Skip to main content
Top

2017 | OriginalPaper | Chapter

15. Characterization and Modeling of Polymeric Foam Under Multi-Axial Static and Dynamic Loading

Authors : I. M. Daniel, J. S. Fenner, B. T. Werner, J.-M. Cho

Published in: Experimental and Applied Mechanics, Volume 4

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A polymeric foam commonly used in composite sandwich structures was characterized under multi-axial loading at strain rates varying from quasi-static to dynamic. Tests were conducted under uniaxial compression, tension, pure shear and combinations of normal and shear stresses. Quasi-static and intermediate strain rate tests were conducted in a servo-hydraulic testing machine. High strain rate tests were conducted using a split Hopkinson pressure bar (Kolsky bar) system made of polycarbonate bars having an impedance compatible to that of the foam material. The typical compressive stress-strain behavior of the polymeric foam exhibits a linear elastic region up to a yield point, a nonlinear elastic-plastic region up to an initial peak or “critical stress” corresponding to collapse initiation of the cells, followed by strain softening up to a local minimum (plateau or saddle point stress) and finally, a strain hardening region up to densification of the foam. The characteristic stresses of the stress-strain behavior vary linearly with the logarithm of strain rate. A general three-dimensional elastic-viscoplastic model, formulated in strain space, was proposed. The model expresses the multi-axial state of stress in terms of an effective stress, incorporates strain rate effects and includes the large deformation region. Stress-strain curves obtained under multi-axial loading at different strain rates were used to develop and validate the elastic-viscoplastic constitutive model. Excellent agreement was shown between model predictions and experimental results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gibson, L.J., Ashby, M.F.: Cellular solids, 2nd edn. Cambridge University Press, New York (1997)CrossRefMATH Gibson, L.J., Ashby, M.F.: Cellular solids, 2nd edn. Cambridge University Press, New York (1997)CrossRefMATH
2.
go back to reference Daniel, I.M., Gdoutos, E.E., Wang, K.A., Abot, J.L.: Failure modes of composite sandwich beams. Int. J. Damage Mech. 11, 309–334 (2002)CrossRef Daniel, I.M., Gdoutos, E.E., Wang, K.A., Abot, J.L.: Failure modes of composite sandwich beams. Int. J. Damage Mech. 11, 309–334 (2002)CrossRef
3.
go back to reference Gdoutos, E.E., Daniel, I.M., Wang, K.A.: Failure of cellular foams under multiaxial loading. Compos. Part A 33, 163–176 (2002)CrossRef Gdoutos, E.E., Daniel, I.M., Wang, K.A.: Failure of cellular foams under multiaxial loading. Compos. Part A 33, 163–176 (2002)CrossRef
4.
go back to reference Flores-Johnson, E.A., Li, Q.A.: Degradation of elastic modulus of progressively crushable foams in uniaxial compression. J. Cell. Plast. 44, 415–434 (2008)CrossRef Flores-Johnson, E.A., Li, Q.A.: Degradation of elastic modulus of progressively crushable foams in uniaxial compression. J. Cell. Plast. 44, 415–434 (2008)CrossRef
5.
go back to reference Abrate, S.: Criteria for yielding or failure of cellular materials. J. Sandw. Struct. Mater. 10, 5–51 (2008)CrossRef Abrate, S.: Criteria for yielding or failure of cellular materials. J. Sandw. Struct. Mater. 10, 5–51 (2008)CrossRef
6.
go back to reference Ramon, O., Mintz, J.: Prediction of dynamic properties of plastic foams from constant strain rate measurements. J. Appl. Polym. Sci. 40(9–10), 1683–1692 (1990)CrossRef Ramon, O., Mintz, J.: Prediction of dynamic properties of plastic foams from constant strain rate measurements. J. Appl. Polym. Sci. 40(9–10), 1683–1692 (1990)CrossRef
7.
go back to reference Zhang, J., Lin, Z., Wong, A., Kikuchi, N., Li, V.C., Yee, A.F., Nusholtz, G.S.: Constitutive modeling and material characterization of polymeric foams. J. Eng. Mater. Technol. 119, 284–291 (1997)CrossRef Zhang, J., Lin, Z., Wong, A., Kikuchi, N., Li, V.C., Yee, A.F., Nusholtz, G.S.: Constitutive modeling and material characterization of polymeric foams. J. Eng. Mater. Technol. 119, 284–291 (1997)CrossRef
8.
go back to reference Daniel, I.M., Rao, S.: Dynamic mechanical properties and failure mechanisms of PVC foams. In: Dynamic Failure in Composite Materials and Structures, ASME Mechanical Engineering Congress and Exposition 2000; AMD-243, Orlando, 5–10 Nov. 2000. pp. 37–48 Daniel, I.M., Rao, S.: Dynamic mechanical properties and failure mechanisms of PVC foams. In: Dynamic Failure in Composite Materials and Structures, ASME Mechanical Engineering Congress and Exposition 2000; AMD-243, Orlando, 5–10 Nov. 2000. pp. 37–48
9.
go back to reference Avalle, M., Belingardi, G., Montanini, R.: Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram. Int. J. Impact Eng. 25, 455–472 (2001)CrossRef Avalle, M., Belingardi, G., Montanini, R.: Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram. Int. J. Impact Eng. 25, 455–472 (2001)CrossRef
10.
go back to reference Viot, P., Beani, F., Latallade, J.L.: Polymeric foam behavior under dynamic compressive loading. J. Mater Sci. 40, 5829–5837 (2005)CrossRef Viot, P., Beani, F., Latallade, J.L.: Polymeric foam behavior under dynamic compressive loading. J. Mater Sci. 40, 5829–5837 (2005)CrossRef
11.
go back to reference Ouellet, S., Cronin, D., Worswick, M.: Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions. Polym. Test. 25, 731–743 (2006)CrossRef Ouellet, S., Cronin, D., Worswick, M.: Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions. Polym. Test. 25, 731–743 (2006)CrossRef
12.
go back to reference Tagarielli, V.L., Deshpande, V.S., Fleck, N.A.: The high strain rate response of PVC foams and end-grain balsa wood. Compos. Part B 39, 83–91 (2008)CrossRef Tagarielli, V.L., Deshpande, V.S., Fleck, N.A.: The high strain rate response of PVC foams and end-grain balsa wood. Compos. Part B 39, 83–91 (2008)CrossRef
13.
go back to reference Lee, Y.S., Park, N.H., Yoon, H.S.: Dynamic mechanical characteristics of expanded polypropylene foams. J. Cell. Plast. 46, 43–55 (2010)CrossRef Lee, Y.S., Park, N.H., Yoon, H.S.: Dynamic mechanical characteristics of expanded polypropylene foams. J. Cell. Plast. 46, 43–55 (2010)CrossRef
14.
go back to reference Daniel, I.M., Cho, J.M.: Characterization of anisotropic polymeric foam under static and dynamic loading. Exp. Mech. 51(8), 1395–1403 (2011)CrossRef Daniel, I.M., Cho, J.M.: Characterization of anisotropic polymeric foam under static and dynamic loading. Exp. Mech. 51(8), 1395–1403 (2011)CrossRef
15.
go back to reference Tagarielli, V.L., Deshpande, V.S., Fleck, N.A., Chen, C.: A constitutive model for transversely isotropic foams, and its application to the indentation of balsa wood. Int. J. Mech. Sci. 47, 666–686 (2005)CrossRefMATH Tagarielli, V.L., Deshpande, V.S., Fleck, N.A., Chen, C.: A constitutive model for transversely isotropic foams, and its application to the indentation of balsa wood. Int. J. Mech. Sci. 47, 666–686 (2005)CrossRefMATH
16.
go back to reference Gielen, A.W.J.: A PVC-foam material model based on a thermodynamically elasto-plastic-damage framework exhibiting failure and crushing. Int. J. Solids Struct. 45, 1896–1917 (2008)CrossRefMATH Gielen, A.W.J.: A PVC-foam material model based on a thermodynamically elasto-plastic-damage framework exhibiting failure and crushing. Int. J. Solids Struct. 45, 1896–1917 (2008)CrossRefMATH
17.
go back to reference Daniel, I.M., Cho, J.M., Werner, B.T.: Characterization and modeling of strain-rate-dependent behavior of polymeric foams. Compos. Part A 45, 70–78 (2013)CrossRef Daniel, I.M., Cho, J.M., Werner, B.T.: Characterization and modeling of strain-rate-dependent behavior of polymeric foams. Compos. Part A 45, 70–78 (2013)CrossRef
18.
go back to reference Werner, B.T., Daniel, I.M.: Characterization and modeling of polymeric matrix under static and dynamic loading. Compos. Sci. Technol. 102, 113–119 (2014)CrossRef Werner, B.T., Daniel, I.M.: Characterization and modeling of polymeric matrix under static and dynamic loading. Compos. Sci. Technol. 102, 113–119 (2014)CrossRef
Metadata
Title
Characterization and Modeling of Polymeric Foam Under Multi-Axial Static and Dynamic Loading
Authors
I. M. Daniel
J. S. Fenner
B. T. Werner
J.-M. Cho
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-42028-8_15

Premium Partners