Skip to main content
Top
Published in:
Cover of the book

2020 | OriginalPaper | Chapter

1. Chlorophylls in Microalgae: Occurrence, Distribution, and Biosynthesis

Authors : Jaqueline Carmo da Silva, Ana Teresa Lombardi

Published in: Pigments from Microalgae Handbook

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chlorophylls (Chl) are the most abundant natural pigment supporting oxygenic photosynthesis in microalgae and Cyanobacteria, whereby they derive energy for metabolism and reproduction. In microalgae (eukaryotes) Chls are located in the chloroplast, but in Cyanobacteria (prokaryotes) in the photosynthetic lamellae. Chlorophylls are constituted by a large aromatic tetrapyrrole macrocycle (light absorption and redox chemistry), a central Mg ion (maximizes excited state lifetime), and a hydrocarbon tail (anchoring in thylakoids). Endosymbiosis Theory explains the photosynthetic eukaryotes plastids origin, postulating that Cyanobacteria ancestral was engulfed by eukaryotic host cell and gradually transformed into organelles that were further spread to other eukaryotes by additional rounds of endosymbiosis. Evolution distributed the Chls a, b, c, d, and f among microalgae and Cyanobacteria, with Chl a universally distributed; Chl b in Euglenophyta, Chlorophyta, and Charophyta; Chl c in Bacillariophyceae, Chrysophyceae, Xanthophyceae, Raphidophyceae, Phaeophyceae, Haptophyta, Cryptophyta, Dinophyta; Chl d in Rhodophyta; Chl f in Cyanobacteria. The pathways of Chl a biosynthesis were based in experiments with leaves and Chlorella vulgaris, dating back to the forties. Latter, it was documented the two genetically and biochemically different strategies for chlorophyll a biosynthesis, one being light dependent and one light independent co-exist. Chl f is the most recently discovered Chl, helping Cyanobacteria thrive in environments dominated by far-red light; far-red light photoacclimation, whereby 8% Chl a is replaced by Chl f, permits cyanobacteria expand light absorption range for oxygenic photosynthesis up to 800 nm allowing them to access 33% more photons than organisms that do not have Chl f.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Allakhverdiev, S. I., Kreslavski, V. D., Zharmukhamedov, S. K., Voloshin, R. A., Korol’kova, D. V., Tomo, T., & Shen, J. R. (2016). Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria. Biochemistry (Moscow), 81(3), 201–212.CrossRef Allakhverdiev, S. I., Kreslavski, V. D., Zharmukhamedov, S. K., Voloshin, R. A., Korol’kova, D. V., Tomo, T., & Shen, J. R. (2016). Chlorophylls d and f and their role in primary photosynthetic processes of cyanobacteria. Biochemistry (Moscow), 81(3), 201–212.CrossRef
go back to reference Angerhofer, A., Bornhäuser, F., Aust, V., Hartwich, G., & Scheer, H. (1998). Triplet energy transfer in bacterial photosynthetic reaction centres. BBA-Bioenergetics, 1365(3), 404–420.PubMedCrossRef Angerhofer, A., Bornhäuser, F., Aust, V., Hartwich, G., & Scheer, H. (1998). Triplet energy transfer in bacterial photosynthetic reaction centres. BBA-Bioenergetics, 1365(3), 404–420.PubMedCrossRef
go back to reference Armstrong, G. A. (1998). Greening in the dark:light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. Journal of Photochemistry and Photobiology B: Biology, 43, 87–100.CrossRef Armstrong, G. A. (1998). Greening in the dark:light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. Journal of Photochemistry and Photobiology B: Biology, 43, 87–100.CrossRef
go back to reference Aronoff, S. (1966). The chlorophylls—An introductory survey. In L. P. Vernon & G. R. Seely (Eds.), The chlorophylls (pp. 3–20). New York: Academic Press.CrossRef Aronoff, S. (1966). The chlorophylls—An introductory survey. In L. P. Vernon & G. R. Seely (Eds.), The chlorophylls (pp. 3–20). New York: Academic Press.CrossRef
go back to reference Beale, S. I. (1999). Enzymes of chlorophyll biosynthesis. Photosynthesis Research, 60, 43–73.CrossRef Beale, S. I. (1999). Enzymes of chlorophyll biosynthesis. Photosynthesis Research, 60, 43–73.CrossRef
go back to reference Behrendt, L., Brejnrod, A., Schlief, M., Sorensen, S. J., Larkum, A. W., & Kuhl, M. (2015). Chlorophyll f-driven photosynthesis in a cavernous cyanobacterium. ISME Journal, 9(9), 2108–2111.CrossRef Behrendt, L., Brejnrod, A., Schlief, M., Sorensen, S. J., Larkum, A. W., & Kuhl, M. (2015). Chlorophyll f-driven photosynthesis in a cavernous cyanobacterium. ISME Journal, 9(9), 2108–2111.CrossRef
go back to reference Blass, U., Anderson, J. M., & Calvin, M. (1959). Biosynthesis and possible functional relationships among the carotenoids; and between chlorophyll a and chlorophyll b. Plant Physiology, 34(3), 329.PubMedPubMedCentralCrossRef Blass, U., Anderson, J. M., & Calvin, M. (1959). Biosynthesis and possible functional relationships among the carotenoids; and between chlorophyll a and chlorophyll b. Plant Physiology, 34(3), 329.PubMedPubMedCentralCrossRef
go back to reference Bogorad, L. (1976). Chlorophyll biosynthesis. In T. W. Goodwin (Ed.), Chemistry and biochemistry of plant pigments (2nd ed., pp. 64–148). New York: Academic Press. Bogorad, L. (1976). Chlorophyll biosynthesis. In T. W. Goodwin (Ed.), Chemistry and biochemistry of plant pigments (2nd ed., pp. 64–148). New York: Academic Press.
go back to reference Bogorad, L. (1967). Chlorophylls. In: R. A. Lewin (Ed.), Physiology and biochemistry of algae (pp. 385–408) New York: Academic Press. Bogorad, L. (1967). Chlorophylls. In: R. A. Lewin (Ed.), Physiology and biochemistry of algae (pp. 385–408) New York: Academic Press.
go back to reference Borodin, I. P. (1882). Über chlorophyllkristalle. Bot Z, 40(36), 608–610. Borodin, I. P. (1882). Über chlorophyllkristalle. Bot Z, 40(36), 608–610.
go back to reference Cahoon, A. B., & Timko, M. P. (2003). Biochemistry and regulation of chlorophyll biosynthesis. In: A. W. D. Larkum, S. E. Douglas, & Raven, J. A. (Eds.), Photosynthesis in algae (pp. 96–131). Springer, Dordrecht. Cahoon, A. B., & Timko, M. P. (2003). Biochemistry and regulation of chlorophyll biosynthesis. In: A. W. D. Larkum, S. E. Douglas, & Raven, J. A. (Eds.), Photosynthesis in algae (pp. 96–131). Springer, Dordrecht.
go back to reference Chen, M., Schliep, M., Willows, R. D., Cai, Z. L., Neilan, B. A., & Scheer, H. (2010). A red-shifted chlorophyll. Science, 329(5997), 1318–1319.PubMedCrossRef Chen, M., Schliep, M., Willows, R. D., Cai, Z. L., Neilan, B. A., & Scheer, H. (2010). A red-shifted chlorophyll. Science, 329(5997), 1318–1319.PubMedCrossRef
go back to reference Chen, M., & Blankenship, R. E. (2011). Expanding the solar spectrum used by photosynthesis. Trends in Plant Science, 16, 427–431.PubMedCrossRef Chen, M., & Blankenship, R. E. (2011). Expanding the solar spectrum used by photosynthesis. Trends in Plant Science, 16, 427–431.PubMedCrossRef
go back to reference Chen, M., Li, Y., Birch, D., & Willows, R. D. (2012). A cyanobacterium that contains chlorophyll f–a red-absorbing photopigment. FEBS Letters, 586(19), 3249–3254.PubMedCrossRef Chen, M., Li, Y., Birch, D., & Willows, R. D. (2012). A cyanobacterium that contains chlorophyll f–a red-absorbing photopigment. FEBS Letters, 586(19), 3249–3254.PubMedCrossRef
go back to reference Chen, M. (2014). Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annual Review of Biochemistry, 83, 26.1–26.24. Chen, M. (2014). Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annual Review of Biochemistry, 83, 26.1–26.24.
go back to reference Delwiche, C. F. (1999). Tracing the thread of plastid diversity through the tapestry of life. The American Naturalist, 154, 164–177.CrossRef Delwiche, C. F. (1999). Tracing the thread of plastid diversity through the tapestry of life. The American Naturalist, 154, 164–177.CrossRef
go back to reference Douglas, S. E., Raven, J. A., & Larkum, A. W. D. (2003). The algae and their general characteristics. In: A. W. Larkum, S. E. Douglas, & Raven. J. A. (Eds.), Photosynthesis in algae (pp. 1–10). The Netherlands: Kluwer Academic Publishers. Douglas, S. E., Raven, J. A., & Larkum, A. W. D. (2003). The algae and their general characteristics. In: A. W. Larkum, S. E. Douglas, & Raven. J. A. (Eds.), Photosynthesis in algae (pp. 1–10). The Netherlands: Kluwer Academic Publishers.
go back to reference Dujardin, E., Laszlo, P., & Sacks, D. (1975). The chlorophylls. An experiment in bio-inorganic chemistry. Journal of Chemical Education 52(11), 742. Dujardin, E., Laszlo, P., & Sacks, D. (1975). The chlorophylls. An experiment in bio-inorganic chemistry. Journal of Chemical Education 52(11), 742.
go back to reference Eggink, L. L., LoBrutto, R., Brune, D. C., Brusslan, J., Yamasato, A., Tanaka, A., & Hoober, J. K. (2004). Synthesis of chlorophyll b: localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit. BMC Plant Biology, 4(1), 5.PubMedPubMedCentralCrossRef Eggink, L. L., LoBrutto, R., Brune, D. C., Brusslan, J., Yamasato, A., Tanaka, A., & Hoober, J. K. (2004). Synthesis of chlorophyll b: localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit. BMC Plant Biology, 4(1), 5.PubMedPubMedCentralCrossRef
go back to reference Fawley, M. W. (1989). Detection of chlorophylls c1, c2 and c3 in pigment extracts of Prymnesium parvum (PRMNESIOPHYCEAE). Journal of Phycology, 25(3), 601–604.CrossRef Fawley, M. W. (1989). Detection of chlorophylls c1, c2 and c3 in pigment extracts of Prymnesium parvum (PRMNESIOPHYCEAE). Journal of Phycology, 25(3), 601–604.CrossRef
go back to reference Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., & Taylor, F. J. R. (2004). The Evolution of Modern Eukaryotic Phytoplakton. Science, 305, 354–360.PubMedCrossRef Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., & Taylor, F. J. R. (2004). The Evolution of Modern Eukaryotic Phytoplakton. Science, 305, 354–360.PubMedCrossRef
go back to reference Ferreira, V. S., & Sant’Anna, C. (2017). Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology, 2017(33), 19–27. Ferreira, V. S., & Sant’Anna, C. (2017). Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology, 2017(33), 19–27.
go back to reference Fisher, H., & Orth, H. (1937). Die Chemie des pyrrols. Leipzig, Germany: Acad. Verlag. Fisher, H., & Orth, H. (1937). Die Chemie des pyrrols. Leipzig, Germany: Acad. Verlag.
go back to reference Fischer, H., & Orth, H. (1940). In Die Chemie der Pyrrols (pp. 153–154). Leipzig: Akad. Verlag. Fischer, H., & Orth, H. (1940). In Die Chemie der Pyrrols (pp. 153–154). Leipzig: Akad. Verlag.
go back to reference Fischer, H., & Orth, H. (1943). Die Chemie des Pyrrols. Edwards, Ann Arbor, Michigan, USA: II. Pyrrol-farbstoffe. Part I. Fischer, H., & Orth, H. (1943). Die Chemie des Pyrrols. Edwards, Ann Arbor, Michigan, USA: II. Pyrrol-farbstoffe. Part I.
go back to reference Fischer, H., & Strell, M. (1947). Naturfarbstoffe IV Chlorophyll. Fiat Review of German Science, 39, 141. Fischer, H., & Strell, M. (1947). Naturfarbstoffe IV Chlorophyll. Fiat Review of German Science, 39, 141.
go back to reference Fookes, C. J., & Jeffrey, S. W. (1989). The structure of chlorophyll c 3, a novel marine photosynthetic pigment. Journal of the Chemical Society, Chemical Communications, 23, 1827–1828.CrossRef Fookes, C. J., & Jeffrey, S. W. (1989). The structure of chlorophyll c 3, a novel marine photosynthetic pigment. Journal of the Chemical Society, Chemical Communications, 23, 1827–1828.CrossRef
go back to reference Galova, E., Salgovicova, I., Demko, V., Mikulova, K., Sevcovicova, A., Slovakia, L., et al. (2008). A short overview of chlorophyll biosynthesis in algae. Biology, 63(6), 947–951. Galova, E., Salgovicova, I., Demko, V., Mikulova, K., Sevcovicova, A., Slovakia, L., et al. (2008). A short overview of chlorophyll biosynthesis in algae. Biology, 63(6), 947–951.
go back to reference Gan, F., Zhang, S., Rockwell, N. C., Martin, S. S., Lagarias, J. C., & Bryant, D. A. (2014). Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science, 345, 1312–1317.PubMedCrossRef Gan, F., Zhang, S., Rockwell, N. C., Martin, S. S., Lagarias, J. C., & Bryant, D. A. (2014). Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science, 345, 1312–1317.PubMedCrossRef
go back to reference Granick, S. (1948a). Magnesium protoporphyrin-9 as precursor of chlorophyll in Chlorella. Journal of Biological Chemistry, 172, 717–727.CrossRef Granick, S. (1948a). Magnesium protoporphyrin-9 as precursor of chlorophyll in Chlorella. Journal of Biological Chemistry, 172, 717–727.CrossRef
go back to reference Granick, S. (1948b). Magnesium protoporphyrin as a precursor of chlorophyll in Chlorella. Journal of Biological Chemistry, 175, 333–342.CrossRef Granick, S. (1948b). Magnesium protoporphyrin as a precursor of chlorophyll in Chlorella. Journal of Biological Chemistry, 175, 333–342.CrossRef
go back to reference Granick, S. (1954). Biosynthesis and function of heme and chlorophyll. Record Chemistry Progress, 15, 27–35. Granick, S. (1954). Biosynthesis and function of heme and chlorophyll. Record Chemistry Progress, 15, 27–35.
go back to reference Green, B. R., & Durnford, D. G. (1996). The Chlorophyll–carotenoid proteins of oxygenic photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 685–714.PubMedCrossRef Green, B. R., & Durnford, D. G. (1996). The Chlorophyll–carotenoid proteins of oxygenic photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 685–714.PubMedCrossRef
go back to reference Herrera-Salgado, P., Leyva-Castillo, L. E., Rios-Castro, E., & Gomez-Lojero, C. (2018). Complementary chromatic and far-red photoacclimations in Synechococcus ATCC 29403 (PCC 7335). I: the phycobili- somes, a proteomic approach. Photosynthesis Research, 138, 39–56.PubMedCrossRef Herrera-Salgado, P., Leyva-Castillo, L. E., Rios-Castro, E., & Gomez-Lojero, C. (2018). Complementary chromatic and far-red photoacclimations in Synechococcus ATCC 29403 (PCC 7335). I: the phycobili- somes, a proteomic approach. Photosynthesis Research, 138, 39–56.PubMedCrossRef
go back to reference Ho, M. Y., Shen, G., Canniffe, D. P., Zhao, C., & Bryant, D. A. (2016). Light- dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science, 353, 213–227.CrossRef Ho, M. Y., Shen, G., Canniffe, D. P., Zhao, C., & Bryant, D. A. (2016). Light- dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II. Science, 353, 213–227.CrossRef
go back to reference Ho, M. Y., Soulier, N. T., Canniffe, D. P., Shen, G., & Bryant, D. A. (2017). Light regulation of pigment and photosystem biosynthesis in cyanobacteria. Current Opinion in Plant Biology, 37, 24–33.PubMedCrossRef Ho, M. Y., Soulier, N. T., Canniffe, D. P., Shen, G., & Bryant, D. A. (2017). Light regulation of pigment and photosystem biosynthesis in cyanobacteria. Current Opinion in Plant Biology, 37, 24–33.PubMedCrossRef
go back to reference Ho, M. Y. (2018). Characterization of far-red light photoacclimation in cyanobacteria. Biochemistry and Molecular Biology, 131, 173–186. Ho, M. Y. (2018). Characterization of far-red light photoacclimation in cyanobacteria. Biochemistry and Molecular Biology, 131, 173–186.
go back to reference Hoppe-Seyler, F. (1879). Zeitschrift fur Physiologische Chemie, 3, 339. Hoppe-Seyler, F. (1879). Zeitschrift fur Physiologische Chemie, 3, 339.
go back to reference Hoppe-Seyler, F. (1880). Zeitschrift fur Physiologische Chemie, 4, 193. Hoppe-Seyler, F. (1880). Zeitschrift fur Physiologische Chemie, 4, 193.
go back to reference Hoppe-Seyler, F. (1881). Zeitschrift fur Physiologische Chemie, 5, 75. Hoppe-Seyler, F. (1881). Zeitschrift fur Physiologische Chemie, 5, 75.
go back to reference Hunsperger, H. M., Randhawa, T., & Cattolico, R. A. (2015). Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae. BMC Evolutionary Biology, 15, 16.PubMedPubMedCentralCrossRef Hunsperger, H. M., Randhawa, T., & Cattolico, R. A. (2015). Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae. BMC Evolutionary Biology, 15, 16.PubMedPubMedCentralCrossRef
go back to reference Jeffrey, S. W. (1989). Chlorophyll c pigments and their distribution in chromophytic algae. In J. C. Green, B. S. C. Leadbetter, & W. L. Diver (Eds.), The chromophyte algae: Problems and perspectives (pp. 13–36). Oxford: Clarendon Press. Jeffrey, S. W. (1989). Chlorophyll c pigments and their distribution in chromophytic algae. In J. C. Green, B. S. C. Leadbetter, & W. L. Diver (Eds.), The chromophyte algae: Problems and perspectives (pp. 13–36). Oxford: Clarendon Press.
go back to reference Jeffrey, S. W. (2013). Cronulla NSW, Australia. Primary Productivity in the Sea, 19, 33. Jeffrey, S. W. (2013). Cronulla NSW, Australia. Primary Productivity in the Sea, 19, 33.
go back to reference Keeling, P. J. (2004). Diversity and evolutionary history of plastids and their hosts. American Journal of Botany, 91(10), 1481–1493.PubMedCrossRef Keeling, P. J. (2004). Diversity and evolutionary history of plastids and their hosts. American Journal of Botany, 91(10), 1481–1493.PubMedCrossRef
go back to reference Kirk, J. T. O., & Tilney-Bassett, R. A. E. (1978). The plastids: Their chemistry. Structure, Growth and Inheritance: Elsevier, Amsterdam. Kirk, J. T. O., & Tilney-Bassett, R. A. E. (1978). The plastids: Their chemistry. Structure, Growth and Inheritance: Elsevier, Amsterdam.
go back to reference Kurashov, V., Ho, M. Y., Shen, G., Piedl, K., Laremore, T. N., Bryant, D. A., & Golbeck, J. H. (2019). Energy transfer from chlorophyll f to the trapping center in naturally occurring and engineered Photosystem I complexes. Photosynthesis Research, 141, 151–163.PubMedCrossRef Kurashov, V., Ho, M. Y., Shen, G., Piedl, K., Laremore, T. N., Bryant, D. A., & Golbeck, J. H. (2019). Energy transfer from chlorophyll f to the trapping center in naturally occurring and engineered Photosystem I complexes. Photosynthesis Research, 141, 151–163.PubMedCrossRef
go back to reference La Roche, J., van der Staay, G. W. M., Partensky, F., Ducret, A., Aebersold, R., Li, R., & Green, B. R. (1996). Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proceedings of the National academy of Sciences of the United States of America, 93, 15244–15248.PubMedPubMedCentralCrossRef La Roche, J., van der Staay, G. W. M., Partensky, F., Ducret, A., Aebersold, R., Li, R., & Green, B. R. (1996). Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. Proceedings of the National academy of Sciences of the United States of America, 93, 15244–15248.PubMedPubMedCentralCrossRef
go back to reference Larkum, A. W. (2016). Photosynthesis and Light Harvesting in Algae. In M. A. Borowitzka, J. Beardal, & J. A. Raven (Eds.), The Physiology of Microalgae (pp. 67–87). Switzerland: Springer International Publishing A G.CrossRef Larkum, A. W. (2016). Photosynthesis and Light Harvesting in Algae. In M. A. Borowitzka, J. Beardal, & J. A. Raven (Eds.), The Physiology of Microalgae (pp. 67–87). Switzerland: Springer International Publishing A G.CrossRef
go back to reference Larkum, A. W., & Kühl, M. (2005). Chlorophyll d: the puzzle resolved. Trends in Plant Science, 10(8), 355–357.PubMedCrossRef Larkum, A. W., & Kühl, M. (2005). Chlorophyll d: the puzzle resolved. Trends in Plant Science, 10(8), 355–357.PubMedCrossRef
go back to reference Larkum, A. W. D. , Scaramuzzi, C. , Cox, G. C. , Hiller, R. G. , & Turner, A. G. (1994). Light harvesting chlorophyll c-like pigment in Prochloron. Proceedings of the National Academy of Sciences USA, 91, 679–683. Larkum, A. W. D. , Scaramuzzi, C. , Cox, G. C. , Hiller, R. G. , & Turner, A. G. (1994). Light harvesting chlorophyll c-like pigment in Prochloron. Proceedings of the National Academy of Sciences USA, 91, 679–683.
go back to reference Lehninger, A. L. (1987). Principles of biochemistry. New York—USA: Worth Publishers, Inc.. Lehninger, A. L. (1987). Principles of biochemistry. New York—USA: Worth Publishers, Inc..
go back to reference Li, J., Goldschmidt-Clermont, M., & Timko, M. P. (1993). Chloroplast-encoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii. The Plant Cell, 5, 1817–1829.PubMedPubMedCentral Li, J., Goldschmidt-Clermont, M., & Timko, M. P. (1993). Chloroplast-encoded chlB is required for light-independent protochlorophyllide reductase activity in Chlamydomonas reinhardtii. The Plant Cell, 5, 1817–1829.PubMedPubMedCentral
go back to reference Li, Y., & Chen, M. (2015). Novel chlorophylls and new directions in photosynthesis research. Functional Plant Biology, 42, 493–501.PubMedCrossRef Li, Y., & Chen, M. (2015). Novel chlorophylls and new directions in photosynthesis research. Functional Plant Biology, 42, 493–501.PubMedCrossRef
go back to reference Li, Y., Scales, N., Blankenship, R. E., Willows, R. D., & Chen, M. (2012). Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f. BBA-Bioenergetics, 1817(8), 1292–1298.PubMedCrossRef Li, Y., Scales, N., Blankenship, R. E., Willows, R. D., & Chen, M. (2012). Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f. BBA-Bioenergetics, 1817(8), 1292–1298.PubMedCrossRef
go back to reference Loeffler, J. E. (1955). Precursors of protochlorophyll in etiolated barley seedlings. Carnegie Institution of Washington Year Book, 54, 159–160. Loeffler, J. E. (1955). Precursors of protochlorophyll in etiolated barley seedlings. Carnegie Institution of Washington Year Book, 54, 159–160.
go back to reference Manning, W. M., & Strain, H. H. (1943). Chlorophyll d, a green pigment in red algae. Journal of Biological Chemistry, 151, 1–19.CrossRef Manning, W. M., & Strain, H. H. (1943). Chlorophyll d, a green pigment in red algae. Journal of Biological Chemistry, 151, 1–19.CrossRef
go back to reference Marks, G. S. (1966). The biosynthesis of heme and chlorophyll. Botanical Review, 32, 56–94.CrossRef Marks, G. S. (1966). The biosynthesis of heme and chlorophyll. Botanical Review, 32, 56–94.CrossRef
go back to reference Markwell, J. P., Thornber, J. P., & Boggs, R. T. (1979). Higher plant chloroplasts: Evidence that all the chlorophyll exists as chlorophyll—protein complexes. Proceedings of the National Academy of Sciences USA., 76(3), 1233–1235.CrossRef Markwell, J. P., Thornber, J. P., & Boggs, R. T. (1979). Higher plant chloroplasts: Evidence that all the chlorophyll exists as chlorophyll—protein complexes. Proceedings of the National Academy of Sciences USA., 76(3), 1233–1235.CrossRef
go back to reference Miyashita, H., Adachi, K., Kurano, N., Ikemoto, H., Chihara, M., & Miyachi, S. (1996). Chlorophyll d as a major pigment. Nature, 383, 402.CrossRef Miyashita, H., Adachi, K., Kurano, N., Ikemoto, H., Chihara, M., & Miyachi, S. (1996). Chlorophyll d as a major pigment. Nature, 383, 402.CrossRef
go back to reference Miyashita, H., Adachi, K., Kurano, N., Ikemoto, H., Chihara, M., & Miyachi, S. (1997). Pigment composition of a novel oxygenic photosynthetic procaryote containing chlorophyll d as the major chlorophyll. Plant and Cell Physiology, 38, 274–281.CrossRef Miyashita, H., Adachi, K., Kurano, N., Ikemoto, H., Chihara, M., & Miyachi, S. (1997). Pigment composition of a novel oxygenic photosynthetic procaryote containing chlorophyll d as the major chlorophyll. Plant and Cell Physiology, 38, 274–281.CrossRef
go back to reference Monteverde, ΝΑ. (1893). Acta Horti Petropolitani, 13, 148. Monteverde, ΝΑ. (1893). Acta Horti Petropolitani, 13, 148.
go back to reference Nakagawara, E., Sakuraba, Y., Yamasato, A., Tanaka, R., & Tanaka, A. (2007). Clp protease controls chlorophyll b synthesis by regulating the level of chlorophyllide a oxygenase. The Plant Journal, 49(5), 800–809.PubMedCrossRef Nakagawara, E., Sakuraba, Y., Yamasato, A., Tanaka, R., & Tanaka, A. (2007). Clp protease controls chlorophyll b synthesis by regulating the level of chlorophyllide a oxygenase. The Plant Journal, 49(5), 800–809.PubMedCrossRef
go back to reference Nencki, Μ, & Marchlewski, L. (1901). Berichte der deutschen chemischen Gesellschaft, 34, 1687.CrossRef Nencki, Μ, & Marchlewski, L. (1901). Berichte der deutschen chemischen Gesellschaft, 34, 1687.CrossRef
go back to reference Nencki, M. (1896). Berichte der deutschen chemischen Gesellschaft, 29, 2877.CrossRef Nencki, M. (1896). Berichte der deutschen chemischen Gesellschaft, 29, 2877.CrossRef
go back to reference Nencki, M., & Zaleski, J. (1901). Berichte der deutschen chemischen Gesellschaft, 34, 997.CrossRef Nencki, M., & Zaleski, J. (1901). Berichte der deutschen chemischen Gesellschaft, 34, 997.CrossRef
go back to reference Nieuwenburg, P., Clarke, R. J., Cai, Z.-L., Chen, M., Larkum, A. W. D., Cabra, I. N. M., et al. (2003). Examination of the photophysical processes of chlorophyll d leading to a clarification of proposed uphill energy transfer processes in cells of Acaryochloris marina. Photochemistry and Photobiology, 77, 637–638.CrossRef Nieuwenburg, P., Clarke, R. J., Cai, Z.-L., Chen, M., Larkum, A. W. D., Cabra, I. N. M., et al. (2003). Examination of the photophysical processes of chlorophyll d leading to a clarification of proposed uphill energy transfer processes in cells of Acaryochloris marina. Photochemistry and Photobiology, 77, 637–638.CrossRef
go back to reference Nurnberg, D. J., Morton, J., Santabarbara, S., Telfer, A., Joliot, P., Antonaru, L. A., et al. (2018). Photochemistry beyond the red limit in chlorophyll f-containing photosystems. Science, 360, 1210–1213.PubMedCrossRef Nurnberg, D. J., Morton, J., Santabarbara, S., Telfer, A., Joliot, P., Antonaru, L. A., et al. (2018). Photochemistry beyond the red limit in chlorophyll f-containing photosystems. Science, 360, 1210–1213.PubMedCrossRef
go back to reference Partensky, F., & Garczarek, L. (2003). The photosynthetic apparatus of chlorophyll b and d containing Oxyphotobacteria. In: A. W. D. Larkum, S. E. Douglas, & J. A. Raven (Eds.) Photosynthesis in Algae (pp. 29–62). Springer, Dordrecht. Partensky, F., & Garczarek, L. (2003). The photosynthetic apparatus of chlorophyll b and d containing Oxyphotobacteria. In: A. W. D. Larkum, S. E. Douglas, & J. A. Raven (Eds.) Photosynthesis in Algae (pp. 29–62). Springer, Dordrecht.
go back to reference Pelletier, P. J., & Caventou, J. B. (1818). Note sur un nouvel Alcali. Annales de chimie et de physique, 8, 323–324. Pelletier, P. J., & Caventou, J. B. (1818). Note sur un nouvel Alcali. Annales de chimie et de physique, 8, 323–324.
go back to reference Pocock, T. H., Koziak, A., Rosso, D., Falk, S., & Huner, N. P. A. (2007). Chlamydomonas raudensis (UWO 241), Chlorophyceae, exhibits the capacityfor rapid D1 repair in response to chronic photoinhibition at low temperature. Journal of Phycology, 43, 924–936.CrossRef Pocock, T. H., Koziak, A., Rosso, D., Falk, S., & Huner, N. P. A. (2007). Chlamydomonas raudensis (UWO 241), Chlorophyceae, exhibits the capacityfor rapid D1 repair in response to chronic photoinhibition at low temperature. Journal of Phycology, 43, 924–936.CrossRef
go back to reference Porra, R. J. (1997). Recent progress in porphyrin and chlorophyll biosynthesis. Photochemistry and Photobiology, 65(3), 492–516.CrossRef Porra, R. J. (1997). Recent progress in porphyrin and chlorophyll biosynthesis. Photochemistry and Photobiology, 65(3), 492–516.CrossRef
go back to reference Reinbothe, C., El Bakkouri, M., Buhr, F., Muraki, N., Nomata, J., Kurisu, G., et al. (2010). Chlorophyll biosynthesis: Spotlight on protochlorophyllide reduction. Trends in Plant Science, 15, 614–624.PubMedCrossRef Reinbothe, C., El Bakkouri, M., Buhr, F., Muraki, N., Nomata, J., Kurisu, G., et al. (2010). Chlorophyll biosynthesis: Spotlight on protochlorophyllide reduction. Trends in Plant Science, 15, 614–624.PubMedCrossRef
go back to reference Ritchie, R. J. (2006). Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research, 89(1), 27–41.PubMedCrossRef Ritchie, R. J. (2006). Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research, 89(1), 27–41.PubMedCrossRef
go back to reference Rüdiger, W. (2002). Biosynthesis of chlorophyll b and the chlorophyll cycle. Photosynthesis Research, 74(2), 187–193.PubMedCrossRef Rüdiger, W. (2002). Biosynthesis of chlorophyll b and the chlorophyll cycle. Photosynthesis Research, 74(2), 187–193.PubMedCrossRef
go back to reference Scheer, H. (1991). Structure and occurence of chlorophylls. In: Scheer, H. (Ed.). Chlorophylls (pp. 3–30). CRC Press Scheer, H. (1991). Structure and occurence of chlorophylls. In: Scheer, H. (Ed.). Chlorophylls (pp. 3–30). CRC Press
go back to reference Scheer, H. (2006). An overview of chlorophylls and bacteriochlorophylls: Biochemistry, biophysics, functions and applications. In B. Grimm, R. J. Porra, W. Rüdiger, & H. Scheer (Eds.), Chlorophylls and bacteriochlorophylls: Biochemistry, biophysics, functions and applications (pp. 1–26). Printed in The Netherlands: Springer. Scheer, H. (2006). An overview of chlorophylls and bacteriochlorophylls: Biochemistry, biophysics, functions and applications. In B. Grimm, R. J. Porra, W. Rüdiger, & H. Scheer (Eds.), Chlorophylls and bacteriochlorophylls: Biochemistry, biophysics, functions and applications (pp. 1–26). Printed in The Netherlands: Springer.
go back to reference Schliep, M., Cavigliasso, G., Quinnell, R. G., Stranger, R., & Larkum, A. W. D. (2013). Formyl group modification of chlorophyll a: A major evolutionary mechanism in oxygenic photosynthesis. Plant, Cell and Environment, 36, 521–527.PubMedCrossRef Schliep, M., Cavigliasso, G., Quinnell, R. G., Stranger, R., & Larkum, A. W. D. (2013). Formyl group modification of chlorophyll a: A major evolutionary mechanism in oxygenic photosynthesis. Plant, Cell and Environment, 36, 521–527.PubMedCrossRef
go back to reference Schulz, R., & Senger, H. (1993). Protochlorophyllide reductase: A key enzyme in the greening process. Pigment-Protein Complexes in Plastids: Synthesis and Assembly, 179–218. Schulz, R., & Senger, H. (1993). Protochlorophyllide reductase: A key enzyme in the greening process. Pigment-Protein Complexes in Plastids: Synthesis and Assembly, 179–218.
go back to reference Shemin, D., & Wittenberg, J. (1951). The mechanism of porphyrin formation. The role of the tricarboxilic acid cycle. Journal of Biological Chemistry, 192, 315–334.CrossRef Shemin, D., & Wittenberg, J. (1951). The mechanism of porphyrin formation. The role of the tricarboxilic acid cycle. Journal of Biological Chemistry, 192, 315–334.CrossRef
go back to reference Shen, G., Canniffe, D. P., Ho, M. Y., Kurashov, V., van der Est, A., Golbeck, J. H., & Bryant, D. A. (2019). Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002. Photosynthnesis Research, 140(1), 77–92. Shen, G., Canniffe, D. P., Ho, M. Y., Kurashov, V., van der Est, A., Golbeck, J. H., & Bryant, D. A. (2019). Characterization of chlorophyll f synthase heterologously produced in Synechococcus sp. PCC 7002. Photosynthnesis Research, 140(1), 77–92.
go back to reference Shui, J., Saunders, E., Needleman, R., Nappi, M., Cooper, J., Hall, L., et al. (2009). Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting cyanobacterium Fremyella diplosiphon UTEX 481. Plant and Cell Physiology, 50, 1507–1521.PubMedCrossRef Shui, J., Saunders, E., Needleman, R., Nappi, M., Cooper, J., Hall, L., et al. (2009). Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting cyanobacterium Fremyella diplosiphon UTEX 481. Plant and Cell Physiology, 50, 1507–1521.PubMedCrossRef
go back to reference Smith, J. H. C. (1948). Protochlorophyll, precursor of chlorophyll. Archives of Biochemistry and Biophysics, 19, 449–454. Smith, J. H. C. (1948). Protochlorophyll, precursor of chlorophyll. Archives of Biochemistry and Biophysics, 19, 449–454.
go back to reference Smith, J. H. C. (1960). Prootochlorophyll transformations. In M. B. Allen (Ed.), Comparative Biochemistry of Photoreactive Systems (pp. 257–277). New York: Academic Press Inc. Smith, J. H. C. (1960). Prootochlorophyll transformations. In M. B. Allen (Ed.), Comparative Biochemistry of Photoreactive Systems (pp. 257–277). New York: Academic Press Inc.
go back to reference South, G. R., & Whittick, A. (1987). An introduction to phycology. Blackwell Science Ltd. South, G. R., & Whittick, A. (1987). An introduction to phycology. Blackwell Science Ltd.
go back to reference Stauber, J. L., & Jeffrey, S. W. (1988). Photosynthetic pigments in fifty-one species of marine diatoms. Journal of Phycology, 24, 158–172.CrossRef Stauber, J. L., & Jeffrey, S. W. (1988). Photosynthetic pigments in fifty-one species of marine diatoms. Journal of Phycology, 24, 158–172.CrossRef
go back to reference Stokes, G. G. (1854). Annals Physik, 2(4), 220. Stokes, G. G. (1854). Annals Physik, 2(4), 220.
go back to reference Stokes, G. G. (1864a). On the supposed identity of biliverdin with chlorophyll, with remarks on the constitution of chlorophyll. Proceedings of the Royal Society, 13, 144–145. Stokes, G. G. (1864a). On the supposed identity of biliverdin with chlorophyll, with remarks on the constitution of chlorophyll. Proceedings of the Royal Society, 13, 144–145.
go back to reference Stokes, G. G. (1864b). XXXIV.— On the application of the optical properties of bodies to the detection and discrimination of organic substances. Journal of the Chemical Society, 17, 304–318.CrossRef Stokes, G. G. (1864b). XXXIV.— On the application of the optical properties of bodies to the detection and discrimination of organic substances. Journal of the Chemical Society, 17, 304–318.CrossRef
go back to reference Strain, H. H., Cope, B. T., Jr., McDonald, G. N., Svec, W. A., & Katz, J. J. (1971). Chlorophylls c1 and c2. Phytochemistry, 10(5), 1109–1114.CrossRef Strain, H. H., Cope, B. T., Jr., McDonald, G. N., Svec, W. A., & Katz, J. J. (1971). Chlorophylls c1 and c2. Phytochemistry, 10(5), 1109–1114.CrossRef
go back to reference Suzuki, J. Y., & Bauer, C. E. (1992). Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC). The Plant Cell, 4, 929–940.PubMedPubMedCentral Suzuki, J. Y., & Bauer, C. E. (1992). Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC). The Plant Cell, 4, 929–940.PubMedPubMedCentral
go back to reference Szyszka, B., Ivanov, A. G., & Huner, N. P. A. (2007). Psychrophily is associated with differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation in Chlamydomonas raudensis. BBA-Bioenergetics, 1767, 789–800.PubMedCrossRef Szyszka, B., Ivanov, A. G., & Huner, N. P. A. (2007). Psychrophily is associated with differential energy partitioning, photosystem stoichiometry and polypeptide phosphorylation in Chlamydomonas raudensis. BBA-Bioenergetics, 1767, 789–800.PubMedCrossRef
go back to reference Tswett, M. (1906). Ber. deut. botan. Ges, 24, 316–384. Tswett, M. (1906). Ber. deut. botan. Ges, 24, 316–384.
go back to reference Tswett, M. (1907). Ber. Deut. Botan. Ges., 25, 140. Tswett, M. (1907). Ber. Deut. Botan. Ges., 25, 140.
go back to reference Tsweet, M. (1908). Biochemical Zoology, 10, 414. Tsweet, M. (1908). Biochemical Zoology, 10, 414.
go back to reference van den Hoek, C., van den Hoeck, H., Mann, D., & Jahns, H. M. (1995). Algae: An introduction to phycology. Cambridge University Press. van den Hoek, C., van den Hoeck, H., Mann, D., & Jahns, H. M. (1995). Algae: An introduction to phycology. Cambridge University Press.
go back to reference von Wettstein, D., Gough, S., & Kannangara, C. G. (1995). Chlorophyll biosynthesis. The Plant Cell, 7, 1039–1057.CrossRef von Wettstein, D., Gough, S., & Kannangara, C. G. (1995). Chlorophyll biosynthesis. The Plant Cell, 7, 1039–1057.CrossRef
go back to reference Willstätter, R., & Stoll, A. (1913). Untersuchungen über chlorophyll. Journal of Springer. Willstätter, R., & Stoll, A. (1913). Untersuchungen über chlorophyll. Journal of Springer.
go back to reference Wolff, J. B., & Price, L. (1957). Terminal steps of chlorophyll a biosynthesis in higher plants. Archives of Biochemistry and Biophysics, 72, 293–301.PubMedCrossRef Wolff, J. B., & Price, L. (1957). Terminal steps of chlorophyll a biosynthesis in higher plants. Archives of Biochemistry and Biophysics, 72, 293–301.PubMedCrossRef
go back to reference Woodward, R. B., Ayer, W. A., Beaton, J. M., Bickelhaupt, F., Bonnet, R., Buchschacher, P., et al. (1960). The total synthesis of chlorophyll. Journal of the American Chemical Society, 82, 3800–3801.CrossRef Woodward, R. B., Ayer, W. A., Beaton, J. M., Bickelhaupt, F., Bonnet, R., Buchschacher, P., et al. (1960). The total synthesis of chlorophyll. Journal of the American Chemical Society, 82, 3800–3801.CrossRef
go back to reference Wright, S. W., & Jeffrey, S. W. (2006). Pigment markers for phytoplankton production. In: Marine organic matter: biomarkers, isotopes and DNA Springer (pp. 71–104), Berlin, Heidelberg. Wright, S. W., & Jeffrey, S. W. (2006). Pigment markers for phytoplankton production. In: Marine organic matter: biomarkers, isotopes and DNA Springer (pp. 71–104), Berlin, Heidelberg.
go back to reference Zapata, M., Garrido, J. L., & Jeffrey, S. W. (2006). Chlorophyll c pigments: current status in chlorophylls and bacteriochlorophylls (pp. 39–53). Dordrecht: Springer.CrossRef Zapata, M., Garrido, J. L., & Jeffrey, S. W. (2006). Chlorophyll c pigments: current status in chlorophylls and bacteriochlorophylls (pp. 39–53). Dordrecht: Springer.CrossRef
Metadata
Title
Chlorophylls in Microalgae: Occurrence, Distribution, and Biosynthesis
Authors
Jaqueline Carmo da Silva
Ana Teresa Lombardi
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-50971-2_1