Skip to main content
Top

2019 | OriginalPaper | Chapter

23. Chemistry and Catalysis of MXenes

Authors : Luke R. Johnson, Aleksandra Vojvodic

Published in: 2D Metal Carbides and Nitrides (MXenes)

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter discusses chemical properties of MXenes focusing on the potential catalytic properties of these materials that can enable chemical transformations of relevance for achieving a sustainable energy future. First, we give an overview of the status of this new field providing a summary of where MXenes have been studied both experimentally and theoretically as catalyst materials as well as where discovery has benefited from a combined computational-experimental approach. We exemplify the combined computational-experimental approach and the crucial impact of a feedback loop between the two by using the hydrogen evolution reaction. When it comes to modeling, we describe how we can use high-throughput computational screening approaches to calculate reactivity and activity properties based on fundamental insight and understanding established prior to the screening process which in turn can be used to identify MXene candidate materials for specific chemical transformations. The chapter is concluded by providing some directions on how we could proceed discovery of new multicomponent MXene materials for chemical transformations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Seh, Z. W., et al. (2016). Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Letters, 1, 589–594.CrossRef Seh, Z. W., et al. (2016). Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Letters, 1, 589–594.CrossRef
2.
go back to reference Gao, G., & Du, A. (2017). 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction. ACS Catalysis, 7, 494–500.CrossRef Gao, G., & Du, A. (2017). 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction. ACS Catalysis, 7, 494–500.CrossRef
3.
go back to reference Fredrickson, K. D., Anasori, B., Seh, Z. W., Gogotsi, Y., & Vojvodic, A. (2016). Effects of applied potential and water intercalation on the surface chemistry of Ti2C and Mo2C MXenes. Journal of Physical Chemistry C, 120, 28432–22844.CrossRef Fredrickson, K. D., Anasori, B., Seh, Z. W., Gogotsi, Y., & Vojvodic, A. (2016). Effects of applied potential and water intercalation on the surface chemistry of Ti2C and Mo2C MXenes. Journal of Physical Chemistry C, 120, 28432–22844.CrossRef
4.
go back to reference Handoko, A. D., et al. (2018). Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity. ACS Applied Energy Materials, 1, 173–180.CrossRef Handoko, A. D., et al. (2018). Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity. ACS Applied Energy Materials, 1, 173–180.CrossRef
5.
go back to reference Shao, M., et al. (2017). Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 5, 16748–16756.CrossRef Shao, M., et al. (2017). Synergistic effect of 2D Ti2C and g-C3N4 for efficient photocatalytic hydrogen production. Journal of Materials Chemistry A, 5, 16748–16756.CrossRef
6.
go back to reference Yuan, W., et al. (2018). MXene nanofibers as highly active catalysts for hydrogen evolution reaction. ACS Sustainable Chemistry & Engineering, 6, 8976–8982.CrossRef Yuan, W., et al. (2018). MXene nanofibers as highly active catalysts for hydrogen evolution reaction. ACS Sustainable Chemistry & Engineering, 6, 8976–8982.CrossRef
7.
go back to reference Li, S., et al. (2018). Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy, 47, 512–518.CrossRef Li, S., et al. (2018). Ultrathin MXene nanosheets with rich fluorine termination groups realizing efficient electrocatalytic hydrogen evolution. Nano Energy, 47, 512–518.CrossRef
8.
go back to reference Jiang, W., et al. (2018). Universal descriptor for large-scale screening of high-performance MXene-based materials for energy storage and conversion. Chemistry of Materials, 30, 2687–2693.CrossRef Jiang, W., et al. (2018). Universal descriptor for large-scale screening of high-performance MXene-based materials for energy storage and conversion. Chemistry of Materials, 30, 2687–2693.CrossRef
9.
go back to reference Ran, J., et al. (2017). Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 8, 13907.CrossRef Ran, J., et al. (2017). Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Communications, 8, 13907.CrossRef
10.
go back to reference Wang, H., et al. (2016). Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. ChemSusChem, 9, 1490–1497.CrossRef Wang, H., et al. (2016). Titania composites with 2D transition metal carbides as photocatalysts for hydrogen production under visible-light irradiation. ChemSusChem, 9, 1490–1497.CrossRef
11.
go back to reference Boudart, M., Delbouille, A., Dumesic, J. A., Khammouma, S., & Topsøe, H. (1975). Surface, catalytic and magnetic properties of small iron particles. I. Preparation and characterization of samples. Journal of Catalysis, 37, 486–502.CrossRef Boudart, M., Delbouille, A., Dumesic, J. A., Khammouma, S., & Topsøe, H. (1975). Surface, catalytic and magnetic properties of small iron particles. I. Preparation and characterization of samples. Journal of Catalysis, 37, 486–502.CrossRef
12.
go back to reference Pandey, M., & Thygesen, K. S. (2017). Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: A computational screening study. Journal of Physical Chemistry C, 121, 13593–13598.CrossRef Pandey, M., & Thygesen, K. S. (2017). Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: A computational screening study. Journal of Physical Chemistry C, 121, 13593–13598.CrossRef
13.
go back to reference Li, P., et al. (2018). High-throughput theoretical optimization of hydrogen evolution reaction on MXenes by transition metal modification. Journal of Materials Chemistry A, 6, 4271–4278.CrossRef Li, P., et al. (2018). High-throughput theoretical optimization of hydrogen evolution reaction on MXenes by transition metal modification. Journal of Materials Chemistry A, 6, 4271–4278.CrossRef
14.
go back to reference Pan, H. (2016). Ultra-high electrochemical catalytic activity of MXenes. Scientific Reports, 6, 32531.CrossRef Pan, H. (2016). Ultra-high electrochemical catalytic activity of MXenes. Scientific Reports, 6, 32531.CrossRef
15.
go back to reference Tran, M. H., et al. (2018). Adding a new member to the MXene family: Synthesis, structure and electrocatalytic activity for the hydrogen evolution reaction of V4C3Tx. ACS Applied Energy Materials, 8, 3908–3914. Tran, M. H., et al. (2018). Adding a new member to the MXene family: Synthesis, structure and electrocatalytic activity for the hydrogen evolution reaction of V4C3Tx. ACS Applied Energy Materials, 8, 3908–3914.
16.
go back to reference Su, T., et al. (2018). One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. ChemSusChem, 11, 688–699.CrossRef Su, T., et al. (2018). One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. ChemSusChem, 11, 688–699.CrossRef
17.
go back to reference Xiu, L., Wang, Z., Yu, M., Wu, X., & Qiu, J. (2018). Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano, 8, 8017–8028. Xiu, L., Wang, Z., Yu, M., Wu, X., & Qiu, J. (2018). Aggregation-resistant 3D MXene-based architecture as efficient bifunctional electrocatalyst for overall water splitting. ACS Nano, 8, 8017–8028.
18.
go back to reference Junkaew, A., & Arróyave, R. (2018). Enhancement of the selectivity of MXenes (M2C, M = Ti, V, Nb, Mo) via oxygen-functionalization: promising materials for gas-sensing and -separation. Physical Chemistry Chemical Physics, 20, 6073–6082.CrossRef Junkaew, A., & Arróyave, R. (2018). Enhancement of the selectivity of MXenes (M2C, M = Ti, V, Nb, Mo) via oxygen-functionalization: promising materials for gas-sensing and -separation. Physical Chemistry Chemical Physics, 20, 6073–6082.CrossRef
19.
go back to reference Guo, Z., Zhou, J., Zhu, L., & Sun, Z. (2016). MXene: a promising photocatalyst for water splitting. Journal of Materials Chemistry A, 4, 11446–11452.CrossRef Guo, Z., Zhou, J., Zhu, L., & Sun, Z. (2016). MXene: a promising photocatalyst for water splitting. Journal of Materials Chemistry A, 4, 11446–11452.CrossRef
20.
go back to reference Ma, T. Y., Cao, J. L., Jaroniec, M., & Qiao, S. Z. (2016). Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angewandte Chemie International Edition, 55, 1138–1142.CrossRef Ma, T. Y., Cao, J. L., Jaroniec, M., & Qiao, S. Z. (2016). Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angewandte Chemie International Edition, 55, 1138–1142.CrossRef
21.
go back to reference Wang, H., et al. (2017). Molybdenum carbide nanoparticles embedded in nitrogen-doped porous carbon nanofibers as a dual catalyst for hydrogen evolution and oxygen reduction reactions. Carbon (New York), 114, 628–634. Wang, H., et al. (2017). Molybdenum carbide nanoparticles embedded in nitrogen-doped porous carbon nanofibers as a dual catalyst for hydrogen evolution and oxygen reduction reactions. Carbon (New York), 114, 628–634.
22.
go back to reference Xie, X., Chen, S., Ding, W., Nie, Y., & Wei, Z. (2013). An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2(X = OH, F) nanosheets for oxygen reduction reaction. Chemical Communications, 49, 10112–10114.CrossRef Xie, X., Chen, S., Ding, W., Nie, Y., & Wei, Z. (2013). An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2(X = OH, F) nanosheets for oxygen reduction reaction. Chemical Communications, 49, 10112–10114.CrossRef
23.
go back to reference Zhang, Z., et al. (2016). Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity. ACS Sustainable Chemistry & Engineering, 4, 6763–6771.CrossRef Zhang, Z., et al. (2016). Self-reduction synthesis of new MXene/Ag composites with unexpected electrocatalytic activity. ACS Sustainable Chemistry & Engineering, 4, 6763–6771.CrossRef
24.
go back to reference Azofra, L. M., Li, N., MacFarlane, D. R., & Sun, C. (2016). Promising prospects for 2D d2–d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy & Environmental Science, 9, 2545–2549.CrossRef Azofra, L. M., Li, N., MacFarlane, D. R., & Sun, C. (2016). Promising prospects for 2D d2–d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy & Environmental Science, 9, 2545–2549.CrossRef
25.
go back to reference Shao, M., et al. (2018). Efficient nitrogen fixation to ammonia on MXenes. Physical Chemistry Chemical Physics, 20, 14504–14512.CrossRef Shao, M., et al. (2018). Efficient nitrogen fixation to ammonia on MXenes. Physical Chemistry Chemical Physics, 20, 14504–14512.CrossRef
26.
go back to reference Handoko, A. D., Khoo, K. H., Tan, T. L., Jin, H., & Seh, Z. W. (2018). Establishing new scaling relations on two-dimensional MXenes for CO2 electroreduction. Journal of Materials Chemistry A, 6, 21885–21890. Handoko, A. D., Khoo, K. H., Tan, T. L., Jin, H., & Seh, Z. W. (2018). Establishing new scaling relations on two-dimensional MXenes for CO2 electroreduction. Journal of Materials Chemistry A, 6, 21885–21890.
27.
go back to reference Li, N., et al. (2017). Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano, 11, 10825–10833.CrossRef Li, N., et al. (2017). Understanding of electrochemical mechanisms for CO2 capture and conversion into hydrocarbon fuels in transition-metal carbides (MXenes). ACS Nano, 11, 10825–10833.CrossRef
28.
go back to reference Morales-garcía, Á., Fernández-fernández, A., Viñes, F., & Illas, F. (2018). CO2 abatement by two-dimensional MXene carbides. Journal of Materials Chemistry A, 6, 3381–3385.CrossRef Morales-garcía, Á., Fernández-fernández, A., Viñes, F., & Illas, F. (2018). CO2 abatement by two-dimensional MXene carbides. Journal of Materials Chemistry A, 6, 3381–3385.CrossRef
29.
go back to reference Zhang, X., et al. (2016). A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation. Journal of Materials Chemistry A, 4, 4871–4876.CrossRef Zhang, X., et al. (2016). A Ti-anchored Ti2CO2 monolayer (MXene) as a single-atom catalyst for CO oxidation. Journal of Materials Chemistry A, 4, 4871–4876.CrossRef
30.
go back to reference Cheng, C., Zhang, X., Wang, M., Wang, S., & Yang, Z. (2018). Single Pd atomic catalyst on Mo2CO2 monolayer (MXene): unusual activity for CO oxidation by trimolecular Eley–Rideal mechanism. Physical Chemistry Chemical Physics, 20, 3504–3513.CrossRef Cheng, C., Zhang, X., Wang, M., Wang, S., & Yang, Z. (2018). Single Pd atomic catalyst on Mo2CO2 monolayer (MXene): unusual activity for CO oxidation by trimolecular Eley–Rideal mechanism. Physical Chemistry Chemical Physics, 20, 3504–3513.CrossRef
31.
go back to reference Li, X., Fan, G., & Zeng, C. (2014). Synthesis of ruthenium nanoparticles deposited on graphene-like transition metal carbide as an effective catalyst for the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 39, 14927–14934.CrossRef Li, X., Fan, G., & Zeng, C. (2014). Synthesis of ruthenium nanoparticles deposited on graphene-like transition metal carbide as an effective catalyst for the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 39, 14927–14934.CrossRef
32.
go back to reference Ming, M., et al. (2017). Promoted effect of alkalization on the catalytic performance of Rh/alk-Ti3C2X2(X = O, F) for the hydrodechlorination of chlorophenols in base-free aqueous medium. Applied Catalysis B: Environmental, 210, 462–469.CrossRef Ming, M., et al. (2017). Promoted effect of alkalization on the catalytic performance of Rh/alk-Ti3C2X2(X = O, F) for the hydrodechlorination of chlorophenols in base-free aqueous medium. Applied Catalysis B: Environmental, 210, 462–469.CrossRef
33.
go back to reference Liu, T., Wang, Q., Yuan, J., Zhao, X., & Gao, G. (2018). Highly dispersed bimetallic nanoparticles supported on titanium carbides for remarkable hydrogen release from hydrous hydrazine. ChemCatChem, 10, 2200.CrossRef Liu, T., Wang, Q., Yuan, J., Zhao, X., & Gao, G. (2018). Highly dispersed bimetallic nanoparticles supported on titanium carbides for remarkable hydrogen release from hydrous hydrazine. ChemCatChem, 10, 2200.CrossRef
34.
go back to reference Gao, Y., et al. (2014). Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate. Solid State Sciences, 35, 62–65.CrossRef Gao, Y., et al. (2014). Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate. Solid State Sciences, 35, 62–65.CrossRef
35.
go back to reference Zou, G., et al. (2017). Synthesis of nanoflower-shaped MXene derivative with unexpected catalytic activity for dehydrogenation of sodium alanates. ACS Applied Materials & Interfaces, 9, 7611–7618.CrossRef Zou, G., et al. (2017). Synthesis of nanoflower-shaped MXene derivative with unexpected catalytic activity for dehydrogenation of sodium alanates. ACS Applied Materials & Interfaces, 9, 7611–7618.CrossRef
36.
go back to reference Fan, Y., et al. (2018). Two-dimensional MXene/A-TiO2 composite with unprecedented catalytic activation for sodium alanate. Catalysis Today, 318, 167–174.CrossRef Fan, Y., et al. (2018). Two-dimensional MXene/A-TiO2 composite with unprecedented catalytic activation for sodium alanate. Catalysis Today, 318, 167–174.CrossRef
37.
go back to reference Wu, R., et al. (2016). Remarkably improved hydrogen storage properties of NaAlH4 doped with 2D titanium carbide. Journal of Power Sources, 327, 519–525.CrossRef Wu, R., et al. (2016). Remarkably improved hydrogen storage properties of NaAlH4 doped with 2D titanium carbide. Journal of Power Sources, 327, 519–525.CrossRef
38.
go back to reference Ye, M., Wang, X., Liu, E., Ye, J., & Wang, D. (2018). Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst. ChemSusChem, 11, 1606–1611.CrossRef Ye, M., Wang, X., Liu, E., Ye, J., & Wang, D. (2018). Boosting the photocatalytic activity of P25 for carbon dioxide reduction by using a surface-alkalinized titanium carbide MXene as cocatalyst. ChemSusChem, 11, 1606–1611.CrossRef
39.
go back to reference Low, J., Zhang, L., Tong, T., Shen, B., & Yu, J. (2018). TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. Journal of Catalysis, 361, 255–266.CrossRef Low, J., Zhang, L., Tong, T., Shen, B., & Yu, J. (2018). TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. Journal of Catalysis, 361, 255–266.CrossRef
40.
go back to reference Lin, H., Wang, X., Yu, L., Chen, Y., & Shi, J. (2017). Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Letters, 17, 384–391.CrossRef Lin, H., Wang, X., Yu, L., Chen, Y., & Shi, J. (2017). Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Letters, 17, 384–391.CrossRef
41.
go back to reference Zhang, H., et al. (2016). Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts. Journal of Materials Chemistry A, 4, 12913–12920.CrossRef Zhang, H., et al. (2016). Computational studies on the structural, electronic and optical properties of graphene-like MXenes (M2CT2, M = Ti, Zr, Hf; T = O, F, OH) and their potential applications as visible-light driven photocatalysts. Journal of Materials Chemistry A, 4, 12913–12920.CrossRef
42.
go back to reference Zhang, X., et al. (2017). Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction. Journal of Materials Chemistry A, 5, 12899–12903.CrossRef Zhang, X., et al. (2017). Ti2CO2 MXene: a highly active and selective photocatalyst for CO2 reduction. Journal of Materials Chemistry A, 5, 12899–12903.CrossRef
43.
go back to reference Cao, S., Shen, B., Tong, T., Fu, J., & Yu, J. (2018). 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Advanced Functional Materials, 28, 1800136.CrossRef Cao, S., Shen, B., Tong, T., Fu, J., & Yu, J. (2018). 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Advanced Functional Materials, 28, 1800136.CrossRef
44.
go back to reference Hinnemann, B., et al. (2005). Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. Journal of the American Chemical Society, 127, 5308–5309.CrossRef Hinnemann, B., et al. (2005). Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. Journal of the American Chemical Society, 127, 5308–5309.CrossRef
45.
go back to reference Hu, T., et al. (2017). Chemical origin of termination-functionalized MXenes: Ti3C2T2 as a case study. Journal of Physical Chemistry C, 121, 19254–19261.CrossRef Hu, T., et al. (2017). Chemical origin of termination-functionalized MXenes: Ti3C2T2 as a case study. Journal of Physical Chemistry C, 121, 19254–19261.CrossRef
46.
go back to reference Srivastava, P., Mishra, A., Mizuseki, H., Lee, K. R., & Singh, A. K. (2016). Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2MXene. ACS Applied Materials & Interfaces, 8, 24256–24264.CrossRef Srivastava, P., Mishra, A., Mizuseki, H., Lee, K. R., & Singh, A. K. (2016). Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2MXene. ACS Applied Materials & Interfaces, 8, 24256–24264.CrossRef
47.
go back to reference Hope, M. A., et al. (2016). NMR reveals the surface functionalisation of Ti3C2 MXene. Physical Chemistry Chemical Physics, 18, 5099–5102.CrossRef Hope, M. A., et al. (2016). NMR reveals the surface functionalisation of Ti3C2 MXene. Physical Chemistry Chemical Physics, 18, 5099–5102.CrossRef
48.
go back to reference Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2014). 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 26, 992–1005.CrossRef Naguib, M., Mochalin, V. N., Barsoum, M. W., & Gogotsi, Y. (2014). 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 26, 992–1005.CrossRef
49.
go back to reference Gogotsi, Y., & Barsoum, M. W. (2012). Two-dimensional transition metal carbides. ACS Nano, 6, 1322–1331.CrossRef Gogotsi, Y., & Barsoum, M. W. (2012). Two-dimensional transition metal carbides. ACS Nano, 6, 1322–1331.CrossRef
50.
go back to reference Nørskov, J. K., et al. (2005). Trends in the exchange current for hydrogen evolution. Journal of the Electrochemical Society, 152, J23–J26.CrossRef Nørskov, J. K., et al. (2005). Trends in the exchange current for hydrogen evolution. Journal of the Electrochemical Society, 152, J23–J26.CrossRef
51.
go back to reference Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J., & Nørskov, J. K. (2010). How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy & Environmental Science, 3, 1311.CrossRef Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J., & Nørskov, J. K. (2010). How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy & Environmental Science, 3, 1311.CrossRef
52.
go back to reference Rossmeisl, J., Logadottir, A., & Nørskov, J. K. (2005). Electrolysis of water on (oxidized) metal surfaces. Chemical Physics, 319, 178–184.CrossRef Rossmeisl, J., Logadottir, A., & Nørskov, J. K. (2005). Electrolysis of water on (oxidized) metal surfaces. Chemical Physics, 319, 178–184.CrossRef
53.
go back to reference Parsons, R. (1958). The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Transactions of the Faraday Society, 54, 1053–1063.CrossRef Parsons, R. (1958). The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Transactions of the Faraday Society, 54, 1053–1063.CrossRef
54.
go back to reference Kibsgaard, J., et al. (2015). Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy & Environmental Science, 8, 3022–3029.CrossRef Kibsgaard, J., et al. (2015). Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends. Energy & Environmental Science, 8, 3022–3029.CrossRef
55.
go back to reference Greeley, J., & Mavrikakis, M. (2004). Alloy catalysts designed from first principles. Nature Materials, 3, 810–815.CrossRef Greeley, J., & Mavrikakis, M. (2004). Alloy catalysts designed from first principles. Nature Materials, 3, 810–815.CrossRef
56.
go back to reference Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I., & Nørskov, J. K. (2006). Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials, 5, 909–913.CrossRef Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I., & Nørskov, J. K. (2006). Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Materials, 5, 909–913.CrossRef
57.
go back to reference Ling, C., Shi, L., Ouyang, Y., & Wang, J. (2016). Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chemistry of Materials, 28, 9026–9032.CrossRef Ling, C., Shi, L., Ouyang, Y., & Wang, J. (2016). Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chemistry of Materials, 28, 9026–9032.CrossRef
58.
go back to reference Soundiraraju, B., & George, B. K. (2017). Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano, 11, 8892–8900.CrossRef Soundiraraju, B., & George, B. K. (2017). Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano, 11, 8892–8900.CrossRef
59.
go back to reference Urbankowski, P., et al. (2017). 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). Nanoscale, 9, 17722–17730.CrossRef Urbankowski, P., et al. (2017). 2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes). Nanoscale, 9, 17722–17730.CrossRef
Metadata
Title
Chemistry and Catalysis of MXenes
Authors
Luke R. Johnson
Aleksandra Vojvodic
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-19026-2_23