Skip to main content
Top

2019 | OriginalPaper | Chapter

57. Chitosan-Based Polyelectrolyte Complex Hydrogels for Biomedical Applications

Authors : Silvia Vasiliu, Stefania Racovita, Marcel Popa, Lacramioara Ochiuz, Catalina Anisoara Peptu

Published in: Cellulose-Based Superabsorbent Hydrogels

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chitosan is produced by deacetylation of chitin, a structural element in the exoskeleton of crustaceans and insects, which is the second most abundant natural biopolymer after cellulose. Chitosan has found applications in many primary industries such as: agriculture, paper, textiles, pharmacology, cosmetology, and wastewater treatment. There is a major interest in using chitosan for biomedical applications due to its generous properties including biocompatibility, low toxicity, hemostatic potential, good film-forming character, anti-infectional activity, and susceptibility to enzymatic degradation. The property of chitosan which will be in detail discussed in this chapter refers to its ability to form polyelectrolyte complexes due to the presence of amine groups in its repetitive unit. Therefore, chitosan in aqueous acid solution reacted with anionic polysaccharides such as: carboxymethylcellulose, xanthan, alginate, carrageenan, gellan, oxychitin and oxypullulan, chondroitin and hyaluronan, poly(galacturonic acid), poly(L-glutamic acid) as well as synthetic polyanions such as poly(acrylic acid) to give polyelectrolyte complexes. One major advantage of polyelectrolyte complexes for biomedical use is their superior biocompatibility in respect with other formulations which are using synthetic crosslinkers to obtain stable hydrogels. The aim of this chapter is to describe the process of chitosan complexation with other natural and synthetic polyanions, the factors that influence the formation and stability of these polyelectrolyte complexes and the potential applications in biomedical field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ahn HJ, Kang EC, Jang CH, Song KW, Lee JO (2000) Complexation behavior of poly(acrylic acid) and poly(ethylene oxide) in water and water-methanol. JMS Pure Appl Chem A 37(6):573–590 Ahn HJ, Kang EC, Jang CH, Song KW, Lee JO (2000) Complexation behavior of poly(acrylic acid) and poly(ethylene oxide) in water and water-methanol. JMS Pure Appl Chem A 37(6):573–590
2.
go back to reference Cohen Y, Prevysh V (1998) The structure of the interpolymer complex of poly(ethylene oxide) and poly(acrylic acid) in water-dioxane mixtures. Acta Polym 49(10–11):539–543 Cohen Y, Prevysh V (1998) The structure of the interpolymer complex of poly(ethylene oxide) and poly(acrylic acid) in water-dioxane mixtures. Acta Polym 49(10–11):539–543
3.
go back to reference Popa M, Alupei IC, Bucevschi MD (2001) Complexes interpolymeres a base de xanthane et gelatine. Eur Polym J 37(6):1239–1245 Popa M, Alupei IC, Bucevschi MD (2001) Complexes interpolymeres a base de xanthane et gelatine. Eur Polym J 37(6):1239–1245
4.
go back to reference Kabanov VA, Zezin AB (1984) A new class of complex water-soluble polyelectrolytes. Macromol Chem Phys Suppl 6:259–276 Kabanov VA, Zezin AB (1984) A new class of complex water-soluble polyelectrolytes. Macromol Chem Phys Suppl 6:259–276
5.
go back to reference Izumrudov VA, Savitskii AP, Bakeev KN, Zezin AB, Kabanov VA (1984) A fluorescence quenching study of interpolyelectrolyte reactions. Makromol Rapid Commun 5(11):709–714 Izumrudov VA, Savitskii AP, Bakeev KN, Zezin AB, Kabanov VA (1984) A fluorescence quenching study of interpolyelectrolyte reactions. Makromol Rapid Commun 5(11):709–714
6.
go back to reference Kabanov VA, Zezin AB, Rogacheva VB, Grishina NV, Goethals EJ, Van de Velde M (1986) Properties of polyelectrolyte complexes containing poly(N-tert-butylaziride). Makromol Chem 187(5):1151–1158 Kabanov VA, Zezin AB, Rogacheva VB, Grishina NV, Goethals EJ, Van de Velde M (1986) Properties of polyelectrolyte complexes containing poly(N-tert-butylaziride). Makromol Chem 187(5):1151–1158
7.
go back to reference Izumrudov VA, Bronich TK, Saburova OS, Zezin AB, Kabanov VA (1988) The influence of chain length of a competitive polyanion and nature of monovalent counterions on the direction of the substitution reaction of polyelectrolyte complexes. Makromol Chem Rapid Commun 9(1):7–12 Izumrudov VA, Bronich TK, Saburova OS, Zezin AB, Kabanov VA (1988) The influence of chain length of a competitive polyanion and nature of monovalent counterions on the direction of the substitution reaction of polyelectrolyte complexes. Makromol Chem Rapid Commun 9(1):7–12
8.
go back to reference Karibyants N, Dautzenberg H (1998) Preferential binding with regard to chain length and chemical structure in the reactions of formation of quasi-soluble polyelectrolyte complexes. Langmuir 14(16):4427–4434 Karibyants N, Dautzenberg H (1998) Preferential binding with regard to chain length and chemical structure in the reactions of formation of quasi-soluble polyelectrolyte complexes. Langmuir 14(16):4427–4434
9.
go back to reference Firestone BA, Siegel RA (1991) Kinetics and mechanisms of water sorption in hydrophobic, ionizable copolymer gels. J Appl Polym Sci 43(5):901–914 Firestone BA, Siegel RA (1991) Kinetics and mechanisms of water sorption in hydrophobic, ionizable copolymer gels. J Appl Polym Sci 43(5):901–914
11.
go back to reference Nge TT, Yamaguchi M, Hori N, Takemura A, Ono H (2002) Synthesis and characterization of chitosan/poly(acrylic acid) polyelectrolyte complex. J Appl Polym Sci 83(5):1025–1035 Nge TT, Yamaguchi M, Hori N, Takemura A, Ono H (2002) Synthesis and characterization of chitosan/poly(acrylic acid) polyelectrolyte complex. J Appl Polym Sci 83(5):1025–1035
12.
go back to reference Torre PM, Torrado S, Torrado S (2003) Interpolymer complexes of poly(acrylic acid) and chitosan: influence of the ionic hydrogel-forming medium. Biomaterials 24(8):1459–1468PubMed Torre PM, Torrado S, Torrado S (2003) Interpolymer complexes of poly(acrylic acid) and chitosan: influence of the ionic hydrogel-forming medium. Biomaterials 24(8):1459–1468PubMed
13.
go back to reference Sun TL, Kurokawa T, Kuroda S, Ihasan AB, Akasaki T, Sato K, Haque MA, Nakajima T, Gong JP (2013) Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 12(10):932–937PubMed Sun TL, Kurokawa T, Kuroda S, Ihasan AB, Akasaki T, Sato K, Haque MA, Nakajima T, Gong JP (2013) Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 12(10):932–937PubMed
14.
go back to reference Pafiti KS, Philippou Z, Loizou E, Porcar L, Patrickios CS (2011) End-linked poly[2(dimethylamino)ethyl methacrylate]-poly(methacrylic acid)polyampholyte conetworks: synthesis by sequential RAFT polymerization and swelling and SANS characterization. Macromolecules 44(13):5352–5362 Pafiti KS, Philippou Z, Loizou E, Porcar L, Patrickios CS (2011) End-linked poly[2(dimethylamino)ethyl methacrylate]-poly(methacrylic acid)polyampholyte conetworks: synthesis by sequential RAFT polymerization and swelling and SANS characterization. Macromolecules 44(13):5352–5362
15.
go back to reference Thunemann AF, Muller M, Dautzenberg H, Joanny JF, Lowen H (2004) Polyelectrolyte complexes. Adv Polym Sci 166:113–171 Thunemann AF, Muller M, Dautzenberg H, Joanny JF, Lowen H (2004) Polyelectrolyte complexes. Adv Polym Sci 166:113–171
16.
go back to reference Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367PubMed Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367PubMed
17.
go back to reference Berger J, Reist M, Mayer JM, Felt O, Gurny R (2005) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57(1):35–52 Berger J, Reist M, Mayer JM, Felt O, Gurny R (2005) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57(1):35–52
18.
go back to reference Croisier F, Jerome C (2013) Chitosan-based materials for tissue engineering. Eur Polym J 49(4):780–792 Croisier F, Jerome C (2013) Chitosan-based materials for tissue engineering. Eur Polym J 49(4):780–792
19.
go back to reference Tsuchida E (1994) Formation of polyelectrolyte complexes and their structures. J Macromol Sci Part A Pure Appl Chem 31(1):1–15 Tsuchida E (1994) Formation of polyelectrolyte complexes and their structures. J Macromol Sci Part A Pure Appl Chem 31(1):1–15
20.
go back to reference Mi FL, Shyu SS, Wong TB, Jang SF, Lee ST, Lu KT (1999) Chitosan-polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. II effect of pH-dependent ionic crosslinking or interpolymer complex using tripolyphosphate or polyphosphate as reagent. J Appl Polym Sci 74(5):1093–1107 Mi FL, Shyu SS, Wong TB, Jang SF, Lee ST, Lu KT (1999) Chitosan-polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. II effect of pH-dependent ionic crosslinking or interpolymer complex using tripolyphosphate or polyphosphate as reagent. J Appl Polym Sci 74(5):1093–1107
21.
go back to reference Arguelles-Monal W, Hechavarria OL, Rodriguez L, Peniche C (1993) Swelling of membranes from the polyelectrolyte complex between chitosan and carboxymethyl cellulose. Polym Bull 31(4):471–478 Arguelles-Monal W, Hechavarria OL, Rodriguez L, Peniche C (1993) Swelling of membranes from the polyelectrolyte complex between chitosan and carboxymethyl cellulose. Polym Bull 31(4):471–478
22.
go back to reference Fukuda H, Kikuchi Y (1978) In vitro clot formation on the polyelectrolyte complexes of sodium dextran sulfate with chitosan. J Biomed Mater Res A 12(4):531–539 Fukuda H, Kikuchi Y (1978) In vitro clot formation on the polyelectrolyte complexes of sodium dextran sulfate with chitosan. J Biomed Mater Res A 12(4):531–539
23.
go back to reference Takahashi T, Takayama K, Machida Y, Nagai T (1990) Characteristics of polyion complexes of chitosan with sodium alginate and sodium polyacrylate. Int J Pharm 61(1–2):35–41 Takahashi T, Takayama K, Machida Y, Nagai T (1990) Characteristics of polyion complexes of chitosan with sodium alginate and sodium polyacrylate. Int J Pharm 61(1–2):35–41
24.
go back to reference Ahmadi F, Oveisi Z, Mohammadi Samaru S, Amoozgar Z (2015) Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 10(1):1–16PubMedPubMedCentral Ahmadi F, Oveisi Z, Mohammadi Samaru S, Amoozgar Z (2015) Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 10(1):1–16PubMedPubMedCentral
25.
go back to reference Il’ina AV, Varlamov VP (2005) Chitosan-based polyelectrolyte complexes: a review. Appl Biochem Microbiol 41(1):5–11 Il’ina AV, Varlamov VP (2005) Chitosan-based polyelectrolyte complexes: a review. Appl Biochem Microbiol 41(1):5–11
26.
go back to reference Etrych T, Leclercq L, Boustta M, Vert M (2005) Polyelectrolyte complex formation and stability when mixing polyanions and polycations in salted media: a model study related to the case of body fluids. Eur J Pharm Sci 2(4):281–288 Etrych T, Leclercq L, Boustta M, Vert M (2005) Polyelectrolyte complex formation and stability when mixing polyanions and polycations in salted media: a model study related to the case of body fluids. Eur J Pharm Sci 2(4):281–288
27.
go back to reference Verma A, Verma A (2013) Polyelectrolyte complex-an overview. Int J Pharm Sci Res 4 (5):1684–1691 Verma A, Verma A (2013) Polyelectrolyte complex-an overview. Int J Pharm Sci Res 4 (5):1684–1691
28.
go back to reference Yao KD, Tu H, Cheng F, Zhang JW, Liu J (1997) pH-sensitivity of the swelling of a chitosan-pectin polyelectrolyte complex. Macromol Mater Eng 245(1):63–72 Yao KD, Tu H, Cheng F, Zhang JW, Liu J (1997) pH-sensitivity of the swelling of a chitosan-pectin polyelectrolyte complex. Macromol Mater Eng 245(1):63–72
29.
go back to reference Chellat F, Tabrizian M, Dumitriu S, Chornet E, Magny P, Rivard CH, Yahia H (2000) In vitro and in vivo biocompatibility of chitosan-xanthan polyionic complexes. J Biomed Mater Res A 51(1):107–116 Chellat F, Tabrizian M, Dumitriu S, Chornet E, Magny P, Rivard CH, Yahia H (2000) In vitro and in vivo biocompatibility of chitosan-xanthan polyionic complexes. J Biomed Mater Res A 51(1):107–116
30.
go back to reference Tsuchida E, Abe K (1982) Interactions between macromolecules in solution and intermolecular complexes. Adv Polym Sci 45:1–119 Tsuchida E, Abe K (1982) Interactions between macromolecules in solution and intermolecular complexes. Adv Polym Sci 45:1–119
31.
go back to reference Wielema TA, Engberts JBFN (1987) Zwitterionic polymers-I. Synthesis of a novel series of poly(vinylsulphobetaines). Effect of structure of polymer on solubility in water. Eur Polym J 23(12):947–950 Wielema TA, Engberts JBFN (1987) Zwitterionic polymers-I. Synthesis of a novel series of poly(vinylsulphobetaines). Effect of structure of polymer on solubility in water. Eur Polym J 23(12):947–950
32.
go back to reference Barboiu V, Streba E, Luca C, Radu I, Grigoriu GE (1998) Reactions on polymers with amine groups. V. Addition of pyridine and imidazole groups with acetylnecarboxylic acids. J Polym Sci A: Polym Chem 36(10):1615–1623 Barboiu V, Streba E, Luca C, Radu I, Grigoriu GE (1998) Reactions on polymers with amine groups. V. Addition of pyridine and imidazole groups with acetylnecarboxylic acids. J Polym Sci A: Polym Chem 36(10):1615–1623
33.
go back to reference Luca C, Mihailescu S (2002) Polymers containing quaternary ammonium groups based on poly(N-vinylimidazole). Eur Polym J 38(8):1501–1507 Luca C, Mihailescu S (2002) Polymers containing quaternary ammonium groups based on poly(N-vinylimidazole). Eur Polym J 38(8):1501–1507
34.
go back to reference Luca C, Neagu V, Vasiliu S, Barboiu V (2005) Synthetic polybetaines. Synthesis and properties. In: Dragan ES (ed) Focus in ionic polymers. Research Singpost, Kerala, pp 117–153 Luca C, Neagu V, Vasiliu S, Barboiu V (2005) Synthetic polybetaines. Synthesis and properties. In: Dragan ES (ed) Focus in ionic polymers. Research Singpost, Kerala, pp 117–153
35.
go back to reference Barboiu V, Streba E, Holerca MN, Luca C (1995) Reactions on polymers with amine groups II reactions of poly(N-vinylimidazole) and its model compound with unsaturated carboxylic acid. J Macromol Sci Pure Appl Chem A 32(8–9):1385–1396 Barboiu V, Streba E, Holerca MN, Luca C (1995) Reactions on polymers with amine groups II reactions of poly(N-vinylimidazole) and its model compound with unsaturated carboxylic acid. J Macromol Sci Pure Appl Chem A 32(8–9):1385–1396
36.
go back to reference Grigoras A, Racovita S, Vasiliu S, Nistor NT, Dunca S, Barboiu V, Grigoras VC (2012) Dilute solution properties of some polycarboxybetaines with antibacterial activity. J Polym Res 19(11):art 8 Grigoras A, Racovita S, Vasiliu S, Nistor NT, Dunca S, Barboiu V, Grigoras VC (2012) Dilute solution properties of some polycarboxybetaines with antibacterial activity. J Polym Res 19(11):art 8
37.
go back to reference Chavasit V, Torres JA (1990) Chitosan-poly(acrylic acid): mechanism of complex formation and potential industrial applications. Biotechnol Prog 6(1):2–6PubMed Chavasit V, Torres JA (1990) Chitosan-poly(acrylic acid): mechanism of complex formation and potential industrial applications. Biotechnol Prog 6(1):2–6PubMed
38.
go back to reference Kubota N, Kikuchi Y (1998) Macromolecular complexes of chitosan. In: Dumitriu S (ed) Polysaccharides, structural diversity and functional versatility. Marcel Dekker Inc, New York, pp 595–628 Kubota N, Kikuchi Y (1998) Macromolecular complexes of chitosan. In: Dumitriu S (ed) Polysaccharides, structural diversity and functional versatility. Marcel Dekker Inc, New York, pp 595–628
39.
go back to reference Alupei IC, Popa M, Bejenariu A, Vasiliu S, Alupei V (2006) Composite membranes based on gellan and poly(N-vinylmidazole). Synthesis and charactertization. Eur Polym J 42(4):908–916 Alupei IC, Popa M, Bejenariu A, Vasiliu S, Alupei V (2006) Composite membranes based on gellan and poly(N-vinylmidazole). Synthesis and charactertization. Eur Polym J 42(4):908–916
40.
go back to reference de Oliveira HCL, Fonseca JLC, Pereira EMR (2008) Chitosan poly(acrylic acid) polyelectrolyte complex membranes:preparation, characterization and permeability studies. J Biomater Sci Polym Ed 19(2):143–160PubMed de Oliveira HCL, Fonseca JLC, Pereira EMR (2008) Chitosan poly(acrylic acid) polyelectrolyte complex membranes:preparation, characterization and permeability studies. J Biomater Sci Polym Ed 19(2):143–160PubMed
41.
go back to reference Racovita S, Vasiliu S, Popa M (2012) Sorption isotherms and kinetics of cefotaxime sodium salt on chitosan-polybetaine complexes. Rev Roum Chim 57(2):115–120 Racovita S, Vasiliu S, Popa M (2012) Sorption isotherms and kinetics of cefotaxime sodium salt on chitosan-polybetaine complexes. Rev Roum Chim 57(2):115–120
42.
go back to reference Racovita S, Vasiliu S, Vlad CD (2010) New drug delivery systems based on polyelectrolyte complexes. Rev Roum Chim 55(10):659–666 Racovita S, Vasiliu S, Vlad CD (2010) New drug delivery systems based on polyelectrolyte complexes. Rev Roum Chim 55(10):659–666
43.
go back to reference Gisbert J, Torrado G, Toraddo S, Olivarea D, Pajares JM (2006) Clinical trial evaluating amoxicillin and clarithromycin hydrogel (chitosan-polyacrilic acid polyionic complexes) for H. Pylori eradication. J Clin Gastroenterol 40(7):618–622PubMed Gisbert J, Torrado G, Toraddo S, Olivarea D, Pajares JM (2006) Clinical trial evaluating amoxicillin and clarithromycin hydrogel (chitosan-polyacrilic acid polyionic complexes) for H. Pylori eradication. J Clin Gastroenterol 40(7):618–622PubMed
44.
go back to reference Giri TK, Thakeer A, Alexander A, Badwaik H, Tripathi DK (2012) Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharm Sin B 2(5):439–449 Giri TK, Thakeer A, Alexander A, Badwaik H, Tripathi DK (2012) Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharm Sin B 2(5):439–449
45.
go back to reference Yadav RSH, Satish CS, Shivakumar HG (2007) Preparation and evaluation of chitosan-poly(acrylic acid) hydrogels as stomach specific delivery for amoxicillin and metronidazole. Indian J Pharm Sci 69(1):91–95 Yadav RSH, Satish CS, Shivakumar HG (2007) Preparation and evaluation of chitosan-poly(acrylic acid) hydrogels as stomach specific delivery for amoxicillin and metronidazole. Indian J Pharm Sci 69(1):91–95
46.
go back to reference Rossi S, Sandri G, Ferrari F, Bonferoni MC, Caramella C (2003) Buccal delivery of acyclovir from films based on chitosan and polyacrilic acid. Pharm Dev Technol 8(2):199–208PubMed Rossi S, Sandri G, Ferrari F, Bonferoni MC, Caramella C (2003) Buccal delivery of acyclovir from films based on chitosan and polyacrilic acid. Pharm Dev Technol 8(2):199–208PubMed
47.
go back to reference Silva CL, Pereira JC, Ramalho A, Pais AACC, Sousa JJS (2008) Films based on chitosan polyelectrolyte complexes for skin drug delivery: development and characterization. J Membr Sci 320(1–2):268–279 Silva CL, Pereira JC, Ramalho A, Pais AACC, Sousa JJS (2008) Films based on chitosan polyelectrolyte complexes for skin drug delivery: development and characterization. J Membr Sci 320(1–2):268–279
48.
go back to reference Cho SM, Choi HK (2005) Preparation of muchoadhesive chitosan-poly(acrylic acid) microspheres by interpolymer complexation and solvent evaporation method I. J Pharm Investig 35(2):95–99 Cho SM, Choi HK (2005) Preparation of muchoadhesive chitosan-poly(acrylic acid) microspheres by interpolymer complexation and solvent evaporation method I. J Pharm Investig 35(2):95–99
49.
go back to reference Cho SM, Choi HK (2005) Preparation of muchoadhesive chitosan-poly(acrylic acid) microspheres by interpolymer complexation and solvent evaporation method II. Arch Pharm Res 28(5):612–618PubMed Cho SM, Choi HK (2005) Preparation of muchoadhesive chitosan-poly(acrylic acid) microspheres by interpolymer complexation and solvent evaporation method II. Arch Pharm Res 28(5):612–618PubMed
50.
go back to reference Ahn JS, Choi HK, Chun MK, Ryu JM, Jung JH, Kim YU, Cho CS (2002) Release of triamcinolone acetonide from mucoadhesive polymer composed of chitosan and poly(acrylic acid) in vitro. Biomaterials 23(6):1411–1416PubMed Ahn JS, Choi HK, Chun MK, Ryu JM, Jung JH, Kim YU, Cho CS (2002) Release of triamcinolone acetonide from mucoadhesive polymer composed of chitosan and poly(acrylic acid) in vitro. Biomaterials 23(6):1411–1416PubMed
51.
go back to reference Torre PM, Enobakhare Y, Torrado G, Torrado S (2003) Release of amoxicillin from polyionic complexes of chitosan and poly(acrylic acid). Study of polymer/polymer and polymer/drug interactions within the network structure. Biomaterials 24(8):1499–1506PubMed Torre PM, Enobakhare Y, Torrado G, Torrado S (2003) Release of amoxicillin from polyionic complexes of chitosan and poly(acrylic acid). Study of polymer/polymer and polymer/drug interactions within the network structure. Biomaterials 24(8):1499–1506PubMed
52.
go back to reference Varshosaz J, Tavakoli N, Maghaddam F, Ghassami E (2015) Polyelectrolyte complexes of chitosan for production of sustained release tablets of bupropion HCl. Farmacia 63(1):65–73 Varshosaz J, Tavakoli N, Maghaddam F, Ghassami E (2015) Polyelectrolyte complexes of chitosan for production of sustained release tablets of bupropion HCl. Farmacia 63(1):65–73
53.
go back to reference Hamman JH (2010) Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs 8(4):1305–1322PubMedPubMedCentral Hamman JH (2010) Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs 8(4):1305–1322PubMedPubMedCentral
54.
go back to reference Moustafine RI, Kabanova TV, Kemenova VA, Van den Mooter G (2005) Characteristics of interpolyelectrolyte complexes of Eudragit E100 with Eudragit L100. J Control Release 103(1):191–198PubMed Moustafine RI, Kabanova TV, Kemenova VA, Van den Mooter G (2005) Characteristics of interpolyelectrolyte complexes of Eudragit E100 with Eudragit L100. J Control Release 103(1):191–198PubMed
55.
go back to reference Lorenzo-Lamosa ML, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1998) Design of microencapsulated chitosan microspheres for colonic drug delivery. J Control Release 52(1–2):109–118PubMed Lorenzo-Lamosa ML, Remunan-Lopez C, Vila-Jato JL, Alonso MJ (1998) Design of microencapsulated chitosan microspheres for colonic drug delivery. J Control Release 52(1–2):109–118PubMed
56.
go back to reference Yoshizawa T, Shin-Ya Y, Hong KJ, Kajiuchi T (2005) pH and temperature-sensitive release behaviors from polyelectrolyte complex films composed of chitosan and PAOMA copolymer. Eur J Pharm Biopharm 59(2):307–313PubMed Yoshizawa T, Shin-Ya Y, Hong KJ, Kajiuchi T (2005) pH and temperature-sensitive release behaviors from polyelectrolyte complex films composed of chitosan and PAOMA copolymer. Eur J Pharm Biopharm 59(2):307–313PubMed
57.
go back to reference Mi FL, Shyu SS, Kuan CY, Lee ST, Lu KT, Jang SF (1999) Chitosan-polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. I Effect of phosphorous polyelectrolyte complex and enzymatic hydrolysis of polymer. J Appl Polym Sci 74(7):1868–1879 Mi FL, Shyu SS, Kuan CY, Lee ST, Lu KT, Jang SF (1999) Chitosan-polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. I Effect of phosphorous polyelectrolyte complex and enzymatic hydrolysis of polymer. J Appl Polym Sci 74(7):1868–1879
58.
go back to reference Ma XL, Wang B, Guo HY, Zhang YH, Zhu GH, Duan YL, Yang J, Zhang DW, Jin L, Zhang R, Zhang L, Xie J, Wu MY (2010) Tolerability of 6-mercaptopurine in children with acute lymphoblastic leukemia. Zhonghua Er Ke Za Zhi 48(4):289–292PubMed Ma XL, Wang B, Guo HY, Zhang YH, Zhu GH, Duan YL, Yang J, Zhang DW, Jin L, Zhang R, Zhang L, Xie J, Wu MY (2010) Tolerability of 6-mercaptopurine in children with acute lymphoblastic leukemia. Zhonghua Er Ke Za Zhi 48(4):289–292PubMed
59.
go back to reference Korelitz BI (2013) Expert opinion: experience with 6-mercaptopurine in the treatment of inflammatory bowel disease. World J Gastroenterol 19(20):2979–2984PubMedPubMedCentral Korelitz BI (2013) Expert opinion: experience with 6-mercaptopurine in the treatment of inflammatory bowel disease. World J Gastroenterol 19(20):2979–2984PubMedPubMedCentral
60.
go back to reference Hamman JH (2010) Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs 8(4):1305–1322PubMedPubMedCentral Hamman JH (2010) Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs 8(4):1305–1322PubMedPubMedCentral
62.
go back to reference Hein S, Wang K, Stevens WF, Kjems J (2008) Chitosan composites for biomedical applications: status, challenges and perspectives. Mater Sci Technol 24(9):1053–1061 Hein S, Wang K, Stevens WF, Kjems J (2008) Chitosan composites for biomedical applications: status, challenges and perspectives. Mater Sci Technol 24(9):1053–1061
63.
go back to reference Venkatesan J, Lee JY, Kang DS, Anil S, Kim SK, Shim MS, Kim DG (2017) Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int J Biol Macromol 98:515–525PubMed Venkatesan J, Lee JY, Kang DS, Anil S, Kim SK, Shim MS, Kim DG (2017) Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int J Biol Macromol 98:515–525PubMed
64.
go back to reference Tzankova V, Aluani D, Kondeva-Burdina M, Yordanov Y, Odzhakov F, Apostolov A, Yoncheva K (2017) Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed Pharmacother 92:569–579PubMed Tzankova V, Aluani D, Kondeva-Burdina M, Yordanov Y, Odzhakov F, Apostolov A, Yoncheva K (2017) Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed Pharmacother 92:569–579PubMed
65.
go back to reference Lakkakula JR, Matshaya T, Werner R, Krause M (2017) Cationic cyclodextrin/alginate chitosan nanoflowers as 5-fluorouracil drug delivery system. Mat Sci Eng C 70(Part 1):169–177 Lakkakula JR, Matshaya T, Werner R, Krause M (2017) Cationic cyclodextrin/alginate chitosan nanoflowers as 5-fluorouracil drug delivery system. Mat Sci Eng C 70(Part 1):169–177
66.
go back to reference Mokhena TC, Luyt AS (2017) Electrospun alginate nanofibres impregnated with silver nanoparticles: preparation, morphology and antibacterial properties. Carbohydr Polym 165:304–312PubMed Mokhena TC, Luyt AS (2017) Electrospun alginate nanofibres impregnated with silver nanoparticles: preparation, morphology and antibacterial properties. Carbohydr Polym 165:304–312PubMed
67.
go back to reference Shumilina EV, Shchipunov YA (2002) Chitosan–carrageenan gels. Coll J 64(3):372–378 Shumilina EV, Shchipunov YA (2002) Chitosan–carrageenan gels. Coll J 64(3):372–378
68.
go back to reference Li L, Ni R, Shao Y, Mao S (2014) Carrageenan and its applications in drug delivery. Carbohydr Polym 103:1–11PubMed Li L, Ni R, Shao Y, Mao S (2014) Carrageenan and its applications in drug delivery. Carbohydr Polym 103:1–11PubMed
70.
go back to reference Grenha A, Gomes ME, Rodrigues M, Santo VE, Mano JF, Neves NM, Reis RL (2010) Development of new chitosan/carrageenan nanoparticles for drug delivery applications. J Biomed Mat Res A 92(4):1265–1272 Grenha A, Gomes ME, Rodrigues M, Santo VE, Mano JF, Neves NM, Reis RL (2010) Development of new chitosan/carrageenan nanoparticles for drug delivery applications. J Biomed Mat Res A 92(4):1265–1272
71.
go back to reference Rodrigues S, Rosa da Costa AM, Grenha A (2012) Chitosan/carrageenan nanoparticles: effect of cross-linking with tripolyphosphate and charge ratios. Carbohydr Polym 89(1):282–289PubMed Rodrigues S, Rosa da Costa AM, Grenha A (2012) Chitosan/carrageenan nanoparticles: effect of cross-linking with tripolyphosphate and charge ratios. Carbohydr Polym 89(1):282–289PubMed
72.
go back to reference Devi N, Maji TK (2010) Genipin crosslinked chitosan-κ carrageenan polyelectrolyte nanocapsules for the controlled delivery of isoniazid. Int J Polym Mater Polym Biomater 59(10):828–841 Devi N, Maji TK (2010) Genipin crosslinked chitosan-κ carrageenan polyelectrolyte nanocapsules for the controlled delivery of isoniazid. Int J Polym Mater Polym Biomater 59(10):828–841
73.
go back to reference Sánchez-Sánchez MP, Martín-Illana A, Ruiz-Caro R, Bermejo P, Abad MJ, Carro R, Bedoya L-M, Tamayo A, Fernández-Ferreiro A, Otero-Espinar F, Rubio J, Veiga MD (2015) Chitosan and kappa-carrageenan vaginal acyclovir formulations for prevention of genital herpes. In vitro and E x Vivo evaluation. Mar Drugs 13(9):5976–5992PubMedPubMedCentral Sánchez-Sánchez MP, Martín-Illana A, Ruiz-Caro R, Bermejo P, Abad MJ, Carro R, Bedoya L-M, Tamayo A, Fernández-Ferreiro A, Otero-Espinar F, Rubio J, Veiga MD (2015) Chitosan and kappa-carrageenan vaginal acyclovir formulations for prevention of genital herpes. In vitro and E x Vivo evaluation. Mar Drugs 13(9):5976–5992PubMedPubMedCentral
74.
go back to reference Volpi N, Maccari F (2006) Electrophoretic approaches to the analysis of complex polysaccharides. J Chromatogr B 834(1–2):1–13 Volpi N, Maccari F (2006) Electrophoretic approaches to the analysis of complex polysaccharides. J Chromatogr B 834(1–2):1–13
75.
go back to reference Bianchera A, Salomi E, Pezzanera M, Ruwet E, Bettini R, Elviri L (2014) Chitosan hydrogels for chondroitin sulphate controlled release: an analytical characterization. J Anal Meth Chem 808703:1–8 Bianchera A, Salomi E, Pezzanera M, Ruwet E, Bettini R, Elviri L (2014) Chitosan hydrogels for chondroitin sulphate controlled release: an analytical characterization. J Anal Meth Chem 808703:1–8
76.
go back to reference Sui W, Huang L, Wang J, Bo Q (2008) Preparation and properties of chitosan chondroitin sulfate complex microcapsules. Colloids Surf B: Biointerfaces 65(1):69–73PubMed Sui W, Huang L, Wang J, Bo Q (2008) Preparation and properties of chitosan chondroitin sulfate complex microcapsules. Colloids Surf B: Biointerfaces 65(1):69–73PubMed
77.
go back to reference Daley ELH, Coleman RM, Stegemann JP (2015) Biomimetic microbeads containing a chondroitin sulfate/chitosan polyelectrolyte complex for cell-based cartilage therapy. J Mater Chem B 3(40):7920–7929PubMedPubMedCentral Daley ELH, Coleman RM, Stegemann JP (2015) Biomimetic microbeads containing a chondroitin sulfate/chitosan polyelectrolyte complex for cell-based cartilage therapy. J Mater Chem B 3(40):7920–7929PubMedPubMedCentral
79.
go back to reference Abdullah TA, Ibrahim NJ, Warsi MH (2016) Chondroitin sulfate-chitosan nanoparticles for ocular delivery of bromfenac sodium: improved permeation, retention, and penetration. Int J Pharm Investig 6(2):96–105PubMedPubMedCentral Abdullah TA, Ibrahim NJ, Warsi MH (2016) Chondroitin sulfate-chitosan nanoparticles for ocular delivery of bromfenac sodium: improved permeation, retention, and penetration. Int J Pharm Investig 6(2):96–105PubMedPubMedCentral
80.
go back to reference Anitha A, Deepagan VG, Rani DVV, Menon D, Nair SV, Jayakumar R (2011) Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles. Carbohydr Polym 84(3):1158–1164 Anitha A, Deepagan VG, Rani DVV, Menon D, Nair SV, Jayakumar R (2011) Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles. Carbohydr Polym 84(3):1158–1164
81.
go back to reference Chaiyasan W, Srinivas SP, Tiyaboonchai W (2015) Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery. Mol Vis 21:1224–1234PubMedPubMedCentral Chaiyasan W, Srinivas SP, Tiyaboonchai W (2015) Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery. Mol Vis 21:1224–1234PubMedPubMedCentral
82.
go back to reference Gnanadhas DP, Thomas MB, Elango M, Raichur AM, Chakravortty D (2013) Chitosan–dextran sulphate nanocapsule drug delivery system as an effective therapeutic against intraphagosomal pathogen Salmonella. J Antimicrob Chemother 68(11):2576–2586PubMed Gnanadhas DP, Thomas MB, Elango M, Raichur AM, Chakravortty D (2013) Chitosan–dextran sulphate nanocapsule drug delivery system as an effective therapeutic against intraphagosomal pathogen Salmonella. J Antimicrob Chemother 68(11):2576–2586PubMed
83.
go back to reference Falco CY, Falkman P, Risbo J, Cárdenas M, Medronho B (2017) Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics. Carbohydr Polym 172:175–183 Falco CY, Falkman P, Risbo J, Cárdenas M, Medronho B (2017) Chitosan-dextran sulfate hydrogels as a potential carrier for probiotics. Carbohydr Polym 172:175–183
84.
go back to reference Sabadini RC, Pawlicka A, Martins VCA (2015) Synthesis and characterization of gellan gum: chitosan biohydrogels for soil humidity control and fertilizer release. Cellulose 22(3):2045–2054 Sabadini RC, Pawlicka A, Martins VCA (2015) Synthesis and characterization of gellan gum: chitosan biohydrogels for soil humidity control and fertilizer release. Cellulose 22(3):2045–2054
85.
go back to reference Perez-Campos SJ, Chavarria-Hernandez N, Tecante A, Ramirez Gilly M, Rodriguez-Hernandez AI (2012) Gelation and microstructure of dilute gellan solutions with calcium ions. Food Hydrocoll 28(2):291–300 Perez-Campos SJ, Chavarria-Hernandez N, Tecante A, Ramirez Gilly M, Rodriguez-Hernandez AI (2012) Gelation and microstructure of dilute gellan solutions with calcium ions. Food Hydrocoll 28(2):291–300
86.
go back to reference Yang F, Xia S, Zhang X, Tan C (2013) Preparation and evaluation of chitosan-calcium-gellan gum beads for controlled release of protein. Eur Food Res Technol 237(4):467–479 Yang F, Xia S, Zhang X, Tan C (2013) Preparation and evaluation of chitosan-calcium-gellan gum beads for controlled release of protein. Eur Food Res Technol 237(4):467–479
87.
go back to reference Shaligram Mahajan H, Pramod Patil P (2017) In situ cross linked chitosan-gellan gum polyelectrolyte complex based nanogels containing curcumin for delivery to cancer cells. IJPER 51(2S):40–45 Shaligram Mahajan H, Pramod Patil P (2017) In situ cross linked chitosan-gellan gum polyelectrolyte complex based nanogels containing curcumin for delivery to cancer cells. IJPER 51(2S):40–45
88.
go back to reference Kumar S, Kaur P, Bernela M, Rani R, Thakur R (2016) Ketoconazole encapsulated in chitosan-gellan gum nanocomplexes exhibits prolonged antifungal activity. Int J Biol Macromol 93(Pt A):988–994PubMed Kumar S, Kaur P, Bernela M, Rani R, Thakur R (2016) Ketoconazole encapsulated in chitosan-gellan gum nanocomplexes exhibits prolonged antifungal activity. Int J Biol Macromol 93(Pt A):988–994PubMed
89.
go back to reference Patil JS, Jadhav SM, Mandave SV, Vilegave KV, Dhadde SB (2016) Natural gellan gum (Phytagel®) based novel hydrogel beads of rifampicin for oral delivery with improved functionality. IJPER 50(2s):S159–S167 Patil JS, Jadhav SM, Mandave SV, Vilegave KV, Dhadde SB (2016) Natural gellan gum (Phytagel®) based novel hydrogel beads of rifampicin for oral delivery with improved functionality. IJPER 50(2s):S159–S167
90.
go back to reference Holzwarth G (1978) Molecular weight of xanthan polysaccharide. Carbohydr Res 66(1):173–186 Holzwarth G (1978) Molecular weight of xanthan polysaccharide. Carbohydr Res 66(1):173–186
91.
go back to reference Chellat F, Tabrizian M, Dumitriu S, Chornet S, Rivard CH, Yahia L (2000) Study of biodegradation behavior of chitosan-xanthan microspheres in simulated physiological media. J Biomed Mater Res 53(5):592–599PubMed Chellat F, Tabrizian M, Dumitriu S, Chornet S, Rivard CH, Yahia L (2000) Study of biodegradation behavior of chitosan-xanthan microspheres in simulated physiological media. J Biomed Mater Res 53(5):592–599PubMed
92.
go back to reference Shchipunov Y, Sarin S, Kim I, Ha CS (2010) Hydrogels formed through regulated self-organization of gradually charging chitosan in solution of xanthan. Green Chem 12(7):1187–1195 Shchipunov Y, Sarin S, Kim I, Ha CS (2010) Hydrogels formed through regulated self-organization of gradually charging chitosan in solution of xanthan. Green Chem 12(7):1187–1195
93.
go back to reference Popa N, Novac O, Profire L, Lupusoru CE, Popa MI (2010) Hydrogels based on chitosan–xanthan for controlled release of theophylline. J Mater Sci Mater Med 21(4):1241–1248PubMed Popa N, Novac O, Profire L, Lupusoru CE, Popa MI (2010) Hydrogels based on chitosan–xanthan for controlled release of theophylline. J Mater Sci Mater Med 21(4):1241–1248PubMed
94.
go back to reference Manca ML, Manconi M, Valenti D, Lai F, Loy G, Matricardi P, Fadda AM (2012) Liposomes coated with chitosan–xanthan gum (chitosomes) as potential carriers for pulmonary delivery of rifampicin. J Pharm Sci 101(2):566–575PubMed Manca ML, Manconi M, Valenti D, Lai F, Loy G, Matricardi P, Fadda AM (2012) Liposomes coated with chitosan–xanthan gum (chitosomes) as potential carriers for pulmonary delivery of rifampicin. J Pharm Sci 101(2):566–575PubMed
95.
go back to reference Lee SB, Lee YM, Song KW, Park MH (2003) Preparation and properties of polyelectrolyte complex sponges composed of hyaluronic acid and chitosan and their biological behavior. J Appl Polym Sci 90(4):925–932 Lee SB, Lee YM, Song KW, Park MH (2003) Preparation and properties of polyelectrolyte complex sponges composed of hyaluronic acid and chitosan and their biological behavior. J Appl Polym Sci 90(4):925–932
96.
go back to reference Kim SJ, Shin SR, Lee KB, Park YD, Kim SI (2004) Synthesis and characteristics of polyelectrolyte complexes composed of chitosan and hyaluronic acid. J Appl Polym Sci 91(5):2908–2913 Kim SJ, Shin SR, Lee KB, Park YD, Kim SI (2004) Synthesis and characteristics of polyelectrolyte complexes composed of chitosan and hyaluronic acid. J Appl Polym Sci 91(5):2908–2913
97.
go back to reference Denuziere A, Ferrier D, Domard A (1996) Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes. Physico-chemical aspects. Carbohydr Polym 29(4):295–376 Denuziere A, Ferrier D, Domard A (1996) Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes. Physico-chemical aspects. Carbohydr Polym 29(4):295–376
98.
go back to reference RusuBalaita L, Desbrieres J, Rinaudo M (2003) Formation of a biocompatible polyelectrolyte complex: chitosan-hyaluronan complex stability. Polym Bull 50(1–2):91–98 RusuBalaita L, Desbrieres J, Rinaudo M (2003) Formation of a biocompatible polyelectrolyte complex: chitosan-hyaluronan complex stability. Polym Bull 50(1–2):91–98
99.
go back to reference Vasiliu S, Popa M, Rinaudo M (2005) Polyelectrolyte capsules made of two biocompatible natural polymers. Eur Polym J 41(5):923–993 Vasiliu S, Popa M, Rinaudo M (2005) Polyelectrolyte capsules made of two biocompatible natural polymers. Eur Polym J 41(5):923–993
100.
go back to reference Vasiliu S, Popa M, Luca C (2008) Evaluation of retention and release processes of two antibiotics from the biocompatible core-shell microparticles. Eur Polym J 44(11):3894–3898 Vasiliu S, Popa M, Luca C (2008) Evaluation of retention and release processes of two antibiotics from the biocompatible core-shell microparticles. Eur Polym J 44(11):3894–3898
101.
go back to reference Li C, Newman RA, Wu QP, Ke S, Chen W, Hutto T, Kan Z, Brannan MD, Charnsangavej C, Wallace S (2000) Biodistribution of paclitaxel and poly(L-glutamic acid)-paclitaxel conjugate in mice with ovarian OCa-1 tumor. Cancer Chemother Pharmacol 46(5):416–422PubMed Li C, Newman RA, Wu QP, Ke S, Chen W, Hutto T, Kan Z, Brannan MD, Charnsangavej C, Wallace S (2000) Biodistribution of paclitaxel and poly(L-glutamic acid)-paclitaxel conjugate in mice with ovarian OCa-1 tumor. Cancer Chemother Pharmacol 46(5):416–422PubMed
102.
go back to reference Li J, Huang P, Chang L, Long X, Dong A, Liu J, Chu L, Hu F, Liu J, Dung L (2013) Tumor targeting and pH responsive polyelectrolyte complex nanoparticles based on hyaluronic acid-paclitaxel conjugates and chitosan for oral delivery of paclitaxel. Macromol Res 21(12):1331–1337 Li J, Huang P, Chang L, Long X, Dong A, Liu J, Chu L, Hu F, Liu J, Dung L (2013) Tumor targeting and pH responsive polyelectrolyte complex nanoparticles based on hyaluronic acid-paclitaxel conjugates and chitosan for oral delivery of paclitaxel. Macromol Res 21(12):1331–1337
103.
go back to reference Eisenhauer EA, Vermorken JB (1998) The taxoids. Comparative clinical pharmacology and therapeutic potential. Drugs 55(1):5–30PubMed Eisenhauer EA, Vermorken JB (1998) The taxoids. Comparative clinical pharmacology and therapeutic potential. Drugs 55(1):5–30PubMed
104.
go back to reference Shabani Ravari N, Goodazzi N, Alvandifar F, Amini M, Souri E (2016) Fabrication and biological evaluation of chitosan coated hyaluronic acid-docetaxel conjugate nanoparticles in CD44+ cancer cells. DARU J Pharm Sci 24:21–33 Shabani Ravari N, Goodazzi N, Alvandifar F, Amini M, Souri E (2016) Fabrication and biological evaluation of chitosan coated hyaluronic acid-docetaxel conjugate nanoparticles in CD44+ cancer cells. DARU J Pharm Sci 24:21–33
105.
go back to reference Luppi B, Bigucci F, Mercolini L, Musenga A, Sorrenti M, Catenacci L, Zecchi V (2009) Novel muchoadhesive nasal inserts based on chitosan/hyaluronate polyelectrolyte complexes for peptide and protein delivery. J Pharm Pharmacol 61(2):151–157PubMed Luppi B, Bigucci F, Mercolini L, Musenga A, Sorrenti M, Catenacci L, Zecchi V (2009) Novel muchoadhesive nasal inserts based on chitosan/hyaluronate polyelectrolyte complexes for peptide and protein delivery. J Pharm Pharmacol 61(2):151–157PubMed
106.
go back to reference Coimbra P, Ferreira P, Alves P, Gil MH (2014) Polysaccharide-based polyelectrolyte complexes and polyelectrolyte multilayers for biomedical applications. In: Gil MH (ed) Carbohydrates applications in medicine. Research Singpost, Kerala, pp 1–29 Coimbra P, Ferreira P, Alves P, Gil MH (2014) Polysaccharide-based polyelectrolyte complexes and polyelectrolyte multilayers for biomedical applications. In: Gil MH (ed) Carbohydrates applications in medicine. Research Singpost, Kerala, pp 1–29
107.
go back to reference Lindborg BA, Brekke JH, Scott CM, Chai YW, Ulrich C, Sandquist L, Kokkoli E, O’Brien TD (2015) A chitosan-hyaluronan-based hydrogel-hydrocolloid supports. In vitro culture and differentiation of human mesenchymal stem/stromal cells. Tissue Eng Part A 21(11–12):1952–1962PubMed Lindborg BA, Brekke JH, Scott CM, Chai YW, Ulrich C, Sandquist L, Kokkoli E, O’Brien TD (2015) A chitosan-hyaluronan-based hydrogel-hydrocolloid supports. In vitro culture and differentiation of human mesenchymal stem/stromal cells. Tissue Eng Part A 21(11–12):1952–1962PubMed
108.
go back to reference Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, Minami A, Monde K, Nishimura SI (2005) Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 26(6):611–619PubMed Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, Minami A, Monde K, Nishimura SI (2005) Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 26(6):611–619PubMed
109.
go back to reference Ma G, Liu Y, Fang D, Chen J, Peng C, Fei X, Nie J (2012) Hyaluronic acid/chitosan polyelectrolyte complexes nanofibers prepared by electrospinning. Mater Lett 74:78–80 Ma G, Liu Y, Fang D, Chen J, Peng C, Fei X, Nie J (2012) Hyaluronic acid/chitosan polyelectrolyte complexes nanofibers prepared by electrospinning. Mater Lett 74:78–80
110.
go back to reference Engermann M, Lill CA, Griesbeck K, Evans CH, Robbins PD, Schneider E, Baltzer AW (2006) Effect of BMP-2 gene transfer on bone healing in sheep. Gene Ther 13(17):1290–1299 Engermann M, Lill CA, Griesbeck K, Evans CH, Robbins PD, Schneider E, Baltzer AW (2006) Effect of BMP-2 gene transfer on bone healing in sheep. Gene Ther 13(17):1290–1299
111.
go back to reference Nath SD, Abueva C, Kim B, Lee BT (2015) Chitosan-hyaluronic acid polyelectrolyte complex scaffold crosslinked with genipin for immobilization and controlled release of BMP-2. Carbohydr Polym 115:160–169PubMed Nath SD, Abueva C, Kim B, Lee BT (2015) Chitosan-hyaluronic acid polyelectrolyte complex scaffold crosslinked with genipin for immobilization and controlled release of BMP-2. Carbohydr Polym 115:160–169PubMed
112.
go back to reference Vasile C, Pieptu D, Dumitriu RP, Panzariu A, Profire L (2013) Chitosan/hyaluronic acid polyelectrolyte complex hydrogels in the management of burn wounds. Rev Med Chir Soc Med Nat 117(2):565–571 Vasile C, Pieptu D, Dumitriu RP, Panzariu A, Profire L (2013) Chitosan/hyaluronic acid polyelectrolyte complex hydrogels in the management of burn wounds. Rev Med Chir Soc Med Nat 117(2):565–571
Metadata
Title
Chitosan-Based Polyelectrolyte Complex Hydrogels for Biomedical Applications
Authors
Silvia Vasiliu
Stefania Racovita
Marcel Popa
Lacramioara Ochiuz
Catalina Anisoara Peptu
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-77830-3_56

Premium Partners