Skip to main content
Top

2018 | OriginalPaper | Chapter

Charging Optimization Methods for Lithium-Ion Batteries

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Traditional charging technology uses external battery parameters, e.g., terminal voltage and current, as the control target, and only controlling external parameters does not give information on internal characteristics of the battery, and thus, the effects of different charging currents and cutoff voltages on battery degradation are not clear. In this chapter, the electrochemical reaction mechanisms and external characteristics of the battery during charging process are studied, and the mechanisms of battery charging performance and characteristics of charging polarization are revealed. By researching the electrochemical reaction law and potential distribution characteristics of the battery during the charging process, a novel electric model based on the Butler–Volmer equation was employed to outline the unique phenomena induced by changing rates for high-power lithium batteries. The robustness of the developed model under varying loading conditions, including galvanostatic test and Federal Urban Dynamic Schedule (FUDS) test, is evaluated and compared against experimental data. The analysis of polarization voltage features at different charging rates indicates that polarization voltage is high on both ends of the SOC range but low in the middle SOC range, and the shape of the polarization voltage curve is like a bowl. In the middle SOC range, an approximate linear relationship exists between the steady-state polarization voltage and the charging rate. The two time constants (TCs) representing polarization voltage change are in 10- and 1000-s orders of magnitude, respectively, which corresponds to three charging reaction processes. The dynamic polarization voltage exhibits a lagged effect and an overshoot effect when the charge current is changed. Depending on the polarization voltage characteristics, setting battery polarization voltage and charging cutoff voltage as the constraint conditions, the calculation method for the maximum charge current of a Li-ion battery based on the battery polarization time constant is established, which can help engineers design a practical charging strategy. An optimal charging strategy is devised to balance charging time and temperature rise, with polarization constraints fulfilled. The charging target function is constructed by setting limits to the charging temperature rise and shortening the charging time as the optimization target. The optimal charging current curve is determined by the genetic algorithm (GA) under the constraint of the maximum charge current and limited by polarization voltage. The experimental results indicate that the developed charging protocol can reduce charging time remarkably with reasonable temperature rise, highlighting its advantages over conventional CC–CV charging methods. Aging experiments further verify that the developed charging protocol has a similar capacity retention ratio, compared to that of 0.5C CC–CV charging after 700 cycles. By effectively combining the external characteristics and the internal electrochemical reaction during the charging process, the optimized charging strategy with polarization voltage as the control target results in a fast charging process without damage to the battery life.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference M. Einhorn, F.V. Conte, C. Kral, J. Fleig, IEEE Trans. Power Electr. 28, 1429 (2013)CrossRef M. Einhorn, F.V. Conte, C. Kral, J. Fleig, IEEE Trans. Power Electr. 28, 1429 (2013)CrossRef
4.
go back to reference Z. Ma, J. Jiang, W. Shi, W. Zhang, C.C. Mi, J. Power Sources 274, 29 (2015)CrossRef Z. Ma, J. Jiang, W. Shi, W. Zhang, C.C. Mi, J. Power Sources 274, 29 (2015)CrossRef
5.
go back to reference H. Rahimi-Eichi, U. Ojha, F. Baronti, M. Chow, IEEE Ind. Electron. M 7, 4 (2013)CrossRef H. Rahimi-Eichi, U. Ojha, F. Baronti, M. Chow, IEEE Ind. Electron. M 7, 4 (2013)CrossRef
6.
7.
go back to reference H. Lin, T. Liang, S. Chen, IEEE Trans. Ind. Electron. 9, 679 (2013) H. Lin, T. Liang, S. Chen, IEEE Trans. Ind. Electron. 9, 679 (2013)
8.
9.
10.
go back to reference Z. Guo, B.Y. Liaw, X.P. Qiu, L. Gao, C.S. Zhang, J. Power Sources 274, 957 (2015)CrossRef Z. Guo, B.Y. Liaw, X.P. Qiu, L. Gao, C.S. Zhang, J. Power Sources 274, 957 (2015)CrossRef
11.
12.
13.
go back to reference A.A. Hussein, A.A. Fardoun, S.S. Stephen, IEEE Trans. Sustain. Energy 7, 32 (2016)CrossRef A.A. Hussein, A.A. Fardoun, S.S. Stephen, IEEE Trans. Sustain. Energy 7, 32 (2016)CrossRef
14.
go back to reference L. Ji, L. Guang, H.K. Fathy, J. Dyn. Syst. Meas. Control 138, 021009 (2016) L. Ji, L. Guang, H.K. Fathy, J. Dyn. Syst. Meas. Control 138, 021009 (2016)
15.
17.
go back to reference D. Anseán, M. González, J.C. Viera et al., J. Power Sources 239, 9 (2013)CrossRef D. Anseán, M. González, J.C. Viera et al., J. Power Sources 239, 9 (2013)CrossRef
18.
19.
go back to reference L.R. Chen, S.L. Wu, D.T. Shieh et al., IEEE Trans. Ind. Electron. 60, 88 (2013)CrossRef L.R. Chen, S.L. Wu, D.T. Shieh et al., IEEE Trans. Ind. Electron. 60, 88 (2013)CrossRef
20.
go back to reference S.J. Huang, B.G. Huang, F.S. Pai, IEEE Trans. Power Electr. 28, 1555 (2013)CrossRef S.J. Huang, B.G. Huang, F.S. Pai, IEEE Trans. Power Electr. 28, 1555 (2013)CrossRef
23.
go back to reference Abdollahi, X. Han, G.V. Avvari, N. Raghunathan et al., J. Power Sources 303, 388 (2016)CrossRef Abdollahi, X. Han, G.V. Avvari, N. Raghunathan et al., J. Power Sources 303, 388 (2016)CrossRef
24.
go back to reference J.C. Jiang, C.P. Zhang, J.P. Wen et al., IEEE Trans. Veh. Technol. 62, 3000 (2013)CrossRef J.C. Jiang, C.P. Zhang, J.P. Wen et al., IEEE Trans. Veh. Technol. 62, 3000 (2013)CrossRef
25.
go back to reference J.C. Jiang, Q.J. Liu, C.P. Zhang et al., IEEE Trans. Ind. Electron. 61, 6844 (2014)CrossRef J.C. Jiang, Q.J. Liu, C.P. Zhang et al., IEEE Trans. Ind. Electron. 61, 6844 (2014)CrossRef
31.
go back to reference C.P. Zhang, L.Y. Wang, X. Li, W. Chen, G.G. Yin, J.C. Jiang, IEEE Trans. Ind. Electron. 62, 4948 (2015)CrossRef C.P. Zhang, L.Y. Wang, X. Li, W. Chen, G.G. Yin, J.C. Jiang, IEEE Trans. Ind. Electron. 62, 4948 (2015)CrossRef
32.
go back to reference M. Urbain, M. Hinaje, S. Rael, B. Davat, P. Desprez, IEEE Trans. Energy Conver. 25, 862 (2010)CrossRef M. Urbain, M. Hinaje, S. Rael, B. Davat, P. Desprez, IEEE Trans. Energy Conver. 25, 862 (2010)CrossRef
33.
go back to reference H.V.M. Hamelers, A.T. Heijne, N. Stein, R.A. Rozendal, C.J.N. Buisman, Bioresource Technol. 102, 381 (2011)CrossRef H.V.M. Hamelers, A.T. Heijne, N. Stein, R.A. Rozendal, C.J.N. Buisman, Bioresource Technol. 102, 381 (2011)CrossRef
34.
go back to reference R.F. Mann, J.C. Amphlett, B.A. Peppley, C.P. Thurgood, J. Power Sources 161, 775 (2006)CrossRef R.F. Mann, J.C. Amphlett, B.A. Peppley, C.P. Thurgood, J. Power Sources 161, 775 (2006)CrossRef
36.
go back to reference P. Rong, M. Pedram, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 14, 441 (2006)CrossRef P. Rong, M. Pedram, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 14, 441 (2006)CrossRef
37.
go back to reference M. Greenleaf, H. Li, J.P. Zheng, IEEE Trans. Sustain. Energy 4, 1065 (2013)CrossRef M. Greenleaf, H. Li, J.P. Zheng, IEEE Trans. Sustain. Energy 4, 1065 (2013)CrossRef
38.
go back to reference N. Watrin, R. Roche, H. Ostermann, B. Blunier, A. Miraoui, IEEE Trans. Veh. 61, 3420 (2012)CrossRef N. Watrin, R. Roche, H. Ostermann, B. Blunier, A. Miraoui, IEEE Trans. Veh. 61, 3420 (2012)CrossRef
39.
41.
go back to reference W.Y. Low, J.A. Aziz, N.R.N. Idris, R. Saidur, J. Power Sources 221, 201 (2013)CrossRef W.Y. Low, J.A. Aziz, N.R.N. Idris, R. Saidur, J. Power Sources 221, 201 (2013)CrossRef
42.
go back to reference L. Gao, S. Liu, R.A. Dougal, IEEE Trans. Compon. Packag. Technol. 25, 495 (2002)CrossRef L. Gao, S. Liu, R.A. Dougal, IEEE Trans. Compon. Packag. Technol. 25, 495 (2002)CrossRef
43.
go back to reference J. Zhang, S. Ci, H. Sharif, M. Alahmad, An enhanced circuit-based model for single-cell battery, in Proceedings of 25th Annual IEEE APEC (2010), p. 672 J. Zhang, S. Ci, H. Sharif, M. Alahmad, An enhanced circuit-based model for single-cell battery, in Proceedings of 25th Annual IEEE APEC (2010), p. 672
45.
go back to reference L. Lam, P. Bauer, E. Kelder, A practical circuit-based model for Li-Ion battery cells in electric vehicle applications, in Proceedings of 33rd IEEE INTELEC, vol 1 (2011) L. Lam, P. Bauer, E. Kelder, A practical circuit-based model for Li-Ion battery cells in electric vehicle applications, in Proceedings of 33rd IEEE INTELEC, vol 1 (2011)
46.
go back to reference L.W. Juang, P.J. Kollmeyer, T.M. Jahns, R.D. Lorenz, IEEE Trans. Ind. Appl. 49, 1480 (2013)CrossRef L.W. Juang, P.J. Kollmeyer, T.M. Jahns, R.D. Lorenz, IEEE Trans. Ind. Appl. 49, 1480 (2013)CrossRef
47.
48.
go back to reference M. Dubarry, C. Truchot, B.Y. Liaw et al., J. Electrochem. Soc. 160, A191 (2013)CrossRef M. Dubarry, C. Truchot, B.Y. Liaw et al., J. Electrochem. Soc. 160, A191 (2013)CrossRef
49.
go back to reference F. Leng, C.M. Tan, M. Pecht, Sci. Rep. 5, 1 (2015) F. Leng, C.M. Tan, M. Pecht, Sci. Rep. 5, 1 (2015)
50.
go back to reference S. Liu, J. Jiang, W. Shi et al., IEEE Trans. Ind. Electron. 62, 7557 (2015)CrossRef S. Liu, J. Jiang, W. Shi et al., IEEE Trans. Ind. Electron. 62, 7557 (2015)CrossRef
51.
go back to reference H. He, R. Xiong, X. Zhang, F. Sun, J. Fan, IEEE Trans. Veh. Technol. 60, 1461 (2011)CrossRef H. He, R. Xiong, X. Zhang, F. Sun, J. Fan, IEEE Trans. Veh. Technol. 60, 1461 (2011)CrossRef
53.
go back to reference M. Nakayama, K. Iizuka, H. Shiiba, S. Baba, M. Nogami, J. Ceram. Soc. Jpn. 119, 692 (2011)CrossRef M. Nakayama, K. Iizuka, H. Shiiba, S. Baba, M. Nogami, J. Ceram. Soc. Jpn. 119, 692 (2011)CrossRef
54.
57.
58.
go back to reference M. Einhorn, F.V. Conte, C. Kral, J. Fleig, IEEE Trans. Power Electron. 28, 1429 (2013)CrossRef M. Einhorn, F.V. Conte, C. Kral, J. Fleig, IEEE Trans. Power Electron. 28, 1429 (2013)CrossRef
59.
60.
61.
go back to reference S. Bangaru, R. Alugonda, P. Palacharla, Modeling and simulation of Lithium-Ion battery with hysteresis for industrial applications, in Proceedings of ICEETS, vol 771 (2013) S. Bangaru, R. Alugonda, P. Palacharla, Modeling and simulation of Lithium-Ion battery with hysteresis for industrial applications, in Proceedings of ICEETS, vol 771 (2013)
62.
go back to reference H.A.-H. Hussein, N. Kutkut, I. Batarseh, A hysteresis model for a Lithium battery cell with improved transient response, in Proceedings of 26th Annual IEEE APEC, vol 1790 (2011) H.A.-H. Hussein, N. Kutkut, I. Batarseh, A hysteresis model for a Lithium battery cell with improved transient response, in Proceedings of 26th Annual IEEE APEC, vol 1790 (2011)
63.
64.
go back to reference M.A. Roscher, O. Bohlen, J. Vetter, Int. J. Electrochem. 2011, Art ID. 984320 (2011) M.A. Roscher, O. Bohlen, J. Vetter, Int. J. Electrochem. 2011, Art ID. 984320 (2011)
66.
67.
go back to reference K.S. Sajan, V. Kumar, B. Tyagi, Int. J. Electr. Power Energy Syst. 73, 200 (2015)CrossRef K.S. Sajan, V. Kumar, B. Tyagi, Int. J. Electr. Power Energy Syst. 73, 200 (2015)CrossRef
68.
go back to reference R. Gholami, M. Shahabi, M.R. Haghifam, Int. J. Electr. Power Energy Syst. 71, 335 (2015)CrossRef R. Gholami, M. Shahabi, M.R. Haghifam, Int. J. Electr. Power Energy Syst. 71, 335 (2015)CrossRef
Metadata
Title
Charging Optimization Methods for Lithium-Ion Batteries
Author
Jiuchun Jiang
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-69950-9_10

Premium Partner