Skip to main content
Top

2013 | OriginalPaper | Chapter

3. Chemical Processes in the Interstellar Medium

Author : Michael J. Pilling

Published in: Astrochemistry and Astrobiology

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Models of the chemical composition of the interstellar medium incorporate networks of chemical reactions. The rate coefficients and the products of these reactions are important components of the model. In this chapter I review the determinants of these components and the methods used to measure them experimentally and calculate them using theory. The bulk of the chapter is devoted to ion + neutral molecule and neutral molecule + neutral molecule reactions. I also briefly discuss radiative association, dissociative recombination and reactions occurring on surfaces. The conditions of low pressure and low temperature in the interstellar medium place considerable demands on experiment and theory, which are particularly severe for reactions between neutral species. Many reactions can be estimated with tolerable accuracy. Others require a combination of high level electronic structure calculations, coupled with detailed theory and low temperature experimental measurements.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
These definitions of ‘branching ratio’ and ‘channel efficiency’ are not universally agreed. For example, the KIDA data base uses ‘branching ration’ for the ratio of the rate coefficient for a particular channel to that for the overall reaction, so that the branching ratios sum to unity.
 
Literature
1.
go back to reference Wakelam V, Smith IWM, Herbst E, Troe J, Geppert W, Linnartz H, Oberg K, Roueff E, Agundez M, Pernot P, Cuppen HM, Loison JC, Talbi D (2010) Reaction networks for interstellar chemical modelling: improvements and challenges. Space Sci Rev 156:13–72 Wakelam V, Smith IWM, Herbst E, Troe J, Geppert W, Linnartz H, Oberg K, Roueff E, Agundez M, Pernot P, Cuppen HM, Loison JC, Talbi D (2010) Reaction networks for interstellar chemical modelling: improvements and challenges. Space Sci Rev 156:13–72
2.
go back to reference Pilling MJ, Seakins PW (1995) Reaction kinetics. Oxford University Press, Oxford Pilling MJ, Seakins PW (1995) Reaction kinetics. Oxford University Press, Oxford
3.
go back to reference Millar TJ, Rawlings JMC, Bennett A, Brown PD, Charnley SB (1991) Gas-phase reactions and rate coefficients for use in astrochemistry – the UMIST ratefile. Astron Astrophys Suppl Ser 87:585–619 Millar TJ, Rawlings JMC, Bennett A, Brown PD, Charnley SB (1991) Gas-phase reactions and rate coefficients for use in astrochemistry – the UMIST ratefile. Astron Astrophys Suppl Ser 87:585–619
4.
go back to reference Burke MP, Dryer FL, Ju YG (2011) Assessment of kinetic modeling for lean H(2)/CH(4)/O(2)/diluent flames at high pressures. Proc Combust Inst 33:905–912 Burke MP, Dryer FL, Ju YG (2011) Assessment of kinetic modeling for lean H(2)/CH(4)/O(2)/diluent flames at high pressures. Proc Combust Inst 33:905–912
5.
go back to reference Bloss C, Wagner V, Bonzanini A, Jenkin ME, Wirtz K, Martin-Reviejo M, Pilling MJ (2005) Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environmental chamber data. Atmos Chem Phys 5:623–639 Bloss C, Wagner V, Bonzanini A, Jenkin ME, Wirtz K, Martin-Reviejo M, Pilling MJ (2005) Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environmental chamber data. Atmos Chem Phys 5:623–639
6.
go back to reference Bloss C, Wagner V, Jenkin ME, Volkamer R, Bloss WJ, Lee JD, Heard DE, Wirtz K, Martin-Reviejo M, Rea G, Wenger JC, Pilling MJ (2005) Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons. Atmos Chem Phys 5:641–664 Bloss C, Wagner V, Jenkin ME, Volkamer R, Bloss WJ, Lee JD, Heard DE, Wirtz K, Martin-Reviejo M, Rea G, Wenger JC, Pilling MJ (2005) Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons. Atmos Chem Phys 5:641–664
7.
go back to reference Wakelam V, Herbst E, Selsis F (2006) The effect of uncertainties on chemical models of dark clouds. Astron Astrophys 451:551–562 Wakelam V, Herbst E, Selsis F (2006) The effect of uncertainties on chemical models of dark clouds. Astron Astrophys 451:551–562
8.
go back to reference Wakelam V, Loison JC, Herbst E, Talbi D, Quan D, Caralp F (2009) A sensitivity study of the neutral-neutral reactions C + C(3) and C + C(5) in cold dense interstellar clouds. Astron Astrophys 495:513–521 Wakelam V, Loison JC, Herbst E, Talbi D, Quan D, Caralp F (2009) A sensitivity study of the neutral-neutral reactions C + C(3) and C + C(5) in cold dense interstellar clouds. Astron Astrophys 495:513–521
9.
go back to reference Baulch DL, Bowman CT, Cobos CJ, Cox RA, Just T, Kerr JA, Pilling MJ, Stocker D, Troe J, Tsang W, Walker RW, Warnatz J (2005) Evaluated kinetic data for combustion modeling: supplement II. J Phys Chem Ref Data 34:757–1397 Baulch DL, Bowman CT, Cobos CJ, Cox RA, Just T, Kerr JA, Pilling MJ, Stocker D, Troe J, Tsang W, Walker RW, Warnatz J (2005) Evaluated kinetic data for combustion modeling: supplement II. J Phys Chem Ref Data 34:757–1397
10.
go back to reference Crowley JN, Ammann M, Cox RA, Hynes RG, Jenkin ME, Mellouki A, Rossi MJ, Troe J, Wallington TJ (2010) Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates. Atmos Chem Phys 10:9059–9223 Crowley JN, Ammann M, Cox RA, Hynes RG, Jenkin ME, Mellouki A, Rossi MJ, Troe J, Wallington TJ (2010) Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V – heterogeneous reactions on solid substrates. Atmos Chem Phys 10:9059–9223
12.
go back to reference Solomon PM, Werner MW (1971) Low-energy cosmic rays and abundance of atomic hydrogen in dark clouds. Astrophys J 165:41–49 Solomon PM, Werner MW (1971) Low-energy cosmic rays and abundance of atomic hydrogen in dark clouds. Astrophys J 165:41–49
13.
go back to reference Herbst E, Klemperer W (1973) Formation and depletion of molecules in dense interstellar clouds. Astrophys J 185:505–533 Herbst E, Klemperer W (1973) Formation and depletion of molecules in dense interstellar clouds. Astrophys J 185:505–533
14.
go back to reference Barlow SE, Luine JA, Dunn GH (1986) Measurement of ion molecule reactions between 10 K and 20 K. Int J Mass Spectrom 74:97–128 Barlow SE, Luine JA, Dunn GH (1986) Measurement of ion molecule reactions between 10 K and 20 K. Int J Mass Spectrom 74:97–128
15.
go back to reference Klippenstein SJ, Georgievskii Y, McCall BJ (2010) Temperature dependence of two key interstellar reactions of H 3 + : O(3P) + H 3 + and CO + H 3 + . J Phys Chem A 114:278–290 Klippenstein SJ, Georgievskii Y, McCall BJ (2010) Temperature dependence of two key interstellar reactions of H 3 + : O(3P) + H 3 + and CO + H 3 + . J Phys Chem A 114:278–290
16.
go back to reference McMahon TB, Beaucham JI (1972) Versatile trapped ion cell for ion-cyclotron resonance spectroscopy. Rev Sci Instrum 43:509–512 McMahon TB, Beaucham JI (1972) Versatile trapped ion cell for ion-cyclotron resonance spectroscopy. Rev Sci Instrum 43:509–512
17.
go back to reference Fehsenfeld FC, Schmeltekopf AL, Goldan PD, Schiff HI, Ferguson EE (1966) Thermal energy ion-neutral reaction rates. I. Some reactions of helium ions. J Chem Phys 44:4087–4094 Fehsenfeld FC, Schmeltekopf AL, Goldan PD, Schiff HI, Ferguson EE (1966) Thermal energy ion-neutral reaction rates. I. Some reactions of helium ions. J Chem Phys 44:4087–4094
18.
go back to reference Dunkin DB, Fehsenfeld FC, Schmeltekopf AL, Ferguson EE (1968) Ion-molecule reaction studies from 300 to 600 K in a temperature-controlled flowing afterglow system. J Chem Phys 49:1365–1371 Dunkin DB, Fehsenfeld FC, Schmeltekopf AL, Ferguson EE (1968) Ion-molecule reaction studies from 300 to 600 K in a temperature-controlled flowing afterglow system. J Chem Phys 49:1365–1371
19.
go back to reference Barlow SE, Dunn GH, Schauer M (1984) Radiative association of CH 3 + and H2 at 13 K. Phys Rev Lett 52:902–905 Barlow SE, Dunn GH, Schauer M (1984) Radiative association of CH 3 + and H2 at 13 K. Phys Rev Lett 52:902–905
20.
go back to reference Asvany O, Savic I, Schlemmer S, Gerlich D (2004) Variable temperature ion trap studies of CH4++H2, HD and D2: negative temperature dependence and significant isotope effect. Chem Phys 298:97–105 Asvany O, Savic I, Schlemmer S, Gerlich D (2004) Variable temperature ion trap studies of CH4++H2, HD and D2: negative temperature dependence and significant isotope effect. Chem Phys 298:97–105
21.
go back to reference Adams NG, Smith D (1976) Selected ion flow tube (sift) – technique for studying ion-neutral reactions. Int J Mass Spectrom 21:349–359 Adams NG, Smith D (1976) Selected ion flow tube (sift) – technique for studying ion-neutral reactions. Int J Mass Spectrom 21:349–359
22.
go back to reference Snow TP, Bierbaum VM (2008) Ion chemistry in the interstellar medium. Annu Rev Anal Chem 1:229–259 Snow TP, Bierbaum VM (2008) Ion chemistry in the interstellar medium. Annu Rev Anal Chem 1:229–259
23.
go back to reference Rowe BR, Dupeyrat G, Marquette JB, Gaucherel P (1984) Study of the reactions N 2 +  + 2 N2 → N 4 +  + N2 and O 2 +  + 2O2 → O 4 +  + O2 from 20 to 160 K by the CRESU technique. J Chem Phys 80:4915–4921 Rowe BR, Dupeyrat G, Marquette JB, Gaucherel P (1984) Study of the reactions N 2 +  + 2 N2 → N 4 +  + N2 and O 2 +  + 2O2 → O 4 +  + O2 from 20 to 160 K by the CRESU technique. J Chem Phys 80:4915–4921
24.
go back to reference Rowe BR, Marquette JB (1987) CRESU studies of ion molecule reactions. Int J Mass Spectrom 80:239–254 Rowe BR, Marquette JB (1987) CRESU studies of ion molecule reactions. Int J Mass Spectrom 80:239–254
25.
go back to reference Chesnavich WJ, Su T, Bowers MT (1980) Collisions in a non-central field – variational and trajectory investigation of ion-dipole capture. J Chem Phys 72:2641–2655 Chesnavich WJ, Su T, Bowers MT (1980) Collisions in a non-central field – variational and trajectory investigation of ion-dipole capture. J Chem Phys 72:2641–2655
26.
go back to reference Su T, Chesnavich WJ (1982) Parametrization of the ion-polar molecule collision rate-constant by trajectory calculations. J Chem Phys 76:5183–5185 Su T, Chesnavich WJ (1982) Parametrization of the ion-polar molecule collision rate-constant by trajectory calculations. J Chem Phys 76:5183–5185
27.
go back to reference Woon DE, Herbst E (2009) Quantum chemical predictions of the properties of known and postulated neutral interstellar molecules. Astrophys J Suppl Ser 185:273–288 Woon DE, Herbst E (2009) Quantum chemical predictions of the properties of known and postulated neutral interstellar molecules. Astrophys J Suppl Ser 185:273–288
28.
go back to reference Maergoiz AI, Nikitin EE, Troe J, Ushakov VG (1996) Classical trajectory and adiabatic channel study of the transition from adiabatic to sudden capture dynamics. 1. Ion-dipole capture. J Chem Phys 105:6263–6269 Maergoiz AI, Nikitin EE, Troe J, Ushakov VG (1996) Classical trajectory and adiabatic channel study of the transition from adiabatic to sudden capture dynamics. 1. Ion-dipole capture. J Chem Phys 105:6263–6269
29.
go back to reference Maergoiz AI, Nikitin EE, Troe J, Ushakov VG (1996) Classical trajectory and adiabatic channel study of the transition from adiabatic to sudden capture dynamics. 2. Ion-quadrupole capture. J Chem Phys 105:6270–6276 Maergoiz AI, Nikitin EE, Troe J, Ushakov VG (1996) Classical trajectory and adiabatic channel study of the transition from adiabatic to sudden capture dynamics. 2. Ion-quadrupole capture. J Chem Phys 105:6270–6276
30.
go back to reference Maergoiz AI, Nikitin EE, Troe J, Ushakov VG (1996) Classical trajectory and adiabatic channel study of the transition from adiabatic to sudden capture dynamics. 3. Dipole-dipole capture. J Chem Phys 105:6277–6284 Maergoiz AI, Nikitin EE, Troe J, Ushakov VG (1996) Classical trajectory and adiabatic channel study of the transition from adiabatic to sudden capture dynamics. 3. Dipole-dipole capture. J Chem Phys 105:6277–6284
31.
go back to reference Pechukas P, Light JC (1965) On detailed balancing and statistical theories of chemical kinetics. J Chem Phys 42:3281–3291 Pechukas P, Light JC (1965) On detailed balancing and statistical theories of chemical kinetics. J Chem Phys 42:3281–3291
32.
go back to reference Quack M, Troe J (1975) Complex-formation in reactive and inelastic-scattering – statistical adiabatic channel model of unimolecular processes III. Ber Bunsenges Phys Chem Chem Phys 79:170–183 Quack M, Troe J (1975) Complex-formation in reactive and inelastic-scattering – statistical adiabatic channel model of unimolecular processes III. Ber Bunsenges Phys Chem Chem Phys 79:170–183
33.
go back to reference Clary DC (1984) Rates of chemical-reactions dominated by long-range intermolecular forces. Mol Phys 53:3–21 Clary DC (1984) Rates of chemical-reactions dominated by long-range intermolecular forces. Mol Phys 53:3–21
34.
go back to reference Troe J (1987) Statistical adiabatic channel model for ion molecule capture processes. J Chem Phys 87:2773–2780 Troe J (1987) Statistical adiabatic channel model for ion molecule capture processes. J Chem Phys 87:2773–2780
35.
go back to reference Troe J (1996) Statistical adiabatic channel model for ion-molecule capture processes. 2. Analytical treatment of ion-dipole capture. J Chem Phys 105:6249–6262 Troe J (1996) Statistical adiabatic channel model for ion-molecule capture processes. 2. Analytical treatment of ion-dipole capture. J Chem Phys 105:6249–6262
36.
go back to reference Georgievskii Y, Klippenstein SJ (2005) Long-range transition state theory. J Chem Phys 122(194103):1–17 Georgievskii Y, Klippenstein SJ (2005) Long-range transition state theory. J Chem Phys 122(194103):1–17
37.
go back to reference Fehsenfeld FC (1976) Ion reactions with atomic oxygen and atomic nitrogen of astrophysical importance. Astrophys J 209:638–639 Fehsenfeld FC (1976) Ion reactions with atomic oxygen and atomic nitrogen of astrophysical importance. Astrophys J 209:638–639
38.
go back to reference Milligan DB, McEwan MJ (2000) H 3 +  + O: an experimental study. Chem Phys Lett 319:482–485 Milligan DB, McEwan MJ (2000) H 3 +  + O: an experimental study. Chem Phys Lett 319:482–485
39.
go back to reference Bettens RPA, Hansen TA, Collins MA (1999) Interpolated potential energy surface and reaction dynamics for O(3P) + H 3 + (1A1′) and OH+(3Σ−) + H2(1Σ g + ). J Chem Phys 111:6322–6332 Bettens RPA, Hansen TA, Collins MA (1999) Interpolated potential energy surface and reaction dynamics for O(3P) + H 3 + (1A1′) and OH+(3Σ) + H2(1Σ g + ). J Chem Phys 111:6322–6332
40.
go back to reference Tanner SD, Mackay GI, Hopkinson AC, Bohme DK (1979) Proton-transfer reactions of HCO+ at 298 K. Int J Mass Spectrom 29:153–169 Tanner SD, Mackay GI, Hopkinson AC, Bohme DK (1979) Proton-transfer reactions of HCO+ at 298 K. Int J Mass Spectrom 29:153–169
41.
go back to reference Kim JK, Theard LP, Huntress WT (1975) Proton-transfer reactions from H 3 + ions to N2, O2, and CO molecules. Chem Phys Lett 32:610–614 Kim JK, Theard LP, Huntress WT (1975) Proton-transfer reactions from H 3 + ions to N2, O2, and CO molecules. Chem Phys Lett 32:610–614
42.
go back to reference Burt JA, Dunn JL, McEwan MJ, Sutton MM, Roche AE, Schiff HI (1970) Some ion-molecule reactions of H 3 + and proton affinity of H2. J Chem Phys 52:6062–6075 Burt JA, Dunn JL, McEwan MJ, Sutton MM, Roche AE, Schiff HI (1970) Some ion-molecule reactions of H 3 + and proton affinity of H2. J Chem Phys 52:6062–6075
43.
go back to reference Ryan KR (1974) Ionic collision processes in simple gas mixtures containing hydrogen. J Chem Phys 61:1559–1570 Ryan KR (1974) Ionic collision processes in simple gas mixtures containing hydrogen. J Chem Phys 61:1559–1570
44.
go back to reference Bohme DK, Mackay GI, Schiff HI (1980) Determination of proton affinities from the kinetics of proton-transfer reactions. 7. The proton affinities of O2, H2, Kr, O, N2, Xe, CO2, CH4, N2O, and CO. J Chem Phys 73:4976–4986 Bohme DK, Mackay GI, Schiff HI (1980) Determination of proton affinities from the kinetics of proton-transfer reactions. 7. The proton affinities of O2, H2, Kr, O, N2, Xe, CO2, CH4, N2O, and CO. J Chem Phys 73:4976–4986
45.
go back to reference Adams NG, Smith D (1981) A laboratory study of the reaction H 3 +  + HD ↔ H2D+ + H2 – the electron-densities and the temperatures in inter-stellar clouds. Astrophys J 248:373–379 Adams NG, Smith D (1981) A laboratory study of the reaction H 3 +  + HD ↔ H2D+ + H2 – the electron-densities and the temperatures in inter-stellar clouds. Astrophys J 248:373–379
46.
go back to reference Rakshit AB (1982) A drift-chamber mass-spectrometric study of the interaction of H 3 + ions with neutral molecules at 300 K. Int J Mass Spectrom 41:185–197 Rakshit AB (1982) A drift-chamber mass-spectrometric study of the interaction of H 3 + ions with neutral molecules at 300 K. Int J Mass Spectrom 41:185–197
47.
go back to reference Marquette JB, Rebrion C, Rowe BR (1989) Proton-transfer reactions of H 3 + with molecular neutrals at 30 K. Astron Astrophys 213:L29–L32 Marquette JB, Rebrion C, Rowe BR (1989) Proton-transfer reactions of H 3 + with molecular neutrals at 30 K. Astron Astrophys 213:L29–L32
48.
go back to reference Gannon KL, Glowacki DR, Blitz MA, Hughes KJ, Pilling MJ, Seakins PW (2007) H atom yields from the reactions of CN radicals with C2H2, C2H4, C3H6, trans-2-C4H8, and iso-C4H8. J Phys Chem A 111:6679–6692 Gannon KL, Glowacki DR, Blitz MA, Hughes KJ, Pilling MJ, Seakins PW (2007) H atom yields from the reactions of CN radicals with C2H2, C2H4, C3H6, trans-2-C4H8, and iso-C4H8. J Phys Chem A 111:6679–6692
49.
go back to reference Blitz MA, Pesa M, Pilling MJ, Seakins PW (1999) Reaction of CH with H2O: temperature dependence and isotope effect. J Phys Chem A 103:5699–5704 Blitz MA, Pesa M, Pilling MJ, Seakins PW (1999) Reaction of CH with H2O: temperature dependence and isotope effect. J Phys Chem A 103:5699–5704
50.
go back to reference Wollenhaupt M, Carl SA, Horowitz A, Crowley JN (2000) Rate coefficients for reaction of OH with acetone between 202 and 395 K. J Phys Chem A 104:2695–2705 Wollenhaupt M, Carl SA, Horowitz A, Crowley JN (2000) Rate coefficients for reaction of OH with acetone between 202 and 395 K. J Phys Chem A 104:2695–2705
51.
go back to reference Brown SS, Ravishankara AR, Stark H (2000) Simultaneous kinetics and ring-down: rate coefficients from single cavity loss temporal profiles. J Phys Chem A 104:7044–7052 Brown SS, Ravishankara AR, Stark H (2000) Simultaneous kinetics and ring-down: rate coefficients from single cavity loss temporal profiles. J Phys Chem A 104:7044–7052
52.
go back to reference DeSain JD, Clifford EP, Taatjes CA (2001) Infrared frequency-modulation probing of product formation in alkyl plus O2 reactions: II. The reaction of C3H7 with O2 between 296 and 683 K. J Phys Chem A 105:3205–3213 DeSain JD, Clifford EP, Taatjes CA (2001) Infrared frequency-modulation probing of product formation in alkyl plus O2 reactions: II. The reaction of C3H7 with O2 between 296 and 683 K. J Phys Chem A 105:3205–3213
53.
go back to reference Blitz MA, Goddard A, Ingham T, Pilling MJ (2007) Time-of-flight mass spectrometry for time-resolved measurements. Rev Sci Instrum 78:034103.1–034103.9 Blitz MA, Goddard A, Ingham T, Pilling MJ (2007) Time-of-flight mass spectrometry for time-resolved measurements. Rev Sci Instrum 78:034103.1–034103.9
54.
go back to reference Meloni G, Selby TM, Osborn DL, Taatjes CA (2008) Enol formation and ring-opening in OH-initiated oxidation of cycloalkenes. J Phys Chem A 112:13444–13451 Meloni G, Selby TM, Osborn DL, Taatjes CA (2008) Enol formation and ring-opening in OH-initiated oxidation of cycloalkenes. J Phys Chem A 112:13444–13451
55.
go back to reference Mullen C, Smith MA (2005) Low temperature NH(X 3Σ−) radical reactions with NO, saturated, and unsaturated hydrocarbons studied in a pulsed supersonic laval nozzle flow reactor between 53 and 188 K. J Phys Chem A 109:1391–1399 Mullen C, Smith MA (2005) Low temperature NH(X 3Σ) radical reactions with NO, saturated, and unsaturated hydrocarbons studied in a pulsed supersonic laval nozzle flow reactor between 53 and 188 K. J Phys Chem A 109:1391–1399
56.
go back to reference Smith IWM (2011) Laboratory astrochemistry: gas-phase processes. Annu Rev Astron Astrophys 49(49):29–66 Smith IWM (2011) Laboratory astrochemistry: gas-phase processes. Annu Rev Astron Astrophys 49(49):29–66
57.
go back to reference Tyndall GS, Staffelbach TA, Orlando JJ, Calvert JG (1995) Rate coefficients for the reactions of OH radicals with methylglyoxal and acetaldehyde. Int J Chem Kinet 27:1009–1020 Tyndall GS, Staffelbach TA, Orlando JJ, Calvert JG (1995) Rate coefficients for the reactions of OH radicals with methylglyoxal and acetaldehyde. Int J Chem Kinet 27:1009–1020
58.
go back to reference Dransfield TJ, Donahue NM, Anderson JG (2001) High-pressure flow reactor product study of the reactions of HO(X) + NO2: the role of vibrationally excited intermediates. J Phys Chem A 105:1507–1514 Dransfield TJ, Donahue NM, Anderson JG (2001) High-pressure flow reactor product study of the reactions of HO(X) + NO2: the role of vibrationally excited intermediates. J Phys Chem A 105:1507–1514
59.
go back to reference Wardlaw DM, Marcus RA (1986) Unimolecular reaction-rate theory for transition-states of any looseness. 3. Application to methyl radical recombination. J Phys Chem 90:5383–5393 Wardlaw DM, Marcus RA (1986) Unimolecular reaction-rate theory for transition-states of any looseness. 3. Application to methyl radical recombination. J Phys Chem 90:5383–5393
60.
go back to reference Harding LB, Klippenstein SJ, Jasper AW (2007) Ab initio methods for reactive potential surfaces. Phys Chem Chem Phys 9:4055–4070 Harding LB, Klippenstein SJ, Jasper AW (2007) Ab initio methods for reactive potential surfaces. Phys Chem Chem Phys 9:4055–4070
61.
go back to reference Sims IR, Smith IWM (1988) Pulsed laser photolysis laser-induced fluorescence measurements on the kinetics of CN(v = 0) and CN(v = 1) with O2, NH3 and NO between 294 and 761 K. J Chem Soc Faraday Trans II 84:527–539 Sims IR, Smith IWM (1988) Pulsed laser photolysis laser-induced fluorescence measurements on the kinetics of CN(v = 0) and CN(v = 1) with O2, NH3 and NO between 294 and 761 K. J Chem Soc Faraday Trans II 84:527–539
62.
go back to reference Sims IR, Queffelec JL, Defrance A, Rebrionrowe C, Travers D, Rowe BR, Smith IWM (1992) Ultra-low temperature kinetics of neutral-neutral reactions – the reaction CN + O2 down to 26 K. J Chem Phys 97:8798–8800 Sims IR, Queffelec JL, Defrance A, Rebrionrowe C, Travers D, Rowe BR, Smith IWM (1992) Ultra-low temperature kinetics of neutral-neutral reactions – the reaction CN + O2 down to 26 K. J Chem Phys 97:8798–8800
63.
go back to reference Sims IR, Queffelec JL, Defrance A, Rebrionrowe C, Travers D, Bocherel P, Rowe BR, Smith IWM (1994) Ultralow temperature kinetics of neutral-neutral reactions – the technique and results for the reactions CN + O2 down to 13 K and CN + NH3 down to 25 K. J Chem Phys 100:4229–4241 Sims IR, Queffelec JL, Defrance A, Rebrionrowe C, Travers D, Bocherel P, Rowe BR, Smith IWM (1994) Ultralow temperature kinetics of neutral-neutral reactions – the technique and results for the reactions CN + O2 down to 13 K and CN + NH3 down to 25 K. J Chem Phys 100:4229–4241
64.
go back to reference Feng WH, Hershberger JF (2009) Reinvestigation of the branching ratio of the CN + O2 reaction. J Phys Chem A 113:3523–3527 Feng WH, Hershberger JF (2009) Reinvestigation of the branching ratio of the CN + O2 reaction. J Phys Chem A 113:3523–3527
65.
go back to reference Klippenstein SJ, Kim YW (1993) Variational statistical study of the CN + O2 reaction employing ab-initio determined properties for the transition-state. J Chem Phys 99:5790–5799 Klippenstein SJ, Kim YW (1993) Variational statistical study of the CN + O2 reaction employing ab-initio determined properties for the transition-state. J Chem Phys 99:5790–5799
66.
go back to reference Stoecklin T, Dateo CE, Clary DC (1991) Rate-constant calculations on fast diatom-diatom reactions. J Chem Soc Faraday Trans 87:1667–1679 Stoecklin T, Dateo CE, Clary DC (1991) Rate-constant calculations on fast diatom-diatom reactions. J Chem Soc Faraday Trans 87:1667–1679
67.
go back to reference Greenwald EE, North SW, Georgievskii Y, Klippenstein SJ (2005) A two transition state model for radical-molecule reactions: a case study of the addition of OH to C2H4. J Phys Chem A 109:6031–6044 Greenwald EE, North SW, Georgievskii Y, Klippenstein SJ (2005) A two transition state model for radical-molecule reactions: a case study of the addition of OH to C2H4. J Phys Chem A 109:6031–6044
68.
go back to reference Sabbah H, Biennier L, Sims IR, Georgievskii Y, Klippenstein SJ, Smith IWM (2007) Understanding reactivity at very low temperatures: the reactions of oxygen atoms with alkenes. Science 317:102–105 Sabbah H, Biennier L, Sims IR, Georgievskii Y, Klippenstein SJ, Smith IWM (2007) Understanding reactivity at very low temperatures: the reactions of oxygen atoms with alkenes. Science 317:102–105
69.
go back to reference Smith IWM, Sage AM, Donahue NM, Herbst E, Quan D (2006) The temperature-dependence of rapid low temperature reactions: experiment, understanding and prediction. Faraday Discuss 133:137–156 Smith IWM, Sage AM, Donahue NM, Herbst E, Quan D (2006) The temperature-dependence of rapid low temperature reactions: experiment, understanding and prediction. Faraday Discuss 133:137–156
70.
go back to reference Clarke JS, Kroll JH, Donahue NM, Anderson JG (1998) Testing frontier orbital control: kinetics of OH with ethane, propane, and cyclopropane from 180 to 360 K. J Phys Chem A 102:9847–9857 Clarke JS, Kroll JH, Donahue NM, Anderson JG (1998) Testing frontier orbital control: kinetics of OH with ethane, propane, and cyclopropane from 180 to 360 K. J Phys Chem A 102:9847–9857
71.
go back to reference Miller JA, Klippenstein SJ (2006) Master equation methods in gas phase chemical kinetics. J Phys Chem A 110:10528–10544 Miller JA, Klippenstein SJ (2006) Master equation methods in gas phase chemical kinetics. J Phys Chem A 110:10528–10544
72.
go back to reference Robertson SH, Pilling MJ, Jitariu LC, Hillier IH (2007) Master equation methods for multiple well systems: application to the 1-,2-pentyl system. Phys Chem Chem Phys 9:4085–4097 Robertson SH, Pilling MJ, Jitariu LC, Hillier IH (2007) Master equation methods for multiple well systems: application to the 1-,2-pentyl system. Phys Chem Chem Phys 9:4085–4097
73.
go back to reference Bohland T, Temps F (1984) Direct determination of the rate-constant for the reaction CH2 + H → CH + H2. Ber Bunsenges Phys Chem 88:459–461 Bohland T, Temps F (1984) Direct determination of the rate-constant for the reaction CH2 + H → CH + H2. Ber Bunsenges Phys Chem 88:459–461
74.
go back to reference Bohland T, Temps F, Wagner HG (1987) A direct study of the reactions of CH2(X3B1) radicals with H and D atoms. J Phys Chem 91:1205–1209 Bohland T, Temps F, Wagner HG (1987) A direct study of the reactions of CH2(X3B1) radicals with H and D atoms. J Phys Chem 91:1205–1209
75.
go back to reference Boullart W, Peeters J (1992) Product distributions of the C2H2 + O and HCCO + H reactions – rate-constant of CH2(X3B1) + H. J Phys Chem 96:9810–9816 Boullart W, Peeters J (1992) Product distributions of the C2H2 + O and HCCO + H reactions – rate-constant of CH2(X3B1) + H. J Phys Chem 96:9810–9816
76.
go back to reference Devriendt K, Vanpoppel M, Boullart W, Peeters J (1995) Kinetic investigation of the CH2(X3B1) + H → CH(X2Π) + H2 reaction in the temperature-range 400 K > T >1,000 K. J Phys Chem 99:16953–16959 Devriendt K, Vanpoppel M, Boullart W, Peeters J (1995) Kinetic investigation of the CH2(X3B1) + H → CH(X2Π) + H2 reaction in the temperature-range 400 K > T >1,000 K. J Phys Chem 99:16953–16959
77.
go back to reference Brownsword RA, Canosa A, Rowe BR, Sims IR, Smith IWM, Stewart DWA, Symonds AC, Travers D (1997) Kinetics over a wide range of temperature (13–744 K): rate constants for the reactions of CH(ν = 0) with H2 and D2 and for the removal of CH(ν = 1) by H2 and D2. J Chem Phys 106:7662–7677 Brownsword RA, Canosa A, Rowe BR, Sims IR, Smith IWM, Stewart DWA, Symonds AC, Travers D (1997) Kinetics over a wide range of temperature (13–744 K): rate constants for the reactions of CH(ν = 0) with H2 and D2 and for the removal of CH(ν = 1) by H2 and D2. J Chem Phys 106:7662–7677
78.
go back to reference Fulle D, Hippler H (1997) The temperature and pressure dependence of the reaction CH + H2 → CH3 → CH2 + H. J Chem Phys 106:8691–8698 Fulle D, Hippler H (1997) The temperature and pressure dependence of the reaction CH + H2 → CH3 → CH2 + H. J Chem Phys 106:8691–8698
79.
go back to reference Ruscic B (2012) Private communication of unpublished ATcT datum for ver. 1.112 od ATcT TN Ruscic B (2012) Private communication of unpublished ATcT datum for ver. 1.112 od ATcT TN
80.
go back to reference Ruscic B, Pinzon RE, Morton ML, von Laszevski G, Bittner SJ, Nijsure SG, Amin KA, Minkoff M, Wagner AF (2004) Introduction to active thermochemical tables: several “key” enthalpies of formation revisited. J Phys Chem A 108:9979–9997 Ruscic B, Pinzon RE, Morton ML, von Laszevski G, Bittner SJ, Nijsure SG, Amin KA, Minkoff M, Wagner AF (2004) Introduction to active thermochemical tables: several “key” enthalpies of formation revisited. J Phys Chem A 108:9979–9997
81.
go back to reference Ruscic B, Pinzon RE, von Laszewski G, Kodeboyina D, Burcat A, Leahy D, Montoya D, Wagner AF (2005) Active thermochemical tables: thermochemistry for the 21st century. In: Conference on scientific discovery through advanced computing (SciDAC 2005), vol 16. San Francisco, pp 561–570 Ruscic B, Pinzon RE, von Laszewski G, Kodeboyina D, Burcat A, Leahy D, Montoya D, Wagner AF (2005) Active thermochemical tables: thermochemistry for the 21st century. In: Conference on scientific discovery through advanced computing (SciDAC 2005), vol 16. San Francisco, pp 561–570
82.
go back to reference Medvedev DM, Harding LB, Gray SK (2006) Methyl radical: ab initio global potential surface, vibrational levels and partition function. Mol Phys 104:73–81 Medvedev DM, Harding LB, Gray SK (2006) Methyl radical: ab initio global potential surface, vibrational levels and partition function. Mol Phys 104:73–81
83.
go back to reference Meads RF, MacLagan RGAR, Phillips LF (1993) Kinetics, energetics, and dynamics of the reactions of CN with NH3 and ND3. J Phys Chem 97:3257–3265 Meads RF, MacLagan RGAR, Phillips LF (1993) Kinetics, energetics, and dynamics of the reactions of CN with NH3 and ND3. J Phys Chem 97:3257–3265
84.
go back to reference Herbst E, Lee HH, Howe DA, Millar TJ (1994) The effect of rapid neutral-neutral reactions on chemical-models of dense interstellar clouds. Mon Not R Astron Soc 268:335–344 Herbst E, Lee HH, Howe DA, Millar TJ (1994) The effect of rapid neutral-neutral reactions on chemical-models of dense interstellar clouds. Mon Not R Astron Soc 268:335–344
85.
go back to reference Bettens RPA, Lee HH, Herbst E (1995) The importance of classes of neutral-neutral reactions in the production of complex interstellar-molecules. Astrophys J 443:664–674 Bettens RPA, Lee HH, Herbst E (1995) The importance of classes of neutral-neutral reactions in the production of complex interstellar-molecules. Astrophys J 443:664–674
86.
go back to reference Talbi D, Smith IWM (2009) A theoretical analysis of the reaction between CN radicals and NH3. Phys Chem Chem Phys 11:8477–8483 Talbi D, Smith IWM (2009) A theoretical analysis of the reaction between CN radicals and NH3. Phys Chem Chem Phys 11:8477–8483
87.
go back to reference Blitz MA, Seakins PW, Smith IWM (2009) An experimental confirmation of the products of the reaction between CN radicals and NH3. Phys Chem Chem Phys 11:10824–10826 Blitz MA, Seakins PW, Smith IWM (2009) An experimental confirmation of the products of the reaction between CN radicals and NH3. Phys Chem Chem Phys 11:10824–10826
88.
go back to reference Gerlich D (2008) In: Smith IWM (ed) Low temperatures and cold molecules. Imperial College Press, London, pp 121–174 Gerlich D (2008) In: Smith IWM (ed) Low temperatures and cold molecules. Imperial College Press, London, pp 121–174
89.
go back to reference Herbst E (1982) A reinvestigation of the rate of the C+ + H2 radiative association reaction. Astrophys J 252:810–813 Herbst E (1982) A reinvestigation of the rate of the C+ + H2 radiative association reaction. Astrophys J 252:810–813
90.
go back to reference Smith IWM (1989) Effects of quantum-mechanical tunneling on rates of radiative association. Astrophys J 347:282–288 Smith IWM (1989) Effects of quantum-mechanical tunneling on rates of radiative association. Astrophys J 347:282–288
91.
go back to reference Smith IWM (1989) Radiative association in collisions between neutral free-radicals. Chem Phys 131:391–401 Smith IWM (1989) Radiative association in collisions between neutral free-radicals. Chem Phys 131:391–401
92.
go back to reference Geppert WD, Larsson M (2008) Dissociative recombination in the interstellar medium and planetary ionospheres. Mol Phys 106:2199–2226 Geppert WD, Larsson M (2008) Dissociative recombination in the interstellar medium and planetary ionospheres. Mol Phys 106:2199–2226
93.
go back to reference Vidali G, Pirronello V, Liu C, Shen LY (1998) Experimental studies of chemical reactions on surfaces of astrophysical interest. Astrophys Lett Commun 35:423–447 Vidali G, Pirronello V, Liu C, Shen LY (1998) Experimental studies of chemical reactions on surfaces of astrophysical interest. Astrophys Lett Commun 35:423–447
94.
go back to reference Vidali G, Roser JE, Manico G, Pirronello V (2004) Laboratory studies of formation of molecules on dust grain analogues under ISM conditions. J Geophys Res Planets 109:E07S14, doi:10.1029/2003JE002189 Vidali G, Roser JE, Manico G, Pirronello V (2004) Laboratory studies of formation of molecules on dust grain analogues under ISM conditions. J Geophys Res Planets 109:E07S14, doi:10.​1029/​2003JE002189
95.
go back to reference Hornekaer L, Baurichter A, Petrunin VV, Luntz AC, Kay BD, Al-Halabi A (2005) Influence of surface morphology on D2 desorption kinetics from amorphous solid water. J Chem Phys 122:124701 Hornekaer L, Baurichter A, Petrunin VV, Luntz AC, Kay BD, Al-Halabi A (2005) Influence of surface morphology on D2 desorption kinetics from amorphous solid water. J Chem Phys 122:124701
96.
go back to reference Zecho T, Guttler A, Sha XW, Lemoine D, Jackson B, Kuppers J (2002) Abstraction of D chemisorbed on graphite(0001) with gaseous H atoms. Chem Phys Lett 366:188–195 Zecho T, Guttler A, Sha XW, Lemoine D, Jackson B, Kuppers J (2002) Abstraction of D chemisorbed on graphite(0001) with gaseous H atoms. Chem Phys Lett 366:188–195
97.
go back to reference Islam F, Latimer ER, Price SD (2007) The formation of vibrationally excited HD from atomic recombination on cold graphite surfaces. J Chem Phys 127:064701 Islam F, Latimer ER, Price SD (2007) The formation of vibrationally excited HD from atomic recombination on cold graphite surfaces. J Chem Phys 127:064701
98.
go back to reference Williams DA, Brown WA, Price SD, Rawlings JMC, Viti S (2007) Molecules, ices and astronomy. Astron Geophys 48:25–34 Williams DA, Brown WA, Price SD, Rawlings JMC, Viti S (2007) Molecules, ices and astronomy. Astron Geophys 48:25–34
99.
go back to reference Latimer ER, Islam F, Price SD (2008) Studies of HD formed in excited vibrational states from atomic recombination on cold graphite surfaces. Chem Phys Lett 455:174–177 Latimer ER, Islam F, Price SD (2008) Studies of HD formed in excited vibrational states from atomic recombination on cold graphite surfaces. Chem Phys Lett 455:174–177
100.
go back to reference Hidaka H, Watanabe M, Kouchi A, Watanabe N (2009) Reaction routes in the CO-H2CO-CH3OH system, clarified from H(D) exposure on solid formaldehyde at low temperatures. Astrophys J 702:291–300 Hidaka H, Watanabe M, Kouchi A, Watanabe N (2009) Reaction routes in the CO-H2CO-CH3OH system, clarified from H(D) exposure on solid formaldehyde at low temperatures. Astrophys J 702:291–300
101.
go back to reference Hidaka H, Watanabe N, Shiraki T, Nagaoka A, Kouchi A (2004) Conversion of H2CO to CH3OH by reactions of cold atomic hydrogen on ice surfaces below 20 K. Astrophys J 614:1124–1131 Hidaka H, Watanabe N, Shiraki T, Nagaoka A, Kouchi A (2004) Conversion of H2CO to CH3OH by reactions of cold atomic hydrogen on ice surfaces below 20 K. Astrophys J 614:1124–1131
102.
go back to reference Watanabe N, Nagaoka A, Shiraki T, Kouchi A (2004) Hydrogenation of CO on pure solid CO and CO-H2O mixed ice. Astrophys J 616:638–642 Watanabe N, Nagaoka A, Shiraki T, Kouchi A (2004) Hydrogenation of CO on pure solid CO and CO-H2O mixed ice. Astrophys J 616:638–642
103.
go back to reference Ward MD, Price SD (2011) Thermal reactions of oxygen atoms with alkenes at low temperatures on interstellar dust. Astrophys J 741:121 Ward MD, Price SD (2011) Thermal reactions of oxygen atoms with alkenes at low temperatures on interstellar dust. Astrophys J 741:121
104.
go back to reference Tielens AGGM, Hagen W (1982) Model-calculations of the molecular composition of inter-stellar grain mantles. Astron Astrophys 114:245–260 Tielens AGGM, Hagen W (1982) Model-calculations of the molecular composition of inter-stellar grain mantles. Astron Astrophys 114:245–260
105.
go back to reference Charnley SB (2001) Stochastic theory of molecule formation on dust. Astrophys J 562:L99–L102 Charnley SB (2001) Stochastic theory of molecule formation on dust. Astrophys J 562:L99–L102
106.
go back to reference Green NJB, Toniazzo T, Pilling MJ, Ruffle DP, Bell N, Hartquist TW (2001) A stochastic approach to grain surface chemical kinetics. Astron Astrophys 375:1111–1119 Green NJB, Toniazzo T, Pilling MJ, Ruffle DP, Bell N, Hartquist TW (2001) A stochastic approach to grain surface chemical kinetics. Astron Astrophys 375:1111–1119
107.
go back to reference Biham O, Furman I, Pirronello V, Vidali G (2001) Master equation for hydrogen recombination on grain surfaces. Astrophys J 553:595–603 Biham O, Furman I, Pirronello V, Vidali G (2001) Master equation for hydrogen recombination on grain surfaces. Astrophys J 553:595–603
108.
go back to reference Caselli P, Hasegawa TI, Herbst E (1998) A proposed modification of the rate equations for reactions on grain surfaces. Astrophys J 495:309–316 Caselli P, Hasegawa TI, Herbst E (1998) A proposed modification of the rate equations for reactions on grain surfaces. Astrophys J 495:309–316
Metadata
Title
Chemical Processes in the Interstellar Medium
Author
Michael J. Pilling
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-31730-9_3

Premium Partners