB, Schuldiner S (1987) An alkaline shiftinduces the heatshock response in Escherichia coli. J Bacteriol 169:885–887PubMedPubMedCentral Taglicht D, Padan E, Oppenheim AB, Schuldiner S (1987) An alkaline shiftinduces the heatshock response in Escherichia coli. J Bacteriol 169:885–887PubMedPubMedCentral
202.
go back to reference Horikoshi K, Akiba T (1982) Alkalophilic microorganisms: a new microbial world. Springer, Heidelberg Horikoshi K, Akiba T (1982) Alkalophilic microorganisms: a new microbial world. Springer, Heidelberg
203.
go back to reference Verdolino V, Cammi R, Munk BH, Schlegel HB (2008) Calculation of pKa values of nucleobases and the guanine oxidation products guanidinohydantoin and spiroiminodihydantoin using density functional theory and a polarizable continuum model. J Phys Chem B 112:16860–16873PubMed Verdolino V, Cammi R, Munk BH, Schlegel HB (2008) Calculation of pKa values of nucleobases and the guanine oxidation products guanidinohydantoin and spiroiminodihydantoin using density functional theory and a polarizable continuum model. J Phys Chem B 112:16860–16873PubMed
204.
go back to reference Goodson M, Rowbury RJ (1990) Habituation to alkali and increased UV-resistance in DNA repair-proficient and -deficient strains of Escherichia coli grown at pH 9.0. Lett Appl Microbiol 11:123–125 Goodson M, Rowbury RJ (1990) Habituation to alkali and increased UV-resistance in DNA repair-proficient and -deficient strains of Escherichia coli grown at pH 9.0. Lett Appl Microbiol 11:123–125
205.
go back to reference Dubnovitsky AP, Kapetaniou EG, Papageorgiou AC (2005) Enzyme adaptation to alkaline pH: atomic resolution (1.08 Å) structure of phosphoserine aminotransferase from Bacillus alcalophilus. Protein Sci 14:97–110PubMedPubMedCentral Dubnovitsky AP, Kapetaniou EG, Papageorgiou AC (2005) Enzyme adaptation to alkaline pH: atomic resolution (1.08 Å) structure of phosphoserine aminotransferase from Bacillus alcalophilus. Protein Sci 14:97–110PubMedPubMedCentral
206.
go back to reference Mamo G, Thunnissen M, Hatti-Kaul R, Mattiasson B (2009) An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation. Biochimie 91:1187–1196PubMed Mamo G, Thunnissen M, Hatti-Kaul R, Mattiasson B (2009) An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation. Biochimie 91:1187–1196PubMed
207.
go back to reference Shirai T, Ishida H, Noda J, Yamane T, Ozaki K, Hakamada Y, Ito S (2001) Crystal structure of alkaline cellulase K: insight into the alkaline adaptation of an industrial enzyme. J Mol Biol 310:1079–1087PubMed Shirai T, Ishida H, Noda J, Yamane T, Ozaki K, Hakamada Y, Ito S (2001) Crystal structure of alkaline cellulase K: insight into the alkaline adaptation of an industrial enzyme. J Mol Biol 310:1079–1087PubMed
208.
go back to reference Shirai T, Suzuki A, Yamane T, Ashida T, Kobayashi T, Hitomi J, Ito S (1997) High-resolution crystal structure of M-protease: phylogeny aided analysis of the highalkaline adaptation mechanism. Protein Eng 10:627–634PubMed Shirai T, Suzuki A, Yamane T, Ashida T, Kobayashi T, Hitomi J, Ito S (1997) High-resolution crystal structure of M-protease: phylogeny aided analysis of the highalkaline adaptation mechanism. Protein Eng 10:627–634PubMed
210.
go back to reference Geiger T, Clarke S (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides: succinimide-linked reactions that contribute to protein degradation. J Biol Chem 262:785–794PubMed Geiger T, Clarke S (1987) Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides: succinimide-linked reactions that contribute to protein degradation. J Biol Chem 262:785–794PubMed
211.
go back to reference Tyler-Cross R, Schirch V (1991) Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides. J Biol Chem 266:22549–22556PubMed Tyler-Cross R, Schirch V (1991) Effects of amino acid sequence, buffers, and ionic strength on the rate and mechanism of deamidation of asparagine residues in small peptides. J Biol Chem 266:22549–22556PubMed
212.
go back to reference Gulich S, Linhult M, Nygren PA, Hober S (2000) Stability towards alkaline conditions can be engineered into a protein ligand. J Biotechnol 80:169–178PubMed Gulich S, Linhult M, Nygren PA, Hober S (2000) Stability towards alkaline conditions can be engineered into a protein ligand. J Biotechnol 80:169–178PubMed
213.
go back to reference Gulich S, Linhult M, Stahl S, Hober S (2002) Engineering streptococcal protein G for increased alkaline stability. Protein Eng 15:835–842PubMed Gulich S, Linhult M, Stahl S, Hober S (2002) Engineering streptococcal protein G for increased alkaline stability. Protein Eng 15:835–842PubMed
214.
go back to reference Krulwich TA (2005) Extreme alkaliphiles: experts at alkaline pH homeostasis and able to grow when cytoplasmic pH rises above the limit for growth of non-alkaliphiles. In: International symposium on extremophiles and their applications, pp 220–227 Krulwich TA (2005) Extreme alkaliphiles: experts at alkaline pH homeostasis and able to grow when cytoplasmic pH rises above the limit for growth of non-alkaliphiles. In: International symposium on extremophiles and their applications, pp 220–227
215.
go back to reference Schmidt A, Schlacher A, Steiner W, Schwab H, Kratky C (1998) Structure of the xylanase from Penicillium simplicissimum. Protein Sci 7:2081–2088PubMedPubMedCentral Schmidt A, Schlacher A, Steiner W, Schwab H, Kratky C (1998) Structure of the xylanase from Penicillium simplicissimum. Protein Sci 7:2081–2088PubMedPubMedCentral
216.
go back to reference Mamo G, Hatti-Kaul R, Mattiasson B (2006) A thermostable alkaline active endo-β-1-4-xylanase from Bacillus halodurans S7: purification and characterization. Enzym Microb Technol 39:1492–1498 Mamo G, Hatti-Kaul R, Mattiasson B (2006) A thermostable alkaline active endo-β-1-4-xylanase from Bacillus halodurans S7: purification and characterization. Enzym Microb Technol 39:1492–1498
217.
go back to reference Inagaki K, Nakahira K, Mukai K, Tamura T, Tanaka H (1998) Gene cloning and characterization of an acidic xylanase from Acidobacterium capsulatum. Biosci Biotechnol Biochem 62:1061–1067PubMed Inagaki K, Nakahira K, Mukai K, Tamura T, Tanaka H (1998) Gene cloning and characterization of an acidic xylanase from Acidobacterium capsulatum. Biosci Biotechnol Biochem 62:1061–1067PubMed
218.
go back to reference Yang JH, Park JY, Kim SH, Yoo YJ (2008) Shifting pH optimum of Bacillus circulans xylanase based on molecular modeling. J Biotechnol 133:294–300PubMed Yang JH, Park JY, Kim SH, Yoo YJ (2008) Shifting pH optimum of Bacillus circulans xylanase based on molecular modeling. J Biotechnol 133:294–300PubMed
219.
220.
go back to reference Joshi MD, Sidhu G, Nielsen JE, Brayer GD, Withers SG, McIntosh LP (2001) Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase. Biochemistry 40:10115–10139PubMed Joshi MD, Sidhu G, Nielsen JE, Brayer GD, Withers SG, McIntosh LP (2001) Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase. Biochemistry 40:10115–10139PubMed
221.
go back to reference Nielsen JE, Borchert TV, Vriend G (2001) The determinants of alpha-amylase pH-activity profiles. Protein Eng 14:505–512PubMed Nielsen JE, Borchert TV, Vriend G (2001) The determinants of alpha-amylase pH-activity profiles. Protein Eng 14:505–512PubMed
222.
go back to reference Coughlan S, Wang XG, Britton KL, Stillman TJ, Rice DW et al (2001) Contribution of an aspartate residue, D114, in the active site of clostridial glutamate dehydrogenase to the enzyme’s unusual pH dependence. Biochim Biophys Acta 1544:10–17PubMed Coughlan S, Wang XG, Britton KL, Stillman TJ, Rice DW et al (2001) Contribution of an aspartate residue, D114, in the active site of clostridial glutamate dehydrogenase to the enzyme’s unusual pH dependence. Biochim Biophys Acta 1544:10–17PubMed
223.
go back to reference Bai W, Cao Y, Liu J, Wang Q, Jia Z (2016) Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis. BMC Biotechnol 16:77PubMedPubMedCentral Bai W, Cao Y, Liu J, Wang Q, Jia Z (2016) Improvement of alkalophilicity of an alkaline xylanase Xyn11A-LC from Bacillus sp. SN5 by random mutation and Glu135 saturation mutagenesis. BMC Biotechnol 16:77PubMedPubMedCentral
224.
go back to reference Madzak C, Mimmi MC, Caminade E, Brault A, Baumberger S, Briozzo P et al (2006) Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis. Protein Eng Des Sel 19:77–84PubMed Madzak C, Mimmi MC, Caminade E, Brault A, Baumberger S, Briozzo P et al (2006) Shifting the optimal pH of activity for a laccase from the fungus Trametes versicolor by structure-based mutagenesis. Protein Eng Des Sel 19:77–84PubMed
225.
go back to reference Richardson TH, Tan X, Frey G, Callen W, Cabell M, Lam D et al (2002) A novel, high performance enzyme for starch liquefaction. Discovery and optimization of a low pH, thermostable alpha-amylase. J Biol Chem 277:26501–26507PubMed Richardson TH, Tan X, Frey G, Callen W, Cabell M, Lam D et al (2002) A novel, high performance enzyme for starch liquefaction. Discovery and optimization of a low pH, thermostable alpha-amylase. J Biol Chem 277:26501–26507PubMed
226.
go back to reference Aygan A, Arikan B, Korkmaz H, Dinçer S, Çolak Ö (2008) Highly thermostable and alkaline α-amylase from a halotolerant-alkaliphilic Bacillus sp. AB68. Braz J Microbiol 39:547–553PubMedPubMedCentral Aygan A, Arikan B, Korkmaz H, Dinçer S, Çolak Ö (2008) Highly thermostable and alkaline α-amylase from a halotolerant-alkaliphilic Bacillus sp. AB68. Braz J Microbiol 39:547–553PubMedPubMedCentral
227.
go back to reference Kim DH, Morimoto N, Saburi W, Mukai A, Imoto K, Takehana T et al (2012) Purification and characterization of a liquefying α-amylase from alkalophilic thermophilic Bacillus sp. AAH-31. Biosci Biotechnol Biochem 76:1378–1383PubMed Kim DH, Morimoto N, Saburi W, Mukai A, Imoto K, Takehana T et al (2012) Purification and characterization of a liquefying α-amylase from alkalophilic thermophilic Bacillus sp. AAH-31. Biosci Biotechnol Biochem 76:1378–1383PubMed
228.
go back to reference Drechsel H, Jung G (1998) Peptide siderophores. J Pept Sci 4:147–181PubMed Drechsel H, Jung G (1998) Peptide siderophores. J Pept Sci 4:147–181PubMed
229.
go back to reference McMillan DGG, Velasquez I, Nunn BL, Goodlett DR, Hunter KA, Lamont I et al (2010) Acquisition of iron by alkaliphilic Bacillus species. Appl Environ Microbiol 76:6955–6961PubMedPubMedCentral McMillan DGG, Velasquez I, Nunn BL, Goodlett DR, Hunter KA, Lamont I et al (2010) Acquisition of iron by alkaliphilic Bacillus species. Appl Environ Microbiol 76:6955–6961PubMedPubMedCentral
230.
go back to reference Luque-Almagro VM, Blasco R, Huertas MJ, Martinez-Luque M, Moreno-Vivian C, Castillo F, Roldan MD (2005) Alkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT5344. Biochem Soc Trans 33:168–169PubMed Luque-Almagro VM, Blasco R, Huertas MJ, Martinez-Luque M, Moreno-Vivian C, Castillo F, Roldan MD (2005) Alkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT5344. Biochem Soc Trans 33:168–169PubMed
231.
go back to reference Sarethy IP, Saxena Y, Kapoor A, Sharma M, Sharma SK, Gupta V, Gupta S (2011) Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 38:769–790PubMed Sarethy IP, Saxena Y, Kapoor A, Sharma M, Sharma SK, Gupta V, Gupta S (2011) Alkaliphilic bacteria: applications in industrial biotechnology. J Ind Microbiol Biotechnol 38:769–790PubMed
232.
go back to reference Sorokin DY, Kuenen JG (2005) Chemolithotrophic haloalkaliphiles from soda lakes. FEMS Microbiol Ecol 52:287–295PubMed Sorokin DY, Kuenen JG (2005) Chemolithotrophic haloalkaliphiles from soda lakes. FEMS Microbiol Ecol 52:287–295PubMed
233.
go back to reference Carini SA, Joye SB (2008) Nitrification in Mono Lake, California: activity and community composition during contrasting hydrological regimes. Limnol Oceanogr 53:2546–2557 Carini SA, Joye SB (2008) Nitrification in Mono Lake, California: activity and community composition during contrasting hydrological regimes. Limnol Oceanogr 53:2546–2557
234.
go back to reference Luque-Almagro VM et al (2005) Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl Environ Microbiol 71:940–947PubMedPubMedCentral Luque-Almagro VM et al (2005) Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl Environ Microbiol 71:940–947PubMedPubMedCentral
235.
go back to reference Schagerl M (2016) Soda lakes of East Africa. Springer, Cham Schagerl M (2016) Soda lakes of East Africa. Springer, Cham
236.
go back to reference Lanzén A, Simachew A, Gessesse A, Chmolowska D, Jonassen I, Øvreås L (2013) Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian soda lakes. PLoS One 8(8):e72577PubMedPubMedCentral Lanzén A, Simachew A, Gessesse A, Chmolowska D, Jonassen I, Øvreås L (2013) Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of Ethiopian soda lakes. PLoS One 8(8):e72577PubMedPubMedCentral
237.
go back to reference Kavembe GD, Meyer A, Wood CM (2016) Fish populations in East African saline lakes. Soda lakes of East Africa. Springer, Cham, pp 227–257 Kavembe GD, Meyer A, Wood CM (2016) Fish populations in East African saline lakes. Soda lakes of East Africa. Springer, Cham, pp 227–257
238.
go back to reference Wilkie MP, Wood CM (1991) Nitrogenous waste excretion, acid-base regulation, and ionoregulation in rainbow trout (Oncorhynchus mykiss) exposed to extremely alkaline water. Physiol Zool 64:1069–1086 Wilkie MP, Wood CM (1991) Nitrogenous waste excretion, acid-base regulation, and ionoregulation in rainbow trout (Oncorhynchus mykiss) exposed to extremely alkaline water. Physiol Zool 64:1069–1086
239.
go back to reference Wilkie MP, Wood CM (1995) Recovery from high pH exposure in the rainbow trout: white muscle ammonia storage, ammonia washout, and the restoration of blood chemistry. Physiol Zool 68:379–401 Wilkie MP, Wood CM (1995) Recovery from high pH exposure in the rainbow trout: white muscle ammonia storage, ammonia washout, and the restoration of blood chemistry. Physiol Zool 68:379–401
240.
go back to reference Wilkie MP, Wood CM (1996) The adaptations of fish to extremely alkaline environments. Comp Biochem Physiol B Biochem Mol Biol 113:665–673 Wilkie MP, Wood CM (1996) The adaptations of fish to extremely alkaline environments. Comp Biochem Physiol B Biochem Mol Biol 113:665–673
241.
go back to reference Yesaki TY, Iwama GK (1992) Survival, acid-base regulation, ion regulation, and ammonia excretion in rainbow trout in highly alkaline hard water. Physiol Zool 65:763–787 Yesaki TY, Iwama GK (1992) Survival, acid-base regulation, ion regulation, and ammonia excretion in rainbow trout in highly alkaline hard water. Physiol Zool 65:763–787
242.
go back to reference Johansen K, Maloiy G, Lykkeboe G (1975) A fish in extreme alkalinity. Respir Physiol 24:159–162PubMed Johansen K, Maloiy G, Lykkeboe G (1975) A fish in extreme alkalinity. Respir Physiol 24:159–162PubMed
243.
go back to reference Wilkie MP, Wright PA, Iwama GK, Wood CM (1994) The physiological adaptations of the Lahontan cutthroat trout (Oncorhynchus clarki henshawi) following transfer from well water to the highly alkaline waters of Pyramid Lake, Nevada (pH 9.4). Physiol Zool 67:355–380 Wilkie MP, Wright PA, Iwama GK, Wood CM (1994) The physiological adaptations of the Lahontan cutthroat trout (Oncorhynchus clarki henshawi) following transfer from well water to the highly alkaline waters of Pyramid Lake, Nevada (pH 9.4). Physiol Zool 67:355–380
244.
go back to reference Wood CM, Bergman HL, Bianchini A, Laurent P, Maina J, Johannsson OE et al (2012) Transepithelial potential in the Magadi tilapia, a fish living in extreme alkalinity. J Comp Physiol B 182:247–258PubMed Wood CM, Bergman HL, Bianchini A, Laurent P, Maina J, Johannsson OE et al (2012) Transepithelial potential in the Magadi tilapia, a fish living in extreme alkalinity. J Comp Physiol B 182:247–258PubMed
245.
go back to reference Wood CM, Bergman HL, Laurent P, John MN, Narahara AB, Walsh PJ (1994) Urea production, acid-base regulation and their interactions in the Lake Magadi tilapia, a unique teleost adapted to a highly alkaline environment. J Exp Biol 189:13–36PubMed Wood CM, Bergman HL, Laurent P, John MN, Narahara AB, Walsh PJ (1994) Urea production, acid-base regulation and their interactions in the Lake Magadi tilapia, a unique teleost adapted to a highly alkaline environment. J Exp Biol 189:13–36PubMed
246.
go back to reference Wood CM, Wilson P, Bergman HL, Bergman AN, Laurent P, Owiti G et al (2002) Ionoregulatory strategies and the role of urea in the Magadi tilapia (Alcolapia grahami). Can J Zool 80:503–515 Wood CM, Wilson P, Bergman HL, Bergman AN, Laurent P, Owiti G et al (2002) Ionoregulatory strategies and the role of urea in the Magadi tilapia (Alcolapia grahami). Can J Zool 80:503–515
247.
go back to reference Wilkie MP (2002) Ammonia excretion and urea handling by fish gills: present understanding and future research challenges. J Exp Zool 293:284–301PubMed Wilkie MP (2002) Ammonia excretion and urea handling by fish gills: present understanding and future research challenges. J Exp Zool 293:284–301PubMed
248.
go back to reference Randall DJ, Tsui TKN (2002) Ammonia toxicity in fish. Mar Pollut Bull 45:17–23PubMed Randall DJ, Tsui TKN (2002) Ammonia toxicity in fish. Mar Pollut Bull 45:17–23PubMed
249.
go back to reference Wilkie MP, Pamenter ME, Duquette S, Dhiyebi H, Sangha N, Skelton G et al (2011) The relationship between NMDA receptor function and the high ammonia tolerance of anoxia-tolerant goldfish. J Exp Biol 214:4107–4120PubMed Wilkie MP, Pamenter ME, Duquette S, Dhiyebi H, Sangha N, Skelton G et al (2011) The relationship between NMDA receptor function and the high ammonia tolerance of anoxia-tolerant goldfish. J Exp Biol 214:4107–4120PubMed
250.
go back to reference Walsh PJ, Smith CP (2001) Urea transport. Fish Physiol 20:279–307 Walsh PJ, Smith CP (2001) Urea transport. Fish Physiol 20:279–307
Metadata
Title
Challenges and Adaptations of Life in Alkaline Habitats
Author
Gashaw Mamo
Copyright Year
2020
DOI
https://doi.org/10.1007/10_2019_97