Skip to main content
Top

2021 | OriginalPaper | Chapter

2. Characteristics of Laser-Induced Plasma Shock Wave in Metal Materials

Authors : Liucheng Zhou, Weifeng He

Published in: Gradient Microstructure in Laser Shock Peened Materials

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

According to the basic principle of LSP, short-pulse high-power laser irradiates materials to form high-pressure plasma to produce shock waves, which act on materials and induce them to produce a gradient stress field and microstructures (Chupakhin et al. in Int J Adv Manuf Technol (2019) [1]; Tsuyama et al. in Appl Phys A 124(3) (2018) [2]; Zabeen et al. in Acta Mater 83:216–226, 2015 [3]). Shock wave is the energy carrier to strengthen the materials.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Chupakhin, B. Klusemann, N. Huber, N. Kashaev, Application of design of experiments for laser shock peening process optimization. Int. J. Adv. Manuf. Technol. (2019) S. Chupakhin, B. Klusemann, N. Huber, N. Kashaev, Application of design of experiments for laser shock peening process optimization. Int. J. Adv. Manuf. Technol. (2019)
2.
go back to reference M. Tsuyama, N. Ehara, K. Yamashita, M. Heya, H. Nakano, Effect of laser peening with glycerol as plasma confinement layer. Appl. Phys. A 124(3) (2018) M. Tsuyama, N. Ehara, K. Yamashita, M. Heya, H. Nakano, Effect of laser peening with glycerol as plasma confinement layer. Appl. Phys. A 124(3) (2018)
3.
go back to reference S. Zabeen, M. Preuss, P.J. Withers, Evolution of a laser shock peened residual stress field locally with foreign object damage and subsequent fatigue crack growth. Acta Mater. 83, 216–226 (2015)CrossRef S. Zabeen, M. Preuss, P.J. Withers, Evolution of a laser shock peened residual stress field locally with foreign object damage and subsequent fatigue crack growth. Acta Mater. 83, 216–226 (2015)CrossRef
4.
go back to reference R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 68(2), 775–784 (1990)CrossRef R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 68(2), 775–784 (1990)CrossRef
5.
go back to reference E. Cuenca, M. Ducousso, A. Rondepierre, L. Videau, N. Cuvillier, L. Berthe, F. Coulouvrat, Propagation of laser-generated shock waves in metals: 3D axisymmetric simulations compared to experiments. J. Appl. Phys. 128(24) (2020) E. Cuenca, M. Ducousso, A. Rondepierre, L. Videau, N. Cuvillier, L. Berthe, F. Coulouvrat, Propagation of laser-generated shock waves in metals: 3D axisymmetric simulations compared to experiments. J. Appl. Phys. 128(24) (2020)
6.
go back to reference P. Peyre, C. Carboni, A. Sollier, L. Berthe, C. Richard, E.D.L. Rios, R. Fabbro, New trends in laser shock wave physics and applications. High-power Laser Ablation IV (2002) P. Peyre, C. Carboni, A. Sollier, L. Berthe, C. Richard, E.D.L. Rios, R. Fabbro, New trends in laser shock wave physics and applications. High-power Laser Ablation IV (2002)
7.
go back to reference M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, S. Juodkazis, Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5 (2016) M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, S. Juodkazis, Ultrafast laser processing of materials: from science to industry. Light Sci. Appl. 5 (2016)
8.
go back to reference A.F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, F. Nori, Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1(1), 19–40 (2019)CrossRef A.F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, F. Nori, Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1(1), 19–40 (2019)CrossRef
9.
go back to reference S. Mondal, V. Narayanan, W.J. Ding, A.D. Lad, B.A. Hao, S. Ahmad, W.M. Wang, Z.M. Sheng, S. Sengupta, P. Kaw, A. Das, G.R. Kumar, Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas. Proc. Natl. Acad. Sci. U.S.A. 109(21), 8011–8015 (2012)CrossRef S. Mondal, V. Narayanan, W.J. Ding, A.D. Lad, B.A. Hao, S. Ahmad, W.M. Wang, Z.M. Sheng, S. Sengupta, P. Kaw, A. Das, G.R. Kumar, Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas. Proc. Natl. Acad. Sci. U.S.A. 109(21), 8011–8015 (2012)CrossRef
10.
go back to reference D.S. Dovzhenko, S.V. Ryabchuk, Y.P. Rakovich, I.R. Nabiev, Light-matter interaction in the strong coupling regime: configurations, conditions, and applications. Nanoscale 10(8), 3589–3605 (2018)CrossRef D.S. Dovzhenko, S.V. Ryabchuk, Y.P. Rakovich, I.R. Nabiev, Light-matter interaction in the strong coupling regime: configurations, conditions, and applications. Nanoscale 10(8), 3589–3605 (2018)CrossRef
11.
go back to reference S. Jiang, L.L. Ji, H. Audesirk, K.M. George, J. Snyder, A. Krygier, P. Poole, C. Willis, R. Daskalova, E. Chowdhury, N.S. Lewis, D.W. Schumacher, A. Pukhov, R.R. Freeman, K.U. Akli, Microengineering laser plasma interactions at relativistic intensities. Phys. Rev. Lett. 116(8) (2016) S. Jiang, L.L. Ji, H. Audesirk, K.M. George, J. Snyder, A. Krygier, P. Poole, C. Willis, R. Daskalova, E. Chowdhury, N.S. Lewis, D.W. Schumacher, A. Pukhov, R.R. Freeman, K.U. Akli, Microengineering laser plasma interactions at relativistic intensities. Phys. Rev. Lett. 116(8) (2016)
12.
go back to reference R. Ramis, K. Eidmann, J. Meyer-ter-Vehn, S. Huller, Multi-fs—A computer code for laser-plasma interaction in the femtosecond regime. Comput. Phys. Commun. 183(3), 637–655 (2012) R. Ramis, K. Eidmann, J. Meyer-ter-Vehn, S. Huller, Multi-fs—A computer code for laser-plasma interaction in the femtosecond regime. Comput. Phys. Commun. 183(3), 637–655 (2012)
13.
go back to reference L. Berthe, R. Fabbro, P. Peyre, L. Tollier, E. Bartnicki, Shock waves from a water-confined laser-generated plasma. J. Appl. Phys. 82(6), 2826–2832 (1997)CrossRef L. Berthe, R. Fabbro, P. Peyre, L. Tollier, E. Bartnicki, Shock waves from a water-confined laser-generated plasma. J. Appl. Phys. 82(6), 2826–2832 (1997)CrossRef
14.
go back to reference A. De Giacomo, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, V. Palleschi, C. Parigger, A. Woods, Plasma processes and emission spectra in laser induced plasmas: a point of view. Spectrochim. Acta Part B-At. Spectro. 100, 180–188 (2014)CrossRef A. De Giacomo, M. Dell’Aglio, O. De Pascale, R. Gaudiuso, V. Palleschi, C. Parigger, A. Woods, Plasma processes and emission spectra in laser induced plasmas: a point of view. Spectrochim. Acta Part B-At. Spectro. 100, 180–188 (2014)CrossRef
15.
go back to reference S. Zhu, Y.F. Lu, M.H. Hong, X.Y. Chen, Laser ablation of solid substrates in water and ambient air. J. Appl. Phys. 89(4), 2400–2403 (2001)CrossRef S. Zhu, Y.F. Lu, M.H. Hong, X.Y. Chen, Laser ablation of solid substrates in water and ambient air. J. Appl. Phys. 89(4), 2400–2403 (2001)CrossRef
16.
go back to reference A.K. Gujba, M. Medraj, Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening. Materials 7(12), 7925–7974 (2014)CrossRef A.K. Gujba, M. Medraj, Laser peening process and its impact on materials properties in comparison with shot peening and ultrasonic impact peening. Materials 7(12), 7925–7974 (2014)CrossRef
17.
go back to reference V.H. Whitley, S.D. McGrane, D.E. Eakins, C.A. Bolme, D.S. Moore, J.F. Bingert, The elastic-plastic response of aluminum films to ultrafast laser-generated shocks. J. Appl. Phys. 109(1) (2011) V.H. Whitley, S.D. McGrane, D.E. Eakins, C.A. Bolme, D.S. Moore, J.F. Bingert, The elastic-plastic response of aluminum films to ultrafast laser-generated shocks. J. Appl. Phys. 109(1) (2011)
18.
go back to reference M.A. Barrios, D.G. Hicks, T.R. Boehly, D.E. Fratanduono, J.H. Eggert, P.M. Celliers, G.W. Collins, D.D. Meyerhofer, High-precision measurements of the equation of state of hydrocarbons at 1–10 Mbar using laser-driven shock waves. Phys. Plasmas 17(5) (2010) M.A. Barrios, D.G. Hicks, T.R. Boehly, D.E. Fratanduono, J.H. Eggert, P.M. Celliers, G.W. Collins, D.D. Meyerhofer, High-precision measurements of the equation of state of hydrocarbons at 1–10 Mbar using laser-driven shock waves. Phys. Plasmas 17(5) (2010)
19.
go back to reference F. Fiuza, A. Stockem, E. Boella, R.A. Fonseca, L.O. Silva, D. Haberberger, S. Tochitsky, W.B. Mori, C. Joshi, Ion acceleration from laser-driven electrostatic shocks. Phys. Plasmas 20(5) (2013) F. Fiuza, A. Stockem, E. Boella, R.A. Fonseca, L.O. Silva, D. Haberberger, S. Tochitsky, W.B. Mori, C. Joshi, Ion acceleration from laser-driven electrostatic shocks. Phys. Plasmas 20(5) (2013)
20.
go back to reference J.P. Knauer, O.V. Gotchev, P.Y. Chang, D.D. Meyerhofer, O. Polomarov, R. Betti, J.A. Frenje, C.K. Li, M.J.E. Manuel, R.D. Petrasso, J.R. Rygg, F.H. Seguin, Compressing magnetic fields with high-energy lasers. Phys. Plasmas 17(5) (2010) J.P. Knauer, O.V. Gotchev, P.Y. Chang, D.D. Meyerhofer, O. Polomarov, R. Betti, J.A. Frenje, C.K. Li, M.J.E. Manuel, R.D. Petrasso, J.R. Rygg, F.H. Seguin, Compressing magnetic fields with high-energy lasers. Phys. Plasmas 17(5) (2010)
21.
go back to reference S.S. Harilal, B.E. Brumfield, B.D. Cannon, M.C. Phillips, Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas. Anal. Chem. 88(4), 2296–2302 (2016)CrossRef S.S. Harilal, B.E. Brumfield, B.D. Cannon, M.C. Phillips, Shock wave mediated plume chemistry for molecular formation in laser ablation plasmas. Anal. Chem. 88(4), 2296–2302 (2016)CrossRef
22.
go back to reference K.H. Kurniawan, M.O. Tjia, K. Kagawa, Review of laser-induced plasma, its mechanism, and application to quantitative analysis of hydrogen and deuterium. Appl. Spectrosc. Rev. 49(5), 323–434 (2014)CrossRef K.H. Kurniawan, M.O. Tjia, K. Kagawa, Review of laser-induced plasma, its mechanism, and application to quantitative analysis of hydrogen and deuterium. Appl. Spectrosc. Rev. 49(5), 323–434 (2014)CrossRef
23.
go back to reference B. Arman, S.N. Luo, T.C. Germann, T. Cagin, Dynamic response of Cu46Zr54 metallic glass to high-strain-rate shock loading: Plasticity, spall, and atomic-level structures. Phys. Rev. B 81(14) (2010) B. Arman, S.N. Luo, T.C. Germann, T. Cagin, Dynamic response of Cu46Zr54 metallic glass to high-strain-rate shock loading: Plasticity, spall, and atomic-level structures. Phys. Rev. B 81(14) (2010)
24.
go back to reference X.H. Zou, B. Lu, W. Pan, L.S. Yan, A. Stohr, J.P. Yao, Photonics for microwave measurements. Laser Photonics Rev. 10(5), 711–734 (2016)CrossRef X.H. Zou, B. Lu, W. Pan, L.S. Yan, A. Stohr, J.P. Yao, Photonics for microwave measurements. Laser Photonics Rev. 10(5), 711–734 (2016)CrossRef
25.
go back to reference W. Garen, F. Friebel, V. Braun, S. Koch, U. Teubner, Laser-induced shock waves from micro-scale volumina and in small tubes. Shock Waves 22(4), 281–286 (2012)CrossRef W. Garen, F. Friebel, V. Braun, S. Koch, U. Teubner, Laser-induced shock waves from micro-scale volumina and in small tubes. Shock Waves 22(4), 281–286 (2012)CrossRef
26.
go back to reference Z. Henis, S. Eliezer, E. Raicher, Collisional shock waves induced by laser radiation pressure. Laser Part. Beams 37(3), 268–275 (2019)CrossRef Z. Henis, S. Eliezer, E. Raicher, Collisional shock waves induced by laser radiation pressure. Laser Part. Beams 37(3), 268–275 (2019)CrossRef
27.
go back to reference S. Eliezer, J.M. Martinez-Val, Z. Henis, N. Nissim, S.V. Pinhasi, A. Ravid, M. Werdiger, E. Raicher, Physics and applications with laser-induced relativistic shock waves. High Power Laser Sci. Eng. 4 (2016) S. Eliezer, J.M. Martinez-Val, Z. Henis, N. Nissim, S.V. Pinhasi, A. Ravid, M. Werdiger, E. Raicher, Physics and applications with laser-induced relativistic shock waves. High Power Laser Sci. Eng. 4 (2016)
28.
go back to reference J.X. Wang, X. Gao, C. Song, J.Q. Lin, Experimental study of shock waves induced by a nanosecond pulsed laser in copper target. Acta Physica Sinica 64(4) (2015) J.X. Wang, X. Gao, C. Song, J.Q. Lin, Experimental study of shock waves induced by a nanosecond pulsed laser in copper target. Acta Physica Sinica 64(4) (2015)
29.
go back to reference R. Zhao, R.Q. Xu, Z.C. Liang, Laser-induced plasma shock wave propagation underwater. Optik 124(12), 1122–1124 (2013)CrossRef R. Zhao, R.Q. Xu, Z.C. Liang, Laser-induced plasma shock wave propagation underwater. Optik 124(12), 1122–1124 (2013)CrossRef
30.
go back to reference I.I. Oleynik, B.J. Demaske, V.V. Zhakhovsky, N.A. Inogamov, C.T. White, MD simulations of laser-induced ultrashort shock waves in nickel (2011) I.I. Oleynik, B.J. Demaske, V.V. Zhakhovsky, N.A. Inogamov, C.T. White, MD simulations of laser-induced ultrashort shock waves in nickel (2011)
31.
go back to reference K. Yuan, Y. Sumi, Simulation of residual stress and fatigue strength of welded joints under the effects of ultrasonic impact treatment (UIT). Int. J. Fatigue 92, 321–332 (2016)CrossRef K. Yuan, Y. Sumi, Simulation of residual stress and fatigue strength of welded joints under the effects of ultrasonic impact treatment (UIT). Int. J. Fatigue 92, 321–332 (2016)CrossRef
Metadata
Title
Characteristics of Laser-Induced Plasma Shock Wave in Metal Materials
Authors
Liucheng Zhou
Weifeng He
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-1747-8_2

Premium Partners