Skip to main content
Top

2016 | OriginalPaper | Chapter

17. Characterization of HT-PEM Membrane-Electrode-Assemblies

Authors : F. Javier Pinar, Maren Rastedt, Nadine Pilinski, Peter Wagner

Published in: High Temperature Polymer Electrolyte Membrane Fuel Cells

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter describes the most commonly used electrochemical measurement techniques to characterize HT-PEM membrane electrode assemblies (MEAs). Moreover, it will be shown what kind of information can be subtracted from each technique in order to provide a correct diagnosis of the HT-PEMFC behavior. Detailed descriptions of test procedures and methodology routines for each one of the electrochemical techniques are important for the comparison of data between different working groups is not always possible, thus leading to the need of standardized test protocols. The described test procedures and routines have already been verified in two European Projects. Micro-computed tomography X-ray technique has been introduced as a rather new post-mortem three-dimensional imaging method of the specimens under investigation. Therefore, μ-CT imaging enables the nondestructive characterization of usually hidden interfaces in HT-PEM MEAs that cannot be done by conventional microscopy techniques. MEA contact pressure plays an important role for degradation of MEA materials that can affect performance and lifetime of the HT-PEMFC. Thus, electrochemical and ex situ imaging techniques have jointly been used to investigate the effect of contact pressure increase as well as contact pressure cycling to verify the state-of-the-art of HT-PEM technology in different commercial MEAs. The importance to define long-term test routines will be discussed in the last section of this chapter. Long-term testing should reproduce real operation conditions and determine the issues to identify, understand, and minimize degradation mechanisms that limit the applicability of HT-PEM technology nowadays in systems ready for the market.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Seland F, Berning T, Borresen B et al (2006) Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte. J Power Sources 160:27–36CrossRef Seland F, Berning T, Borresen B et al (2006) Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte. J Power Sources 160:27–36CrossRef
2.
go back to reference Aleksandrova E, Hiesgen R, Eberhard D et al (2007) Proton conductivity study of a fuel cell membrane with nanoscale resolution. ChemPhysChem 8:519–522CrossRef Aleksandrova E, Hiesgen R, Eberhard D et al (2007) Proton conductivity study of a fuel cell membrane with nanoscale resolution. ChemPhysChem 8:519–522CrossRef
3.
go back to reference Jensen JO, Li Q, Pan C et al (2009) Degradation of high temperature PEM fuel cells. Paper presented at the HyFC Academy School on Fuel Cells and Hydrogen, Vancouver, Canada Jensen JO, Li Q, Pan C et al (2009) Degradation of high temperature PEM fuel cells. Paper presented at the HyFC Academy School on Fuel Cells and Hydrogen, Vancouver, Canada
4.
go back to reference Lehnert W, Maier W, Wannek C et al (2012) Mobility and distribution of phosphoric acid in high-temperature polymer electrolyte fuel cells. Paper presented at the 3rd CARISMA international conference, Copenhagen, Denmark Lehnert W, Maier W, Wannek C et al (2012) Mobility and distribution of phosphoric acid in high-temperature polymer electrolyte fuel cells. Paper presented at the 3rd CARISMA international conference, Copenhagen, Denmark
5.
go back to reference Chandan A, Hattenberger M, El-kharouf A et al (2013) High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)—a review. J Power Sources 231:264–278CrossRef Chandan A, Hattenberger M, El-kharouf A et al (2013) High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)—a review. J Power Sources 231:264–278CrossRef
6.
go back to reference Schmidt TJ, Baurmeister J (2006) Durability and reliability in high-temperature reformed hydrogen PEFCs. ECS Trans 3:861–869CrossRef Schmidt TJ, Baurmeister J (2006) Durability and reliability in high-temperature reformed hydrogen PEFCs. ECS Trans 3:861–869CrossRef
7.
go back to reference Mader J, Xiao L, Schmidt TJ et al (2008) Polybenzimidazole/acid complexes as high-temperature membranes. Adv Polym Sci 216:63–124 Mader J, Xiao L, Schmidt TJ et al (2008) Polybenzimidazole/acid complexes as high-temperature membranes. Adv Polym Sci 216:63–124
8.
go back to reference Oono Y, Sounai A, Hori M (2012) Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells. J Power Sources 210:366–373CrossRef Oono Y, Sounai A, Hori M (2012) Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells. J Power Sources 210:366–373CrossRef
9.
go back to reference Yu S, Xiao L, Benicewicz BC (2008) Durability studies of PBI-based high temperature PEMFCs. Fuel Cells 8:165–174CrossRef Yu S, Xiao L, Benicewicz BC (2008) Durability studies of PBI-based high temperature PEMFCs. Fuel Cells 8:165–174CrossRef
10.
go back to reference Mocotéguy P, Ludwig B, Scholta J et al (2010) Long-term testing in dynamic mode of HT-PEMFC H3PO4/PBI Celtec-P based membrane electrode assemblies for micro-CHP applications. Fuel Cells 10:1–13CrossRef Mocotéguy P, Ludwig B, Scholta J et al (2010) Long-term testing in dynamic mode of HT-PEMFC H3PO4/PBI Celtec-P based membrane electrode assemblies for micro-CHP applications. Fuel Cells 10:1–13CrossRef
11.
go back to reference Gou B, Na WK, Diong B (2009) Fuel cells: modeling, control, and applications. Power electronics and applications series. CRC, Boca RatonCrossRef Gou B, Na WK, Diong B (2009) Fuel cells: modeling, control, and applications. Power electronics and applications series. CRC, Boca RatonCrossRef
12.
go back to reference Yang JS, Cleemann LN, Steenberg T et al (2014) High molecular weight polybenzimidazole membranes for high temperature PEMFC. Fuel Cells 14:7–15CrossRef Yang JS, Cleemann LN, Steenberg T et al (2014) High molecular weight polybenzimidazole membranes for high temperature PEMFC. Fuel Cells 14:7–15CrossRef
13.
go back to reference Lobato J, Cañizares P, Rodrigo MA et al (2011) Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes. J Power Sources 196:8265–8271CrossRef Lobato J, Cañizares P, Rodrigo MA et al (2011) Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes. J Power Sources 196:8265–8271CrossRef
14.
go back to reference Aili D, Cleemann LN, Li Q et al (2012) Thermal curing of PBI membranes for high temperature PEM fuel cells. J Mater Chem 22:5444–5453CrossRef Aili D, Cleemann LN, Li Q et al (2012) Thermal curing of PBI membranes for high temperature PEM fuel cells. J Mater Chem 22:5444–5453CrossRef
15.
go back to reference Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51CrossRef Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51CrossRef
16.
go back to reference Cleemann LN, Buazar F, Li Q et al (2013) Catalyst degradation in high temperature proton exchange membrane fuel cells based on acid doped polybenzimidazole membranes. Fuel Cells 13:822–831 Cleemann LN, Buazar F, Li Q et al (2013) Catalyst degradation in high temperature proton exchange membrane fuel cells based on acid doped polybenzimidazole membranes. Fuel Cells 13:822–831
17.
go back to reference Diedrichs A, Rastedt M, Pinar JF et al (2013) Effect of compression on the performance of a HT-PEM fuel cell. J Appl Electrochem 43:1079–1099CrossRef Diedrichs A, Rastedt M, Pinar JF et al (2013) Effect of compression on the performance of a HT-PEM fuel cell. J Appl Electrochem 43:1079–1099CrossRef
18.
go back to reference Fuel cells and hydrogen joint undertaking (2011) Multi-annual implementation plan 2008–2013 Fuel cells and hydrogen joint undertaking (2011) Multi-annual implementation plan 2008–2013
19.
go back to reference Department of Energy (2012) Technical plan—fuel cells Department of Energy (2012) Technical plan—fuel cells
20.
go back to reference Diedrichs A, Wagner P (2012) Performance analysis of a high-temperature polymer electrolyte membrane fuel cell under mechanical compression control. ECS Trans 50:1137–1153CrossRef Diedrichs A, Wagner P (2012) Performance analysis of a high-temperature polymer electrolyte membrane fuel cell under mechanical compression control. ECS Trans 50:1137–1153CrossRef
21.
go back to reference Pinar FJ, Rastedt M, Pilinski N et al (2014) Effect of compression cycling on polybenzimidazole-based high-temperature polymer electrolyte membrane fuel cells. Fuel Cells 15(1):140–149CrossRef Pinar FJ, Rastedt M, Pilinski N et al (2014) Effect of compression cycling on polybenzimidazole-based high-temperature polymer electrolyte membrane fuel cells. Fuel Cells 15(1):140–149CrossRef
22.
go back to reference Rastedt M, Pinar FJ, Bruns N et al (2013) Micro-computed tomography imaging of HT-PEM fuel cells under contact pressure control. ECS Trans 58:443–452CrossRef Rastedt M, Pinar FJ, Bruns N et al (2013) Micro-computed tomography imaging of HT-PEM fuel cells under contact pressure control. ECS Trans 58:443–452CrossRef
23.
go back to reference Rastedt M, Pinar FJ, Wagner P (2014) Impact of contact pressure cycling on non-woven GDLs of HT-PEM fuel cells. ECS Trans 64:509–514CrossRef Rastedt M, Pinar FJ, Wagner P (2014) Impact of contact pressure cycling on non-woven GDLs of HT-PEM fuel cells. ECS Trans 64:509–514CrossRef
24.
go back to reference Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York
25.
go back to reference Yuan X-Z, Song C, Wang H et al (2010) Electrochemical impedance spectroscopy in PEM fuel cells: fundamentals and applications, 1st edn. Springer, LondonCrossRef Yuan X-Z, Song C, Wang H et al (2010) Electrochemical impedance spectroscopy in PEM fuel cells: fundamentals and applications, 1st edn. Springer, LondonCrossRef
26.
go back to reference Srinivasan S (2006) Fuel cells—from fundamentals to applications. Springer, New York Srinivasan S (2006) Fuel cells—from fundamentals to applications. Springer, New York
27.
go back to reference Carrette L, Friedrich KA, Stimming U (2001) Fuel cells—fundamentals and applications. Fuel Cells 1:5–39CrossRef Carrette L, Friedrich KA, Stimming U (2001) Fuel cells—fundamentals and applications. Fuel Cells 1:5–39CrossRef
28.
go back to reference Zhang J, Zhang H, Wu J et al (2013) PEM fuel cell testing and diagnosis. Elsevier, New York, pp 225–241CrossRef Zhang J, Zhang H, Wu J et al (2013) PEM fuel cell testing and diagnosis. Elsevier, New York, pp 225–241CrossRef
29.
go back to reference Galbiati S, Baricci A, Casalegno A et al (2013) Degradation in phosphoric acid doped polymer fuel cells: a 6000 h parametric investigation. Int J Hydrogen Energy 38:6469–6480CrossRef Galbiati S, Baricci A, Casalegno A et al (2013) Degradation in phosphoric acid doped polymer fuel cells: a 6000 h parametric investigation. Int J Hydrogen Energy 38:6469–6480CrossRef
30.
go back to reference Trasatti S (2003) Reaction mechanism and rate determining steps. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and application, vol 2. Wiley, Chichester, pp 79–87 Trasatti S (2003) Reaction mechanism and rate determining steps. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and application, vol 2. Wiley, Chichester, pp 79–87
31.
go back to reference Sammes N (2006) Fuel cell technology. Engineering materials and processes. Springer, London Sammes N (2006) Fuel cell technology. Engineering materials and processes. Springer, London
32.
go back to reference Williams MC (2004) Fuel cell handbook. US Department of Energy, Morgantown Williams MC (2004) Fuel cell handbook. US Department of Energy, Morgantown
33.
go back to reference Seyfang BC (2009) Simplification and investigation of polymer electrolyte fuel cells using micro-patterned glassy carbon flow fields. PhD, Swiss Federal Institute of Technology Zürich (ETHZ), Zürich Seyfang BC (2009) Simplification and investigation of polymer electrolyte fuel cells using micro-patterned glassy carbon flow fields. PhD, Swiss Federal Institute of Technology Zürich (ETHZ), Zürich
34.
go back to reference Naughton MS, Moradia AA, Kenis PJA (2012) Quantitative analysis of single-electrode plots to understand in-situ behavior of individual electrodes. J Electrochem Soc 159:B761–B769CrossRef Naughton MS, Moradia AA, Kenis PJA (2012) Quantitative analysis of single-electrode plots to understand in-situ behavior of individual electrodes. J Electrochem Soc 159:B761–B769CrossRef
35.
go back to reference Cooper KR, Ramani V, Fenton JM et al (2005) Experimental methods and data analyses for polymer electrolyte fuel cells. Scriber Associates, Southern Pines Cooper KR, Ramani V, Fenton JM et al (2005) Experimental methods and data analyses for polymer electrolyte fuel cells. Scriber Associates, Southern Pines
36.
go back to reference Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy, The electrochemical society series. Wiley, HobokenCrossRef Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy, The electrochemical society series. Wiley, HobokenCrossRef
37.
go back to reference Orazem ME (2013) Application of impedance spectroscopy to characterize polymer-electrolyte-membrane (PEM) fuel cells. ECS Trans 50:247–260CrossRef Orazem ME (2013) Application of impedance spectroscopy to characterize polymer-electrolyte-membrane (PEM) fuel cells. ECS Trans 50:247–260CrossRef
38.
go back to reference Lvovich VF (2012) Impedance spectroscopy: applications to electrochemical and dielectric phenomena. Wiley, New JerseyCrossRef Lvovich VF (2012) Impedance spectroscopy: applications to electrochemical and dielectric phenomena. Wiley, New JerseyCrossRef
40.
go back to reference Chen C-Y, Lai W-H (2010) Effects of temperature and humidity on the cell performance and resistance of a phosphoric acid doped polybenzimidazole fuel cell. J Power Sources 195:7152–7159CrossRef Chen C-Y, Lai W-H (2010) Effects of temperature and humidity on the cell performance and resistance of a phosphoric acid doped polybenzimidazole fuel cell. J Power Sources 195:7152–7159CrossRef
41.
go back to reference Andreasen SJ, Jespersen JL, Schaltz E et al (2009) Characterisation and modelling of a high temperature PEM fuel cell stack using electrochemical impedance spectroscopy. Fuel Cells 4:463–473CrossRef Andreasen SJ, Jespersen JL, Schaltz E et al (2009) Characterisation and modelling of a high temperature PEM fuel cell stack using electrochemical impedance spectroscopy. Fuel Cells 4:463–473CrossRef
42.
go back to reference Yuan X, Wang H, Sun JC et al (2007) AC impedance technique in PEM fuel cell diagnosis—a review. Int J Hydrogen Energy 32:4365–4380CrossRef Yuan X, Wang H, Sun JC et al (2007) AC impedance technique in PEM fuel cell diagnosis—a review. Int J Hydrogen Energy 32:4365–4380CrossRef
43.
go back to reference Wagner N (2002) Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c. impedance spectroscopy. J Appl Electrochem 32:859–863CrossRef Wagner N (2002) Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c. impedance spectroscopy. J Appl Electrochem 32:859–863CrossRef
44.
go back to reference Paganin VA, Oliveira CLF, Ticianelli EA et al (1998) Modelistic interpretation of the impedance response of a polymer electrolyte fuel cell. Electrochim Acta 43:3761–3766CrossRef Paganin VA, Oliveira CLF, Ticianelli EA et al (1998) Modelistic interpretation of the impedance response of a polymer electrolyte fuel cell. Electrochim Acta 43:3761–3766CrossRef
45.
go back to reference Springer TE, Zawodzinski TA, Wilson MS et al (1996) Characterization of polymer electrolyte fuel cells using AC impedance spectroscopy. J Electrochem Soc 143:587–598CrossRef Springer TE, Zawodzinski TA, Wilson MS et al (1996) Characterization of polymer electrolyte fuel cells using AC impedance spectroscopy. J Electrochem Soc 143:587–598CrossRef
46.
go back to reference Andreasen SJ, Vang JR, Kær SK (2011) High temperature PEM fuel cell performance characterisation with CO and CO2 using electrochemical impedance spectroscopy. Int J Hydrogen Energy 36:9815–9830CrossRef Andreasen SJ, Vang JR, Kær SK (2011) High temperature PEM fuel cell performance characterisation with CO and CO2 using electrochemical impedance spectroscopy. Int J Hydrogen Energy 36:9815–9830CrossRef
47.
go back to reference Zhang J, Tang Y, Song C et al (2007) Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120-200 °C. J Power Sources 172:163–171CrossRef Zhang J, Tang Y, Song C et al (2007) Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120-200 °C. J Power Sources 172:163–171CrossRef
48.
go back to reference Boillot M, Bonnet C, Jatroudakis N et al (2006) Effect of gas dilution on PEM fuel cell performance and impedance response. Fuel Cells 6:31–37CrossRef Boillot M, Bonnet C, Jatroudakis N et al (2006) Effect of gas dilution on PEM fuel cell performance and impedance response. Fuel Cells 6:31–37CrossRef
49.
go back to reference Pinar Pérez FJ, Pilinski N, Rastedt M et al (2015) Performance of a high-temperature PEM fuel cell operated with oxygen enriched cathode air and hydrogen from synthetic reformate. Int J Hydrogen Energy 40(15):5432–5438CrossRef Pinar Pérez FJ, Pilinski N, Rastedt M et al (2015) Performance of a high-temperature PEM fuel cell operated with oxygen enriched cathode air and hydrogen from synthetic reformate. Int J Hydrogen Energy 40(15):5432–5438CrossRef
50.
go back to reference Kocha SS, Yang JD, Yi JS (2006) Characterization of gas crossover and its implications in PEM fuel cells. AlChE J 52:1916–1925CrossRef Kocha SS, Yang JD, Yi JS (2006) Characterization of gas crossover and its implications in PEM fuel cells. AlChE J 52:1916–1925CrossRef
51.
go back to reference Cooper KR (2008) In situ PEMFC fuel crossover & electrical short circuit measurement. Fuel Cell Magazine August/September, pp 34–35 Cooper KR (2008) In situ PEMFC fuel crossover & electrical short circuit measurement. Fuel Cell Magazine August/September, pp 34–35
52.
go back to reference Zhang J, Xie Z, Zhang J et al (2006) High temperature PEM fuel cells. J Power Sources 160:872–891CrossRef Zhang J, Xie Z, Zhang J et al (2006) High temperature PEM fuel cells. J Power Sources 160:872–891CrossRef
53.
go back to reference Vengatesan S, Fowler MW, Yuan X-Z et al (2011) Diagnosis of MEA degradation under accelerated relative humidity cycling. J Power Sources 196:5045–5052CrossRef Vengatesan S, Fowler MW, Yuan X-Z et al (2011) Diagnosis of MEA degradation under accelerated relative humidity cycling. J Power Sources 196:5045–5052CrossRef
54.
go back to reference Parrondo J, Mijangos F, Rambabu B (2010) Platinum/tin oxide/carbon cathode catalyst for high temperature PEM fuel cell. J Power Sources 195:3977–3983CrossRef Parrondo J, Mijangos F, Rambabu B (2010) Platinum/tin oxide/carbon cathode catalyst for high temperature PEM fuel cell. J Power Sources 195:3977–3983CrossRef
55.
go back to reference Li QF, Rudbeck HC, Chromik A et al (2010) Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes. J Membr Sci 347:260–270CrossRef Li QF, Rudbeck HC, Chromik A et al (2010) Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes. J Membr Sci 347:260–270CrossRef
56.
go back to reference Bai Z, Bello M, Chang H et al (2009) Polymer membranes for fuel cells. Springer, New York Bai Z, Bello M, Chang H et al (2009) Polymer membranes for fuel cells. Springer, New York
57.
go back to reference Lobato J, Cañizares P, Rodrigo MA et al (2010) Study of the influence of the amount of polybenzimidazole-H3PO4 in the catalytic layer of a high temperature proton exchange membrane fuel cell. Int J Hydrogen Energy 35:1347–1355CrossRef Lobato J, Cañizares P, Rodrigo MA et al (2010) Study of the influence of the amount of polybenzimidazole-H3PO4 in the catalytic layer of a high temperature proton exchange membrane fuel cell. Int J Hydrogen Energy 35:1347–1355CrossRef
58.
go back to reference Su H, Jao T-C, Pasupathi S et al (2014) A novel dual catalyst layer structured gas diffusion electrode for enhanced performance of high temperature proton exchange membrane fuel cell. J Power Sources 246:63–67CrossRef Su H, Jao T-C, Pasupathi S et al (2014) A novel dual catalyst layer structured gas diffusion electrode for enhanced performance of high temperature proton exchange membrane fuel cell. J Power Sources 246:63–67CrossRef
59.
go back to reference Orfanidi A, Daletou MK, Sygellou L et al (2013) The role of phosphoric acid in the anodic electrocatalytic layer in high temperature PEM fuel cells. J Appl Electrochem 43:1101–1116CrossRef Orfanidi A, Daletou MK, Sygellou L et al (2013) The role of phosphoric acid in the anodic electrocatalytic layer in high temperature PEM fuel cells. J Appl Electrochem 43:1101–1116CrossRef
60.
go back to reference Lindström RW, Kortsdottir K, Wesselmark M et al (2010) Active area determination of porous Pt electrodes used in polymer electrolyte fuel cells: temperature and humidity effects. J Electrochem Soc 157:B1795–B1801CrossRef Lindström RW, Kortsdottir K, Wesselmark M et al (2010) Active area determination of porous Pt electrodes used in polymer electrolyte fuel cells: temperature and humidity effects. J Electrochem Soc 157:B1795–B1801CrossRef
61.
go back to reference Vidakovic T, Christov M, Sundmacher K (2007) The use of CO stripping for in situ fuel cell catalyst characterization. Electrochim Acta 52:5606–5613CrossRef Vidakovic T, Christov M, Sundmacher K (2007) The use of CO stripping for in situ fuel cell catalyst characterization. Electrochim Acta 52:5606–5613CrossRef
62.
go back to reference Wu J, Yuan XZ, Wang H et al (2008) Diagnostic tools in PEM fuel cell research: part I. Electrochemical techniques. Int J Hydrogen Energy 33:1735–1746CrossRef Wu J, Yuan XZ, Wang H et al (2008) Diagnostic tools in PEM fuel cell research: part I. Electrochemical techniques. Int J Hydrogen Energy 33:1735–1746CrossRef
63.
go back to reference Lobato J, Cañizares P, Rodrigo MA et al (2010) Study of the catalytic layer in polybenzimidazole-based high temperature PEMFC: effect of platinum content on the carbon support. Fuel Cells 10:312–319CrossRef Lobato J, Cañizares P, Rodrigo MA et al (2010) Study of the catalytic layer in polybenzimidazole-based high temperature PEMFC: effect of platinum content on the carbon support. Fuel Cells 10:312–319CrossRef
64.
go back to reference Schneider IA, Kramer D, Wokaun A et al (2007) Effect of inert gas flow on hydrogen underpotential deposition measurements in polymer electrolyte fuel cells. Electrochem Commun 9:1607–1612CrossRef Schneider IA, Kramer D, Wokaun A et al (2007) Effect of inert gas flow on hydrogen underpotential deposition measurements in polymer electrolyte fuel cells. Electrochem Commun 9:1607–1612CrossRef
65.
go back to reference Ferrier D, Kinoshita K, McHardy J et al (1975) Hydrogen adsorption on platinum in hot concentrated phosphoric acid. J Electroanal Chem Interfacial Electrochem 61:233–237CrossRef Ferrier D, Kinoshita K, McHardy J et al (1975) Hydrogen adsorption on platinum in hot concentrated phosphoric acid. J Electroanal Chem Interfacial Electrochem 61:233–237CrossRef
66.
go back to reference Engl T, Waltar KE, Gubler L et al (2014) Second cycle is dead: advanced electrode diagnostics for high-temperature polymer electrolyte fuel cells. J Electrochem Soc 161:F500–F505CrossRef Engl T, Waltar KE, Gubler L et al (2014) Second cycle is dead: advanced electrode diagnostics for high-temperature polymer electrolyte fuel cells. J Electrochem Soc 161:F500–F505CrossRef
67.
go back to reference Jespersen JL, Kær SK (2007) Break-in and Performance Issues on a Single Cell PBI-based PEM Fuel Cell. Interantional workshop on degradation issues of fuel cells Crete, Greece:Poster Jespersen JL, Kær SK (2007) Break-in and Performance Issues on a Single Cell PBI-based PEM Fuel Cell. Interantional workshop on degradation issues of fuel cells Crete, Greece:Poster 
68.
go back to reference Tingeloef T, Ihonen JK (2009) A rapid break-in procedure for PBI fuel cells. Int J Hydrogen Energy 34:6452–6456CrossRef Tingeloef T, Ihonen JK (2009) A rapid break-in procedure for PBI fuel cells. Int J Hydrogen Energy 34:6452–6456CrossRef
69.
go back to reference Maier W, Arlt T, Wippermann K et al (2012) Correlation of synchrotron X-ray radiography and electrochemical impedance spectroscopy for the investigation of HT-PEFCs. J Electrochem Soc 159:F398–F404CrossRef Maier W, Arlt T, Wippermann K et al (2012) Correlation of synchrotron X-ray radiography and electrochemical impedance spectroscopy for the investigation of HT-PEFCs. J Electrochem Soc 159:F398–F404CrossRef
70.
go back to reference Andreasen SJ, Kær SK (2012) Analysis of high temperature polymer electrolyte membrane fuel cell impedance during break-in. Fuel Cells 2012 Science and Technology:Oral Publication Andreasen SJ, Kær SK (2012) Analysis of high temperature polymer electrolyte membrane fuel cell impedance during break-in. Fuel Cells 2012 Science and Technology:Oral Publication
71.
go back to reference Yuan X, Sun JC, Blanco M et al (2006) AC impedance diagnosis of a 500 W PEM fuel cell stack. Part I: stack impedance. J Power Sources 161:920–928CrossRef Yuan X, Sun JC, Blanco M et al (2006) AC impedance diagnosis of a 500 W PEM fuel cell stack. Part I: stack impedance. J Power Sources 161:920–928CrossRef
72.
go back to reference Kondratenko MS, Gallyamov MO, Khokhlov AR (2012) Performance of high temperature fuel cells with different types of PBI membranes as analysed by impedance spectroscopy. Int J Hydrogen Energy 37:2596–2602CrossRef Kondratenko MS, Gallyamov MO, Khokhlov AR (2012) Performance of high temperature fuel cells with different types of PBI membranes as analysed by impedance spectroscopy. Int J Hydrogen Energy 37:2596–2602CrossRef
73.
go back to reference Kwon K, Park JO, Yoo DY et al (2009) Phosphoric acid distribution in the membrane electrode assembly of high temperature proton exchange membrane fuel cells. Electrochim Acta 54:6570–6575CrossRef Kwon K, Park JO, Yoo DY et al (2009) Phosphoric acid distribution in the membrane electrode assembly of high temperature proton exchange membrane fuel cells. Electrochim Acta 54:6570–6575CrossRef
74.
go back to reference Parrondo J, Rao CV, Ghatty SL et al (2011) Electrochemical performance measurements of PBI-based high-temperature PEMFCs. Int J Electrochem 2011:1–8CrossRef Parrondo J, Rao CV, Ghatty SL et al (2011) Electrochemical performance measurements of PBI-based high-temperature PEMFCs. Int J Electrochem 2011:1–8CrossRef
75.
go back to reference Boaventura M, Mendes A (2010) Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes. Int J Hydrogen Energy 35:11649–11660CrossRef Boaventura M, Mendes A (2010) Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes. Int J Hydrogen Energy 35:11649–11660CrossRef
76.
go back to reference Jalani NH, Ramani M, Ohlsson K et al (2006) Performance analysis and impedance spectral signatures of high temperature PBI-phosphoric acid gel membrane fuel cells. J Power Sources 160:1096–1103CrossRef Jalani NH, Ramani M, Ohlsson K et al (2006) Performance analysis and impedance spectral signatures of high temperature PBI-phosphoric acid gel membrane fuel cells. J Power Sources 160:1096–1103CrossRef
77.
go back to reference Araya SS, Andreasen SJ, Kaer SK (2012) Experimental characterization of the poisoning effects of methanol-based reformate impurities on a PBI-based high temperature PEM fuel cell. Energies 5:4251–4267CrossRef Araya SS, Andreasen SJ, Kaer SK (2012) Experimental characterization of the poisoning effects of methanol-based reformate impurities on a PBI-based high temperature PEM fuel cell. Energies 5:4251–4267CrossRef
78.
go back to reference Andreasen SJ, Mosbæk R, Vang JR et al (2010) EIS characterization of the poisoning effects of CO and CO2 on a PBI based HT-PEM fuel cell. In: ASME 2010 eighth international fuel cell science, engineering and technology conference, New York, p 10 Andreasen SJ, Mosbæk R, Vang JR et al (2010) EIS characterization of the poisoning effects of CO and CO2 on a PBI based HT-PEM fuel cell. In: ASME 2010 eighth international fuel cell science, engineering and technology conference, New York, p 10
79.
go back to reference Jhong H-RM, Brushett FR, Yin L et al (2012) Combining structural and electrochemical analysis of electrodes using micro-computed tomography and a microfluidic fuel cell. J Electrochem Soc 159:B292–B298CrossRef Jhong H-RM, Brushett FR, Yin L et al (2012) Combining structural and electrochemical analysis of electrodes using micro-computed tomography and a microfluidic fuel cell. J Electrochem Soc 159:B292–B298CrossRef
80.
go back to reference James JP (2012) Micro-computed tomography reconstruction and analysis of the porous transport layer in polymer electrolyte membrane fuel cells. Master, Queen’s University, Kingston James JP (2012) Micro-computed tomography reconstruction and analysis of the porous transport layer in polymer electrolyte membrane fuel cells. Master, Queen’s University, Kingston
81.
go back to reference Runte M (2012) Untersuchung des Einflusses verschiedener Anpressdrücke auf Hochtemperatur Polymerelektrolytmembranbrennstoffzellen mittels μ-Computertomographie. Bachelor, Fachhochschule Münster, NEXT ENERGY EWE-Forschungszentrum für Energietechnologie e.V., Münster, Oldenburg Runte M (2012) Untersuchung des Einflusses verschiedener Anpressdrücke auf Hochtemperatur Polymerelektrolytmembranbrennstoffzellen mittels μ-Computertomographie. Bachelor, Fachhochschule Münster, NEXT ENERGY EWE-Forschungszentrum für Energietechnologie e.V., Münster, Oldenburg
82.
go back to reference SkyScan NV (2005) Desktop X-ray microtomograph. SkyScan Instruction Manual Aartselaar, Belgium SkyScan NV (2005) Desktop X-ray microtomograph. SkyScan Instruction Manual Aartselaar, Belgium
83.
go back to reference Nitta I, Hottinen T, Himanen O et al (2007) Inhomogeneous compression of PEMFC gas diffusion layer: part I. Experimental. J Power Sources 171:26–36CrossRef Nitta I, Hottinen T, Himanen O et al (2007) Inhomogeneous compression of PEMFC gas diffusion layer: part I. Experimental. J Power Sources 171:26–36CrossRef
84.
go back to reference Nitta I, Himanen O, Mikkola M (2008) Contact resistance between gas diffusion layer and catalyst layer of PEM fuel cell. Electrochem Commun 10:47–51CrossRef Nitta I, Himanen O, Mikkola M (2008) Contact resistance between gas diffusion layer and catalyst layer of PEM fuel cell. Electrochem Commun 10:47–51CrossRef
85.
go back to reference Nitta I (2008) Inhomogeneous compression of PEMFC gas diffusion layers. Dissertation, University of Technology, Helsinki Nitta I (2008) Inhomogeneous compression of PEMFC gas diffusion layers. Dissertation, University of Technology, Helsinki
86.
go back to reference Lee W, Ho C-H, Van Zee JW et al (1999) The effects of compression and gas diffusion layers on the performance of a PEM fuel cell. J Power Sources 84:45–51CrossRef Lee W, Ho C-H, Van Zee JW et al (1999) The effects of compression and gas diffusion layers on the performance of a PEM fuel cell. J Power Sources 84:45–51CrossRef
87.
go back to reference Ge J, Higier A, Liu H (2006) Effect of gas diffusion layer compression on PEM fuel cell performance. J Power Sources 159:922–927CrossRef Ge J, Higier A, Liu H (2006) Effect of gas diffusion layer compression on PEM fuel cell performance. J Power Sources 159:922–927CrossRef
88.
go back to reference Kleemann J, Finsterwalder F, Tillmetz W (2009) Characterisation of mechanical behaviour and coupled electrical properties of polymer electrolyte membrane fuel cell gas diffusion layers. J Power Sources 190:92–102CrossRef Kleemann J, Finsterwalder F, Tillmetz W (2009) Characterisation of mechanical behaviour and coupled electrical properties of polymer electrolyte membrane fuel cell gas diffusion layers. J Power Sources 190:92–102CrossRef
89.
go back to reference Chang WR, Hwang JJ, Weng FB et al (2007) Effect of clamping pressure on the performance of a PEM fuel cell. J Power Sources 166:149–154CrossRef Chang WR, Hwang JJ, Weng FB et al (2007) Effect of clamping pressure on the performance of a PEM fuel cell. J Power Sources 166:149–154CrossRef
90.
go back to reference Mathias MF, Roth J, Fleming J et al (2003) Diffusion media materials and characterisation. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and application, vol 3. Wiley, New York, pp 517–537 Mathias MF, Roth J, Fleming J et al (2003) Diffusion media materials and characterisation. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and application, vol 3. Wiley, New York, pp 517–537
91.
go back to reference Karwey M (2012) Untersuchung der mechanischen Belastung von Brennstoffzellenmembranen in Testzellen durch auftretenden Anpressdruck. Bachelor, Fachhochschule Südwestfalen and Next Energy, Oldenburg Karwey M (2012) Untersuchung der mechanischen Belastung von Brennstoffzellenmembranen in Testzellen durch auftretenden Anpressdruck. Bachelor, Fachhochschule Südwestfalen and Next Energy, Oldenburg
92.
go back to reference Molleo M, Qian G, Chen X et al (2013) Mechanical property improvements in PBI membranes. In: 4th European PEFC and H2 forum 2013, Luzerne, Switzerland 2nd to 5th of July 2013 Molleo M, Qian G, Chen X et al (2013) Mechanical property improvements in PBI membranes. In: 4th European PEFC and H2 forum 2013, Luzerne, Switzerland 2nd to 5th of July 2013
93.
go back to reference Wilkinson DP, St-Pierre J (2003) Durability. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 3. Wiley, New York, pp 611–626 Wilkinson DP, St-Pierre J (2003) Durability. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 3. Wiley, New York, pp 611–626
94.
go back to reference Borup R, Meyers J, Pivovar B et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951CrossRef Borup R, Meyers J, Pivovar B et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951CrossRef
95.
go back to reference Wu J, Yuan XZ, Martin JJ et al (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184:104–119CrossRef Wu J, Yuan XZ, Martin JJ et al (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184:104–119CrossRef
96.
go back to reference Hu J, Zhang H, Zhai Y et al (2006) Performance degradation studies on PBI/H3PO4 high temperature PEMFC and one-dimensional numerical analysis. Electrochim Acta 52:394–401CrossRef Hu J, Zhang H, Zhai Y et al (2006) Performance degradation studies on PBI/H3PO4 high temperature PEMFC and one-dimensional numerical analysis. Electrochim Acta 52:394–401CrossRef
97.
go back to reference Liu G, Zhang H, Hu J et al (2006) Studies of performance degradation of a high temperature PEMFC based on H3PO4-doped PBI. J Power Sources 162:547–552CrossRef Liu G, Zhang H, Hu J et al (2006) Studies of performance degradation of a high temperature PEMFC based on H3PO4-doped PBI. J Power Sources 162:547–552CrossRef
98.
go back to reference Zhang H, Zhai Y, Liu G et al (2007) Degradation study on MEA in H3PO3/PBI high-temperature PEMFC life test. J Electrochem Soc 154:B72–B76CrossRef Zhang H, Zhai Y, Liu G et al (2007) Degradation study on MEA in H3PO3/PBI high-temperature PEMFC life test. J Electrochem Soc 154:B72–B76CrossRef
99.
go back to reference Oono Y, Sounai A, Hori M (2009) Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells. J Power Sources 189:943–949CrossRef Oono Y, Sounai A, Hori M (2009) Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells. J Power Sources 189:943–949CrossRef
100.
go back to reference Wannek C, Kohnen B, Oetjen HF et al (2008) Durability of ABPBI-based MEAs for high temperature PEMFCs at different operating conditions. Fuel Cells 8:87–95CrossRef Wannek C, Kohnen B, Oetjen HF et al (2008) Durability of ABPBI-based MEAs for high temperature PEMFCs at different operating conditions. Fuel Cells 8:87–95CrossRef
101.
go back to reference Li Q, Jensen JO, Savinell RF et al (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477CrossRef Li Q, Jensen JO, Savinell RF et al (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477CrossRef
102.
go back to reference Schmidt TJ (2006) Durability and degradation in high-temperature polymer electrolyte fuel cells. ECS Trans 1:19–31CrossRef Schmidt TJ (2006) Durability and degradation in high-temperature polymer electrolyte fuel cells. ECS Trans 1:19–31CrossRef
103.
go back to reference Zhang S, Yuan X, Wang H et al (2009) A review of accelerated stress tests of MEA durability in PEM fuel cells. Int J Hydrogen Energy 34:388–404MathSciNetCrossRef Zhang S, Yuan X, Wang H et al (2009) A review of accelerated stress tests of MEA durability in PEM fuel cells. Int J Hydrogen Energy 34:388–404MathSciNetCrossRef
104.
go back to reference Aarhaug A (2011) Assessment of PEMFC durability by effluent analysis. PhD, Norwegian University of Science and Technology, Trondheim Aarhaug A (2011) Assessment of PEMFC durability by effluent analysis. PhD, Norwegian University of Science and Technology, Trondheim
105.
go back to reference Spernjak D, Fairweather J, Mukundan R et al (2012) Influence of the microporous layer on carbon corrosion in the catalyst layer of a polymer electrolyte membrane fuel cell. J Power Sources 214:386–398CrossRef Spernjak D, Fairweather J, Mukundan R et al (2012) Influence of the microporous layer on carbon corrosion in the catalyst layer of a polymer electrolyte membrane fuel cell. J Power Sources 214:386–398CrossRef
106.
go back to reference Tang H, Qi Z, Ramani M et al (2006) PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J Power Sources 158:1306–1312CrossRef Tang H, Qi Z, Ramani M et al (2006) PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J Power Sources 158:1306–1312CrossRef
Metadata
Title
Characterization of HT-PEM Membrane-Electrode-Assemblies
Authors
F. Javier Pinar
Maren Rastedt
Nadine Pilinski
Peter Wagner
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-17082-4_17