Skip to main content
Top

2021 | OriginalPaper | Chapter

6. Chemical Vapor Deposition

Authors : Hirokazu Katsui, Takashi Goto

Published in: Multi-dimensional Additive Manufacturing

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The coating of various types of materials, i.e., metals, ceramics, polymers, and composites, with ceramic layers and films is one of the key technologies employed for prolonging the lifetime of infrastructural materials by protecting them from harsh environments. This process also enhances properties and adds multi-functionalities to materials. Thermal barrier coatings (TBCs) on turbine blades, hard coatings on cutting tools, and corrosion-protective coatings on steel pipes and containers are applied on an industrial scale, while biocompatible coatings on artificial bones, growth of semiconductor films, and depositions of nano-layers and particles for catalysts have been developed to produce high-performance functional materials. Vapor-phase deposition techniques, such as physical vapor deposition (PVD) and chemical vapor deposition (CVD), are advantageous, as they create finely controlled microstructure in films and deposits, compared to liquid- and solid-state processes. In TBCs fabricated by the electron beam evaporation method, the growth of columnar crystals with nanostructures, such as nano-pores and gaps, contributes to the relaxation of thermal stress at the interface between coatings and basal materials, owing to the difference in thermal expansion coefficients. CVD, an industrially important vapor-phase deposition technique, has been employed for the growth of silicon semiconductors, thin film processing of integrated circuits, insulating coatings, and hard coatings on cutting tools. In CVD, regulation of the process parameters, such as deposition temperatures, pressures, and instrumental systems of heating and supplying precursor vapors, has enabled us to produce various types of deposits with well-controlled microstructures and unique textures. Single crystal-like highly pure films can be grown, while coatings with thick layers can be deposited. CVD is also employed for the synthesis of nanomaterials, such as graphene and carbon nanotubes (CNTs) and for the infiltration in manufacturing of fiber-reinforced ceramic composites (ceramic matrix composite: CMC). CVD techniques combined with high-power laser irradiation have enabled the fabrication of thick layers with discriminating microstructure at significantly high deposition rates. Although the typical applications of CVD techniques are for the deposition of films on flatter surfaces of plate-shaped substrates like wafers, CVD can also deposit coating layers and nanoparticles on particulate and porous substrates with complex surface configurations because of its excellent step coverage. These CVD techniques utilizing laser processing and powder technologies are expected to contribute to the further development of additive manufacturing. In this chapter, the basis of conventional CVD processing is briefly outlined; then high-speed deposition and refinements of microstructure by CVD using the auxiliary energy of high-powered lasers and the deposition of coatings and nanoparticles on particulate substrates by a rotary CVD technique are introduced.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference H.O. Pierson, CVD processes and equipment, in Handbook of Chemical Vapor Deposition (CVD): Principles, Technology, and Applications, 2nd edn. (1999), pp. 108–146 H.O. Pierson, CVD processes and equipment, in Handbook of Chemical Vapor Deposition (CVD): Principles, Technology, and Applications, 2nd edn. (1999), pp. 108–146
2.
go back to reference T. Goto, H. Katsui, Chemical vapor deposition, in Handbook of Solid State Chemistry, 1st edn., vol. 2, ed. by S. Kikkawa, A. Stein (Wiley-VCH Verlag, 2017), pp. 399–428 T. Goto, H. Katsui, Chemical vapor deposition, in Handbook of Solid State Chemistry, 1st edn., vol. 2, ed. by S. Kikkawa, A. Stein (Wiley-VCH Verlag, 2017), pp. 399–428
3.
go back to reference K.F. Jensen, Chemical vapor deposition, in Microelectronics Processing: Chemical Engineering Aspects, ed. by D.W. Hess, K.F. Jensen (American Chemical Society, Washington, DC, 1989), pp. 199–263 K.F. Jensen, Chemical vapor deposition, in Microelectronics Processing: Chemical Engineering Aspects, ed. by D.W. Hess, K.F. Jensen (American Chemical Society, Washington, DC, 1989), pp. 199–263
4.
go back to reference W.L. Holstein, J.L. Fitzjohn, E.J. Fahy, P.W. Gilmour, E.R. Schmelzer, Mathematical modeling of cold-wall channel CVD reactors. J. Cryst. Growth 94, 131–144 (1989)CrossRef W.L. Holstein, J.L. Fitzjohn, E.J. Fahy, P.W. Gilmour, E.R. Schmelzer, Mathematical modeling of cold-wall channel CVD reactors. J. Cryst. Growth 94, 131–144 (1989)CrossRef
5.
go back to reference V.K. Sarin, Systematic development of customized CVD coatings. Surf. Coat. Technol. 72(1–2), 23–33 (1995)CrossRef V.K. Sarin, Systematic development of customized CVD coatings. Surf. Coat. Technol. 72(1–2), 23–33 (1995)CrossRef
6.
go back to reference K.L. Choy, Chemical vapour deposition of coatings. Prog. Mater. Sci. 48(2), 57–170 (2003)CrossRef K.L. Choy, Chemical vapour deposition of coatings. Prog. Mater. Sci. 48(2), 57–170 (2003)CrossRef
7.
go back to reference J.M. Blocher Jr., Structure/property/process relationships in chemical vapor deposition CVD. J. Vacuum Sci. Technol. 11(4), 680–686 (1974)CrossRef J.M. Blocher Jr., Structure/property/process relationships in chemical vapor deposition CVD. J. Vacuum Sci. Technol. 11(4), 680–686 (1974)CrossRef
8.
go back to reference M. Mizuta, S. Fujieda, Y. Matsumoto, T. Kawamura, Low temperature growth of GaN and AlN on GaAs utilizing metalorganics and hydrazine. Jpn. J. Appl. Phys. 25(12), L945–L948 (1986) M. Mizuta, S. Fujieda, Y. Matsumoto, T. Kawamura, Low temperature growth of GaN and AlN on GaAs utilizing metalorganics and hydrazine. Jpn. J. Appl. Phys. 25(12), L945–L948 (1986)
9.
go back to reference A.D. Berry, D.K. Gaskill, R.T. Holm, E.J. Cukauskas, R. Kaplan, R.L. Henry, Formation of high TC superconducting films by organometallic chemical vapor deposition. Appl. Phys. Lett. 52(20), 1743–1745 (1988)CrossRef A.D. Berry, D.K. Gaskill, R.T. Holm, E.J. Cukauskas, R. Kaplan, R.L. Henry, Formation of high TC superconducting films by organometallic chemical vapor deposition. Appl. Phys. Lett. 52(20), 1743–1745 (1988)CrossRef
10.
go back to reference C.J. Brierley, C. Trundle, L. Considine, R.W. Whatmore, F.W. Ainger, The growth of ferroelectric oxides by MOCVD. Ferroelectrics 91(1), 181–192 (1989)CrossRef C.J. Brierley, C. Trundle, L. Considine, R.W. Whatmore, F.W. Ainger, The growth of ferroelectric oxides by MOCVD. Ferroelectrics 91(1), 181–192 (1989)CrossRef
11.
go back to reference R. Murugan, V. Thangadural, W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007)CrossRef R. Murugan, V. Thangadural, W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007)CrossRef
12.
go back to reference J. Tan, A. Tiwari, Fabrication and characterization of Li7La3Zr2O12 thin films for lithium ion battery. Solid State Ionics Lett. 1, Q57–Q60 (2012)CrossRef J. Tan, A. Tiwari, Fabrication and characterization of Li7La3Zr2O12 thin films for lithium ion battery. Solid State Ionics Lett. 1, Q57–Q60 (2012)CrossRef
13.
go back to reference S. Kim, M. Hirayama, S. Taminato, R. Kanno, Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte. J. Chem. Soc. Dalton Trans. 42, 13112–13117 (2013)CrossRef S. Kim, M. Hirayama, S. Taminato, R. Kanno, Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte. J. Chem. Soc. Dalton Trans. 42, 13112–13117 (2013)CrossRef
14.
go back to reference H. Katsui, T. Goto, Preparation of cubic and tetragonal Li7La3Zr2O12 film by metal organic chemical vapor deposition. Thin Solid Films 584, 130–134 (2015)CrossRef H. Katsui, T. Goto, Preparation of cubic and tetragonal Li7La3Zr2O12 film by metal organic chemical vapor deposition. Thin Solid Films 584, 130–134 (2015)CrossRef
15.
go back to reference J.R. Weiss, R.J. Diefendorf, Chemically vapor deposited SiC for high temperature and structural applications in silicon carbide 1973, in Proceedings of the Third International Conference on Silicon Carbide, Florida, 1973, ed. by R.C. Marshall, J.W. Faust Jr., C.E. Ryan J.R. Weiss, R.J. Diefendorf, Chemically vapor deposited SiC for high temperature and structural applications in silicon carbide 1973, in Proceedings of the Third International Conference on Silicon Carbide, Florida, 1973, ed. by R.C. Marshall, J.W. Faust Jr., C.E. Ryan
16.
go back to reference A.A. Burk, Development of multiwafer warm-wall planetary VPE reactors for SiC device production. Chem. Vap. Deposition 12(8–9), 465–473 (2006)CrossRef A.A. Burk, Development of multiwafer warm-wall planetary VPE reactors for SiC device production. Chem. Vap. Deposition 12(8–9), 465–473 (2006)CrossRef
17.
go back to reference H. Pedersen, S. Leone, O. Kordina, A. Henry, S. Nishizawa, Y. Koshka, E. Janzén, Chloride-based CVD growth of silicon carbide for electronic applications. Chem. Rev. 112(4), 2434–2453 (2012)CrossRef H. Pedersen, S. Leone, O. Kordina, A. Henry, S. Nishizawa, Y. Koshka, E. Janzén, Chloride-based CVD growth of silicon carbide for electronic applications. Chem. Rev. 112(4), 2434–2453 (2012)CrossRef
18.
go back to reference R.F. Davis, G. Kelner, M. Shur, J.W. Palmour, J.A. Edmond, Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide. Proc. IEEE 79(5), 677–701 (1991)CrossRef R.F. Davis, G. Kelner, M. Shur, J.W. Palmour, J.A. Edmond, Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide. Proc. IEEE 79(5), 677–701 (1991)CrossRef
19.
go back to reference J. Chin, P.K. Gantzel, R.G. Hudson, The structure of chemical vapor deposited silicon carbide. Thin Solid Films 40, 57–72 (1977)CrossRef J. Chin, P.K. Gantzel, R.G. Hudson, The structure of chemical vapor deposited silicon carbide. Thin Solid Films 40, 57–72 (1977)CrossRef
20.
go back to reference H.J. Kim, R.F. Davis, Theoretically predicted and experimentally determined effects of the Si/(Si+C) gas phase ratio on the growth and character of monocrystalline beta silicon carbide films. J. Appl. Phys. 60, 2897–2903 (1986)CrossRef H.J. Kim, R.F. Davis, Theoretically predicted and experimentally determined effects of the Si/(Si+C) gas phase ratio on the growth and character of monocrystalline beta silicon carbide films. J. Appl. Phys. 60, 2897–2903 (1986)CrossRef
21.
go back to reference C.D. Stinespring, J.C. Wormhoudt, Gas phase kinetics analysis and implications for silicon carbide chemical vapor deposition. J. Cryst. Growth 87(4), 481–493 (1988)CrossRef C.D. Stinespring, J.C. Wormhoudt, Gas phase kinetics analysis and implications for silicon carbide chemical vapor deposition. J. Cryst. Growth 87(4), 481–493 (1988)CrossRef
22.
go back to reference J. Schlichting, Chemical vapor deposition of silicon carbide. Powder Metall. Int. 12(3), 141–147 (1980) J. Schlichting, Chemical vapor deposition of silicon carbide. Powder Metall. Int. 12(3), 141–147 (1980)
23.
go back to reference J. Schlichting, Chemical vapor deposition of silicon carbide. Powder Metall. Int. 12(4), 196–200 (1980) J. Schlichting, Chemical vapor deposition of silicon carbide. Powder Metall. Int. 12(4), 196–200 (1980)
24.
go back to reference K. Nihara, T. Hirai, Chemical vapour-deposited silicon nitride. J. Mater. Sci. 11, 593–603 (1976)CrossRef K. Nihara, T. Hirai, Chemical vapour-deposited silicon nitride. J. Mater. Sci. 11, 593–603 (1976)CrossRef
25.
go back to reference T. Goto, J. Tsuneyoshi, K. Kaya, T. Hirai, Preferred orientation of AlN plates prepared by chemical vapour deposition of AlCl3 + NH3 system. J. Mater. Sci. 27(1), 247–254 (1992)CrossRef T. Goto, J. Tsuneyoshi, K. Kaya, T. Hirai, Preferred orientation of AlN plates prepared by chemical vapour deposition of AlCl3 + NH3 system. J. Mater. Sci. 27(1), 247–254 (1992)CrossRef
26.
go back to reference J-H. Park, T.S. Sudarshan, Chemical Vapor Deposition, Surface Engineering Series, vol. 2 (AMS International, 2001) J-H. Park, T.S. Sudarshan, Chemical Vapor Deposition, Surface Engineering Series, vol. 2 (AMS International, 2001)
27.
go back to reference H. Katsui, T. Goto, Epitaxial growth of (104)- and (018)-oriented LiCoO2 films on MgO single crystals prepared by chemical vapor deposition. Surf. Coat. Technol. 218, 57–61 (2013)CrossRef H. Katsui, T. Goto, Epitaxial growth of (104)- and (018)-oriented LiCoO2 films on MgO single crystals prepared by chemical vapor deposition. Surf. Coat. Technol. 218, 57–61 (2013)CrossRef
28.
go back to reference P.J. Bouwman, B.A. Boukamp, H.J.M. Bouwmeester, P.H.L. Notten, Influence of diffusion plane orientation on electrochemical properties of thin film LiCoO2 electrodes. J. Electrochem. Soc. 149(6), A699–A709 (2002)CrossRef P.J. Bouwman, B.A. Boukamp, H.J.M. Bouwmeester, P.H.L. Notten, Influence of diffusion plane orientation on electrochemical properties of thin film LiCoO2 electrodes. J. Electrochem. Soc. 149(6), A699–A709 (2002)CrossRef
29.
go back to reference P.J. Bouwman, B.A. Boukamp, H.J.M. Bouwmeester, H.J. Wondergem, P.H.L. Notten, Structural analysis of submicrometer LiCoO2 films. J. Electrochem. Soc. 148(4), A311–A317 (2001)CrossRef P.J. Bouwman, B.A. Boukamp, H.J.M. Bouwmeester, H.J. Wondergem, P.H.L. Notten, Structural analysis of submicrometer LiCoO2 films. J. Electrochem. Soc. 148(4), A311–A317 (2001)CrossRef
30.
go back to reference H. Katsui, Y. Yamashita, T. Goto, Orientation and morphology of LiCoO2 prepared by chemical vapor deposition on Al2O3 single crystal. Key Eng. Mater. 508, 300–303 (2012)CrossRef H. Katsui, Y. Yamashita, T. Goto, Orientation and morphology of LiCoO2 prepared by chemical vapor deposition on Al2O3 single crystal. Key Eng. Mater. 508, 300–303 (2012)CrossRef
31.
go back to reference H. Katsui, R. Tu, Y. Yamashita, T. Goto, Preparation of Li–Co–O film by metal organic chemical vapor deposition. J. Ceram. Soc. Jpn. 121, 406–410 (2013)CrossRef H. Katsui, R. Tu, Y. Yamashita, T. Goto, Preparation of Li–Co–O film by metal organic chemical vapor deposition. J. Ceram. Soc. Jpn. 121, 406–410 (2013)CrossRef
32.
go back to reference J.B. Bates, N.J. Dudney, B.J. Neudecker, F.X. Hart, H.P. Jun, S.A. Hackney, Preferred orientation of polycrystalline LiCoO2 films. J. Electrochem. Soc. 147(1), 59–70 (2000)CrossRef J.B. Bates, N.J. Dudney, B.J. Neudecker, F.X. Hart, H.P. Jun, S.A. Hackney, Preferred orientation of polycrystalline LiCoO2 films. J. Electrochem. Soc. 147(1), 59–70 (2000)CrossRef
33.
go back to reference D. Bauerle, Laser-CVD of microstructures, in Laser Processing and Chemistry (Springer, 2000), pp. 337–360 D. Bauerle, Laser-CVD of microstructures, in Laser Processing and Chemistry (Springer, 2000), pp. 337–360
34.
go back to reference T. Goto, Development of highly-functional ceramic materials by chemical vapor deposition. J. Jpn. Soc. Powder Powder Metall. 54(12), 863–872 (2007)CrossRef T. Goto, Development of highly-functional ceramic materials by chemical vapor deposition. J. Jpn. Soc. Powder Powder Metall. 54(12), 863–872 (2007)CrossRef
35.
go back to reference D. Bauerle, Laser induced chemical vapor deposition, in Surface Studies with Lasers, ed. By F.R. Aussenegg, A. Leitner, M.E. Lippitsch, Springer Ser. Chem. Phys., vol. 33 (Springer, Berlin, Heidelberg, 1983), p. 178 D. Bauerle, Laser induced chemical vapor deposition, in Surface Studies with Lasers, ed. By F.R. Aussenegg, A. Leitner, M.E. Lippitsch, Springer Ser. Chem. Phys., vol. 33 (Springer, Berlin, Heidelberg, 1983), p. 178
36.
go back to reference O. Lehmann, M. Stuke, Generation of three-dimensional free-standing micro-objects by laser chemical processing. Appl. Phys. A 53, 343–345 (1991)CrossRef O. Lehmann, M. Stuke, Generation of three-dimensional free-standing micro-objects by laser chemical processing. Appl. Phys. A 53, 343–345 (1991)CrossRef
37.
go back to reference S. Johansson, J.S. Westberg, M. Boman, Microfabrication of three-dimensional boron structures by laser chemical processing. J. Appl. Phys. 72(12), 5956–5963 (1992)CrossRef S. Johansson, J.S. Westberg, M. Boman, Microfabrication of three-dimensional boron structures by laser chemical processing. J. Appl. Phys. 72(12), 5956–5963 (1992)CrossRef
38.
go back to reference C. Duty, D. Jean, W.J. Lackey, Laser chemical vapour deposition: materials, modelling, and process control. Int. Mater. Rev. 46(6), 271–287 (2001)CrossRef C. Duty, D. Jean, W.J. Lackey, Laser chemical vapour deposition: materials, modelling, and process control. Int. Mater. Rev. 46(6), 271–287 (2001)CrossRef
39.
go back to reference O. Lehmann, M. Stuke, Three-dimensional laser direct writing of electrically conducting and isolating microstructures. Mater. Lett. 21(2), 131–136 (1994)CrossRef O. Lehmann, M. Stuke, Three-dimensional laser direct writing of electrically conducting and isolating microstructures. Mater. Lett. 21(2), 131–136 (1994)CrossRef
40.
go back to reference J. Maxwell, J. Shah, T. Webster, J. Mock, Rapid prototyping of titanium nitride using three-dimensional laser chemical vapor deposition, in Solid Freeform Fabrication Proceedings, Austin, Texas (1998), pp. 575–580 J. Maxwell, J. Shah, T. Webster, J. Mock, Rapid prototyping of titanium nitride using three-dimensional laser chemical vapor deposition, in Solid Freeform Fabrication Proceedings, Austin, Texas (1998), pp. 575–580
41.
go back to reference D. Tonneau, J.E. Bourée, Y. Pauleau, Kinetics of laser thermal decomposition of trimethylamine alane. Appl. Surf. Sci. 86(1–4), 488–493 (1995)CrossRef D. Tonneau, J.E. Bourée, Y. Pauleau, Kinetics of laser thermal decomposition of trimethylamine alane. Appl. Surf. Sci. 86(1–4), 488–493 (1995)CrossRef
42.
go back to reference T.H. Baum, C.E. Larson, R.L. Jackson, Laser-induced chemical vapor deposition of aluminum. Appl. Phys. Lett. 55, 1264–1266 (1989)CrossRef T.H. Baum, C.E. Larson, R.L. Jackson, Laser-induced chemical vapor deposition of aluminum. Appl. Phys. Lett. 55, 1264–1266 (1989)CrossRef
43.
go back to reference M.C. Wanke, O. Lehmann, K. Müller, Q. Wen, M. Stuke, Laser rapid prototyping of photonic band-gap microstructures. Science 275, 1284–1286 (1997)CrossRef M.C. Wanke, O. Lehmann, K. Müller, Q. Wen, M. Stuke, Laser rapid prototyping of photonic band-gap microstructures. Science 275, 1284–1286 (1997)CrossRef
44.
go back to reference F.T. Wallenberger, Inorganic fibres and microfabricated parts by laser assisted chemical vapour deposition (LCVD): structures and properties. Ceram. Int. 23(2), 119–126 (1997)CrossRef F.T. Wallenberger, Inorganic fibres and microfabricated parts by laser assisted chemical vapour deposition (LCVD): structures and properties. Ceram. Int. 23(2), 119–126 (1997)CrossRef
45.
go back to reference M.N. Oliveira, A.M. Botelho do Rego, O. Conde, XPS investigation of BxNyCz coatings deposited by laser assisted chemical vapour deposition. Surf. Coat. Technol. 100–101, 398–403 (1998) M.N. Oliveira, A.M. Botelho do Rego, O. Conde, XPS investigation of BxNyCz coatings deposited by laser assisted chemical vapour deposition. Surf. Coat. Technol. 100–101, 398–403 (1998)
46.
go back to reference J.L. Maxwell, M. Boman, K. Williams, K. Larsson, N. Jaikumar, G. Saiprasanna, High-speed laser chemical vapor deposition of amorphous carbon fibers, stacked conductive coils, and folded helical springs, in Proceedings of the SPIE, Volume 3874, Micromachining and Microfabrication Process Technology, vol. 227 (1999), pp. 227–235 J.L. Maxwell, M. Boman, K. Williams, K. Larsson, N. Jaikumar, G. Saiprasanna, High-speed laser chemical vapor deposition of amorphous carbon fibers, stacked conductive coils, and folded helical springs, in Proceedings of the SPIE, Volume 3874, Micromachining and Microfabrication Process Technology, vol. 227 (1999), pp. 227–235
47.
go back to reference C.R. Moylan, T.H. Baum, C.R. Jones, LCVD of copper: deposition rates and deposit shapes. Appl. Phys. A 40(1), 1–5 (1986)CrossRef C.R. Moylan, T.H. Baum, C.R. Jones, LCVD of copper: deposition rates and deposit shapes. Appl. Phys. A 40(1), 1–5 (1986)CrossRef
48.
go back to reference J.L. Maxwell, J. Pegna, D.V. Messia, Real-time volumetric growth rate measurements and feedback control of three-dimensional laser chemical vapor deposition. Appl. Phys. A 67(3), 323–329 (1998)CrossRef J.L. Maxwell, J. Pegna, D.V. Messia, Real-time volumetric growth rate measurements and feedback control of three-dimensional laser chemical vapor deposition. Appl. Phys. A 67(3), 323–329 (1998)CrossRef
49.
go back to reference F. Petzoldt, K. Piglmayer, W. Kräuter, D. Bäuerle, Lateral growth rates in laser CVD of microstructures. Appl. Phys. A 35(3), 155–159 (1984)CrossRef F. Petzoldt, K. Piglmayer, W. Kräuter, D. Bäuerle, Lateral growth rates in laser CVD of microstructures. Appl. Phys. A 35(3), 155–159 (1984)CrossRef
50.
go back to reference H. Westberg, M. Boman, S. Johansson, J. Schweitz, Free-standing silicon microstructures fabricated by laser chemical processing. J. Appl. Phys. 73(11), 7864–7871 (1993)CrossRef H. Westberg, M. Boman, S. Johansson, J. Schweitz, Free-standing silicon microstructures fabricated by laser chemical processing. J. Appl. Phys. 73(11), 7864–7871 (1993)CrossRef
51.
go back to reference S.I. Park, S.S. Lee, Growth kinetics of microscopic silicon rods grown on silicon substrates by the pyrolytic laser-induced chemical vapor deposition process. Jpn. J. Appl. Phys. 29(1), L129–L132 (1990)CrossRef S.I. Park, S.S. Lee, Growth kinetics of microscopic silicon rods grown on silicon substrates by the pyrolytic laser-induced chemical vapor deposition process. Jpn. J. Appl. Phys. 29(1), L129–L132 (1990)CrossRef
52.
go back to reference H. Chang, L.J. Lee, R.L. Hwang, C.T. Yeh, M.S. Lin, J.C. Lou, T.H. Hseu, T.B. Wu, Y. Chen, C. Tang, Physical and chemical properties of the cylindrical rods SiCx (x = 0.3−1.2) grown from Si(CH3)2Cl2 by laser pyrolysis. Mater. Chem. Phys. 44(1), 59–66 (1996) H. Chang, L.J. Lee, R.L. Hwang, C.T. Yeh, M.S. Lin, J.C. Lou, T.H. Hseu, T.B. Wu, Y. Chen, C. Tang, Physical and chemical properties of the cylindrical rods SiCx (x = 0.3−1.2) grown from Si(CH3)2Cl2 by laser pyrolysis. Mater. Chem. Phys. 44(1), 59–66 (1996)
53.
go back to reference J. Maxwell, R. Krishnan, S. Haridas, High pressure convectively-enhanced laser chemical vapor deposition of titanium, in Solid Freeform Fabrication Proceedings, Austin, Texas (1997), pp. 497–504 J. Maxwell, R. Krishnan, S. Haridas, High pressure convectively-enhanced laser chemical vapor deposition of titanium, in Solid Freeform Fabrication Proceedings, Austin, Texas (1997), pp. 497–504
54.
go back to reference V. Hopfe, A. Tehel, A. Baier, J. Scharsig, IR-laser CVD of TiB2, TiCx and TiCxNy coatings on carbon fibres. Appl. Surf. Sci. 54(1), 78–83 (1992)CrossRef V. Hopfe, A. Tehel, A. Baier, J. Scharsig, IR-laser CVD of TiB2, TiCx and TiCxNy coatings on carbon fibres. Appl. Surf. Sci. 54(1), 78–83 (1992)CrossRef
55.
go back to reference J. Elders, P.A. Quist, B. Rooswijk, J.D.W. van Voorst, J. van Nieuwkoop, CO2-laser-induced chemical vapour deposition of TiB2. Surf. Coat. Technol. 45(1–3), 105–113 (1991)CrossRef J. Elders, P.A. Quist, B. Rooswijk, J.D.W. van Voorst, J. van Nieuwkoop, CO2-laser-induced chemical vapour deposition of TiB2. Surf. Coat. Technol. 45(1–3), 105–113 (1991)CrossRef
56.
go back to reference J. Elders, J.D.W. van Voorst, Laser-induced CVD of titanium diboride and the influence of atomic hydrogen. Appl. Surf. Sci. 69(1–4), 267–271 (1993)CrossRef J. Elders, J.D.W. van Voorst, Laser-induced CVD of titanium diboride and the influence of atomic hydrogen. Appl. Surf. Sci. 69(1–4), 267–271 (1993)CrossRef
57.
go back to reference I. Zergioti, A. Hatziapostolou, E. Hontzopoulos, A. Zervaki, G.N. Haidemenopoulos, Pyrolytic laser-based chemical vapour deposition of TiC coatings. Thin Solid Films 271(1–2), 96–100 (1995)CrossRef I. Zergioti, A. Hatziapostolou, E. Hontzopoulos, A. Zervaki, G.N. Haidemenopoulos, Pyrolytic laser-based chemical vapour deposition of TiC coatings. Thin Solid Films 271(1–2), 96–100 (1995)CrossRef
58.
go back to reference Y.H. Croonen, G. Verspui, Laser induced chemical vapour deposition of TiN coatings at atmospheric pressure. J. Phys. IV France 3, C3-209–C3-215 (1993) Y.H. Croonen, G. Verspui, Laser induced chemical vapour deposition of TiN coatings at atmospheric pressure. J. Phys. IV France 3, C3-209–C3-215 (1993)
59.
go back to reference X. Chen, J. Mazumder, Laser chemical-vapor deposition of titanium nitride. Phys. Rev. B 52(8), 5947–5952 (1995)CrossRef X. Chen, J. Mazumder, Laser chemical-vapor deposition of titanium nitride. Phys. Rev. B 52(8), 5947–5952 (1995)CrossRef
60.
go back to reference C. Chi, H. Katsui, T. Goto, Preparation of Na-β-alumina films by laser chemical deposition. Surf. Coat. Technol. 276(25), 534–538 (2015)CrossRef C. Chi, H. Katsui, T. Goto, Preparation of Na-β-alumina films by laser chemical deposition. Surf. Coat. Technol. 276(25), 534–538 (2015)CrossRef
61.
go back to reference A. Ito, Y. You, H. Katsui, T. Goto, Growth and microstructure of Ba β-alumina films by laser chemical vapor deposition. J. Eur. Ceram. Soc. 33(13–14), 2655–2661 (2013)CrossRef A. Ito, Y. You, H. Katsui, T. Goto, Growth and microstructure of Ba β-alumina films by laser chemical vapor deposition. J. Eur. Ceram. Soc. 33(13–14), 2655–2661 (2013)CrossRef
62.
go back to reference A. Ito, D. Guo, R. Tu, T. Goto, Preparation of (0 2 0)-oriented BaTi2O5 thick films and their dielectric responses. J. Eur. Ceram. Soc. 32(10), 2459–2467 (2012)CrossRef A. Ito, D. Guo, R. Tu, T. Goto, Preparation of (0 2 0)-oriented BaTi2O5 thick films and their dielectric responses. J. Eur. Ceram. Soc. 32(10), 2459–2467 (2012)CrossRef
63.
go back to reference H. Katsui, Y. Kumagai, T. Goto, High-speed deposition of highly-oriented calcium titanate film by laser CVD. Jpn. Soc. Powder Powder Metall. 63(3), 123–127 (2016)CrossRef H. Katsui, Y. Kumagai, T. Goto, High-speed deposition of highly-oriented calcium titanate film by laser CVD. Jpn. Soc. Powder Powder Metall. 63(3), 123–127 (2016)CrossRef
64.
go back to reference J. Endo, A. Ito, T. Kimura, T. Goto, High-speed deposition of dense, dendritic and porous SiO2 films by Nd: YAG laser chemical vapor deposition. Mat. Sci. Eng. B-Solid 166(3), 225–229 (2010)CrossRef J. Endo, A. Ito, T. Kimura, T. Goto, High-speed deposition of dense, dendritic and porous SiO2 films by Nd: YAG laser chemical vapor deposition. Mat. Sci. Eng. B-Solid 166(3), 225–229 (2010)CrossRef
65.
go back to reference D. Guo, A. Ito, T. Goto, R. Tu, C. Wang, Q. Shen, L. Zhang, Effect of laser power on orientation and microstructure of TiO2 films prepared by laser chemical vapor deposition method. Mater. Lett. 93(15), 179–182 (2013)CrossRef D. Guo, A. Ito, T. Goto, R. Tu, C. Wang, Q. Shen, L. Zhang, Effect of laser power on orientation and microstructure of TiO2 films prepared by laser chemical vapor deposition method. Mater. Lett. 93(15), 179–182 (2013)CrossRef
66.
go back to reference H. Kadokura, A. Ito, T. Kimura, T. Goto, Moderate temperature and high-speed synthesis of α-Al2O3 films by laser chemical vapor deposition using Nd:YAG laser. Surf. Coat. Technol. 204(14), 2302–2306 (2010)CrossRef H. Kadokura, A. Ito, T. Kimura, T. Goto, Moderate temperature and high-speed synthesis of α-Al2O3 films by laser chemical vapor deposition using Nd:YAG laser. Surf. Coat. Technol. 204(14), 2302–2306 (2010)CrossRef
67.
go back to reference R. Banal, T. Kimura, T. Goto, High speed deposition of Y2O3 films by laser-assisted chemical vapor deposition. Mater. Trans. 46(9), 2114–2116 (2005)CrossRef R. Banal, T. Kimura, T. Goto, High speed deposition of Y2O3 films by laser-assisted chemical vapor deposition. Mater. Trans. 46(9), 2114–2116 (2005)CrossRef
68.
go back to reference T. Goto, High-speed deposition of zirconia films by laser-induced plasma CVD. Solid State Ionics 172(1–4), 225–229 (2004)CrossRef T. Goto, High-speed deposition of zirconia films by laser-induced plasma CVD. Solid State Ionics 172(1–4), 225–229 (2004)CrossRef
69.
go back to reference K. Fujie, A. Ito, R. Tu, T. Goto, Laser chemical vapor deposition of SiC films with CO2 laser. J. Alloy Compd. 502(1), 238–242 (2010)CrossRef K. Fujie, A. Ito, R. Tu, T. Goto, Laser chemical vapor deposition of SiC films with CO2 laser. J. Alloy Compd. 502(1), 238–242 (2010)CrossRef
70.
go back to reference H. Katsui, Y. Kumagai, T. Goto, High-speed deposition of CaO-rich calcium titanate film by laser CVD and its change in microstructure by immersion in simulated body fluid. Jpn. Soc. Powder Powder Metall. 63(8), 761–765 (2016)CrossRef H. Katsui, Y. Kumagai, T. Goto, High-speed deposition of CaO-rich calcium titanate film by laser CVD and its change in microstructure by immersion in simulated body fluid. Jpn. Soc. Powder Powder Metall. 63(8), 761–765 (2016)CrossRef
71.
go back to reference T. Kimura, T. Goto, Rapid synthesis of yttria-stabilized zirconia films by laser chemical vapor deposition. Mater. Trans. 44(3), 421–424 (2003)CrossRef T. Kimura, T. Goto, Rapid synthesis of yttria-stabilized zirconia films by laser chemical vapor deposition. Mater. Trans. 44(3), 421–424 (2003)CrossRef
72.
go back to reference T. Goto, Thermal barrier coatings deposited by laser CVD. Surf. Coat. Technol. 198(1–3), 367–371 (2005)CrossRef T. Goto, Thermal barrier coatings deposited by laser CVD. Surf. Coat. Technol. 198(1–3), 367–371 (2005)CrossRef
73.
go back to reference T.J. Lu, C.G. Levi, H.N.G. Wadley, A.G. Evans, Distributed porosity as a control parameter for oxide thermal barriers made by physical vapor deposition. J. Am. Ceram. Soc. 84(12), 2937–2946 (2001)CrossRef T.J. Lu, C.G. Levi, H.N.G. Wadley, A.G. Evans, Distributed porosity as a control parameter for oxide thermal barriers made by physical vapor deposition. J. Am. Ceram. Soc. 84(12), 2937–2946 (2001)CrossRef
74.
go back to reference G. Boisselier, F. Maury, F. Schuster, SiC coatings grown by liquid injection chemical vapor deposition using single source metal-organic precursors. Surf. Coat. Technol. 215, 152–160 (2013)CrossRef G. Boisselier, F. Maury, F. Schuster, SiC coatings grown by liquid injection chemical vapor deposition using single source metal-organic precursors. Surf. Coat. Technol. 215, 152–160 (2013)CrossRef
75.
go back to reference S. Zhang, Q. Xu, R. Tu, T. Goto, L. Zhang, High-speed preparation of <111>- and <110>-oriented β-SiC films by laser chemical vapor deposition. J. Am. Ceram. Soc. 97(3), 952–958 (2014)CrossRef S. Zhang, Q. Xu, R. Tu, T. Goto, L. Zhang, High-speed preparation of <111>- and <110>-oriented β-SiC films by laser chemical vapor deposition. J. Am. Ceram. Soc. 97(3), 952–958 (2014)CrossRef
76.
go back to reference Y. Li, H. Katsui, T. Goto, Highly (111)-oriented SiC films on glassy carbon prepared by laser chemical vapor deposition. J. Korean. Ceram. Soc. 53(6), 647–651 (2016)CrossRef Y. Li, H. Katsui, T. Goto, Highly (111)-oriented SiC films on glassy carbon prepared by laser chemical vapor deposition. J. Korean. Ceram. Soc. 53(6), 647–651 (2016)CrossRef
77.
go back to reference K. Chu Kun, P.S. Nicholson, Stereography of growth of βʹʹ-Al2O3 single crystal films from sapphire substrates. Solid State Ionics 84, 41–50 (1996) K. Chu Kun, P.S. Nicholson, Stereography of growth of βʹʹ-Al2O3 single crystal films from sapphire substrates. Solid State Ionics 84, 41–50 (1996)
78.
go back to reference C. Chi, H. Katsui, T. Goto, Effect of Li addition on the formation of Na-β/βʹʹ-alumina film by laser chemical vapor deposition. Ceram. Int. 43(1), 1278–1283 (2017)CrossRef C. Chi, H. Katsui, T. Goto, Effect of Li addition on the formation of Na-β/βʹʹ-alumina film by laser chemical vapor deposition. Ceram. Int. 43(1), 1278–1283 (2017)CrossRef
79.
go back to reference M. Escobar, G. Rubiolo, R. Candal, S. Goyanes, Effect of catalyst preparation on the yield of carbon nanotube growth. Phys. B 404(18), 2795–2798 (2009)CrossRef M. Escobar, G. Rubiolo, R. Candal, S. Goyanes, Effect of catalyst preparation on the yield of carbon nanotube growth. Phys. B 404(18), 2795–2798 (2009)CrossRef
80.
go back to reference J.-C. Hierso1, P. Serp, R. Feurer, P. Kalck, MOCVD of rhodium, palladium and platinum complexes on fluidized divided substrates: novel process for one-step preparation of noble-metal catalysts. Appl. Organomet. Chem. 12(3), 161–172 (1998) J.-C. Hierso1, P. Serp, R. Feurer, P. Kalck, MOCVD of rhodium, palladium and platinum complexes on fluidized divided substrates: novel process for one-step preparation of noble-metal catalysts. Appl. Organomet. Chem. 12(3), 161–172 (1998)
81.
go back to reference C. Dossi, R. Psaro, R. Ugo, Z.C. Zhang, W.M.H. Sachtler, Non-acidic Pd/Y zeolite catalysts from organopalladium precursors: preparation and catalytic activity in MCP reforming. J. Catal. 149(1), 92–99 (1994)CrossRef C. Dossi, R. Psaro, R. Ugo, Z.C. Zhang, W.M.H. Sachtler, Non-acidic Pd/Y zeolite catalysts from organopalladium precursors: preparation and catalytic activity in MCP reforming. J. Catal. 149(1), 92–99 (1994)CrossRef
82.
go back to reference C. Xu, J. Zhu, One-step preparation of highly dispersed metal-supported catalysts by fluidized-bed MOCVD for carbon nanotube synthesis. Nanotechnology 15(11), 1671–1681 (2004)CrossRef C. Xu, J. Zhu, One-step preparation of highly dispersed metal-supported catalysts by fluidized-bed MOCVD for carbon nanotube synthesis. Nanotechnology 15(11), 1671–1681 (2004)CrossRef
83.
go back to reference C. Vahlas, B. Caussat, P. Serp, G.N. Angelopoulos, Principles and applications of CVD powder technology. Mat. Sci. Eng. R. 53(1–2), 1–72 (2006)CrossRef C. Vahlas, B. Caussat, P. Serp, G.N. Angelopoulos, Principles and applications of CVD powder technology. Mat. Sci. Eng. R. 53(1–2), 1–72 (2006)CrossRef
84.
go back to reference D. Kunii, O. Levenspiel, Fluidization Engineering (Butterworth-Heineman, Newton, MA, 1991) D. Kunii, O. Levenspiel, Fluidization Engineering (Butterworth-Heineman, Newton, MA, 1991)
85.
go back to reference P. Serp, R. Feurer, R. Morancho, P. Kalck, One-step preparation of highly dispersed supported rhodium catalysts by low-temperature organometallic chemical-vapor-deposition. J. Catal. 157(2), 294–300 (1995)CrossRef P. Serp, R. Feurer, R. Morancho, P. Kalck, One-step preparation of highly dispersed supported rhodium catalysts by low-temperature organometallic chemical-vapor-deposition. J. Catal. 157(2), 294–300 (1995)CrossRef
86.
go back to reference J.-C. Hierso, P. Serp, R. Feurer, P. Kalck, MOCVD of rhodium, palladium and platinum complexes on fluidized divided substrates: novel process for one-step preparation of noble-metal catalysts. Appl. Organomet. Chem. 12, 161–172 (1998)CrossRef J.-C. Hierso, P. Serp, R. Feurer, P. Kalck, MOCVD of rhodium, palladium and platinum complexes on fluidized divided substrates: novel process for one-step preparation of noble-metal catalysts. Appl. Organomet. Chem. 12, 161–172 (1998)CrossRef
87.
go back to reference J.-C. Hierso, R. Feurer, J. Poujardieu, Y. Kihn, P. Kalck, Metal-organic chemical vapor deposition in a fluidized bed as a versatile method to prepare layered bimetallic nanoparticles. J. Mol. Catal. A-Chem. 135, 321–325 (1998)CrossRef J.-C. Hierso, R. Feurer, J. Poujardieu, Y. Kihn, P. Kalck, Metal-organic chemical vapor deposition in a fluidized bed as a versatile method to prepare layered bimetallic nanoparticles. J. Mol. Catal. A-Chem. 135, 321–325 (1998)CrossRef
88.
go back to reference P. Serp, P. Kalck, R. Feurer, Chemical vapor deposition methods for the controlled preparation of supported catalytic materials. Chem. Rev. 102, 3085–3128 (2002)CrossRef P. Serp, P. Kalck, R. Feurer, Chemical vapor deposition methods for the controlled preparation of supported catalytic materials. Chem. Rev. 102, 3085–3128 (2002)CrossRef
89.
go back to reference J. Hierso, R. Feurer, P. Kalck, G.N. Angelopoulos, Platinum and palladium films obtained by low-temperature MOCVD for the formation of small particles on divided supports as catalytic materials. Chem. Mater. 12(2), 390–399 (2000)CrossRef J. Hierso, R. Feurer, P. Kalck, G.N. Angelopoulos, Platinum and palladium films obtained by low-temperature MOCVD for the formation of small particles on divided supports as catalytic materials. Chem. Mater. 12(2), 390–399 (2000)CrossRef
90.
go back to reference D. Geldart, Types of gas fluidization. Powder Technol. 7(5), 285–292 (1973)CrossRef D. Geldart, Types of gas fluidization. Powder Technol. 7(5), 285–292 (1973)CrossRef
91.
go back to reference H. Katsui, T. Goto, Coatings on ceramic powders by rotary chemical vapor deposition and sintering of the coated powders. J. Ceram. Soc. Jpn. 126(6), 413–420 (2018)CrossRef H. Katsui, T. Goto, Coatings on ceramic powders by rotary chemical vapor deposition and sintering of the coated powders. J. Ceram. Soc. Jpn. 126(6), 413–420 (2018)CrossRef
92.
go back to reference J. Zhang, R. Tu, T. Goto, Preparation of Ni-precipitated hBN powder by rotary chemical vapor deposition and its consolidation by spark plasma sintering. J. Alloy. Compd. 502(2), 371–375 (2010)CrossRef J. Zhang, R. Tu, T. Goto, Preparation of Ni-precipitated hBN powder by rotary chemical vapor deposition and its consolidation by spark plasma sintering. J. Alloy. Compd. 502(2), 371–375 (2010)CrossRef
93.
go back to reference H. Katsui, Z. He, T. Goto, Preparation and sintering of silica-coated silicon carbide composite powder. J. Jpn. Soc. Powder Powder Metall. 63(3), 111–116 (2016)CrossRef H. Katsui, Z. He, T. Goto, Preparation and sintering of silica-coated silicon carbide composite powder. J. Jpn. Soc. Powder Powder Metall. 63(3), 111–116 (2016)CrossRef
94.
go back to reference T. Fujiyama, M. Otsuka, H. Tsuiki, A. Ueno, Control of the impregnation profile of Ni in an Al2O3 sphere. J. Catal. 104(2), 323–330 (1987)CrossRef T. Fujiyama, M. Otsuka, H. Tsuiki, A. Ueno, Control of the impregnation profile of Ni in an Al2O3 sphere. J. Catal. 104(2), 323–330 (1987)CrossRef
95.
go back to reference M. Watanabe, H. Yamashita, X. Chen, J. Yamanaka, M. Kotobuki, H. Suzuki, H. Uchida, Nano-sized Ni particles on hollow alumina ball: catalysts for hydrogen production. Appl. Catal. B-Environ. 71(3–4), 237–245 (2007)CrossRef M. Watanabe, H. Yamashita, X. Chen, J. Yamanaka, M. Kotobuki, H. Suzuki, H. Uchida, Nano-sized Ni particles on hollow alumina ball: catalysts for hydrogen production. Appl. Catal. B-Environ. 71(3–4), 237–245 (2007)CrossRef
96.
go back to reference E.D. Rodeghiero, O.K. Tse, J. Chisaki, E.P. Giannelis, Synthesis and properties of Ni-α-Al2O3 composites via sol-gel. Mater. Sci. Eng. A 195(1), 151–161 (1995)CrossRef E.D. Rodeghiero, O.K. Tse, J. Chisaki, E.P. Giannelis, Synthesis and properties of Ni-α-Al2O3 composites via sol-gel. Mater. Sci. Eng. A 195(1), 151–161 (1995)CrossRef
97.
go back to reference S. Nakakura, H. Katsui, T. Goto, Preparation of Ni nano-particle by rotary chemical vapour deposition. J. Jpn. Soc. Powder Powder Metall. 64, 677–681 (2017)CrossRef S. Nakakura, H. Katsui, T. Goto, Preparation of Ni nano-particle by rotary chemical vapour deposition. J. Jpn. Soc. Powder Powder Metall. 64, 677–681 (2017)CrossRef
98.
go back to reference J. Zhang, R. Tu, T. Goto, Precipitation of Ni and NiO nanoparticle catalysts on zeolite and mesoporous silica by rotary chemical vapor deposition. J. Ceram. Soc. Jpn. 121(10), 891–894 (2013)CrossRef J. Zhang, R. Tu, T. Goto, Precipitation of Ni and NiO nanoparticle catalysts on zeolite and mesoporous silica by rotary chemical vapor deposition. J. Ceram. Soc. Jpn. 121(10), 891–894 (2013)CrossRef
99.
go back to reference M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10(6), 3739–3758 (2010)CrossRef M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10(6), 3739–3758 (2010)CrossRef
100.
go back to reference B. Bokhonov, A. Ukhina, D. Dudina, H. Katsui, T. Goto, H. Kato, Multiwalled carbon nanotube forests grown on the surface of synthetic diamond crystals. Ceram. Int. 43, 10606–10609 (2017)CrossRef B. Bokhonov, A. Ukhina, D. Dudina, H. Katsui, T. Goto, H. Kato, Multiwalled carbon nanotube forests grown on the surface of synthetic diamond crystals. Ceram. Int. 43, 10606–10609 (2017)CrossRef
101.
go back to reference J. Zhang, R. Tu, T. Goto, Preparation of carbon nanotube by rotary CVD on Ni nano-particle precipitated cBN using nickelocene as a precursor. Mater. Lett. 65(2), 367–370 (2011)CrossRef J. Zhang, R. Tu, T. Goto, Preparation of carbon nanotube by rotary CVD on Ni nano-particle precipitated cBN using nickelocene as a precursor. Mater. Lett. 65(2), 367–370 (2011)CrossRef
102.
go back to reference Z. He, H. Katsui, R. Tu, T. Goto, High-hardness and ductile mosaic SiC/SiO2 composite by spark plasma sintering. J. Am. Ceram. Soc. 97(3), 681–683 (2014)CrossRef Z. He, H. Katsui, R. Tu, T. Goto, High-hardness and ductile mosaic SiC/SiO2 composite by spark plasma sintering. J. Am. Ceram. Soc. 97(3), 681–683 (2014)CrossRef
103.
go back to reference Z. He, R. Tu, H. Katsui, T. Goto, Synthesis of SiC/SiO2 core–shell powder by rotary chemical vapor deposition and its consolidation by spark plasma sintering. Ceram. Int. 39(3), 2605–2610 (2013)CrossRef Z. He, R. Tu, H. Katsui, T. Goto, Synthesis of SiC/SiO2 core–shell powder by rotary chemical vapor deposition and its consolidation by spark plasma sintering. Ceram. Int. 39(3), 2605–2610 (2013)CrossRef
104.
go back to reference Z. He, H. Katsui, R. Tu, T. Goto, Surface modification of silicon carbide powder with silica coating by rotary chemical vapor deposition. Key. Eng. Mater. 616, 232–236 (2014)CrossRef Z. He, H. Katsui, R. Tu, T. Goto, Surface modification of silicon carbide powder with silica coating by rotary chemical vapor deposition. Key. Eng. Mater. 616, 232–236 (2014)CrossRef
105.
go back to reference Z. He, H. Katsui, T. Goto, High-hardness diamond composite consolidated by spark plasma sintering. J. Am. Ceram. Soc. 99(6), 1862–1865 (2016)CrossRef Z. He, H. Katsui, T. Goto, High-hardness diamond composite consolidated by spark plasma sintering. J. Am. Ceram. Soc. 99(6), 1862–1865 (2016)CrossRef
Metadata
Title
Chemical Vapor Deposition
Authors
Hirokazu Katsui
Takashi Goto
Copyright Year
2021
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-7910-3_6

Premium Partners