Skip to main content
Top
Published in: European Actuarial Journal 1/2016

01-07-2016 | Original Research Paper

Classification of scale-sensitive telematic observables for riskindividual pricing

Authors: W. Weidner, F. W. G. Transchel, R. Weidner

Published in: European Actuarial Journal | Issue 1/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Using modern telematics technologies for car insurance, it is no particular challenge to produce an intractably large amount of kinematic and contextual information about driving profiles of motor vehicles. In order to evaluate this data with respect to both efficient and effective use in scoring and subsequent actuarial pricing, we propose a scale-sensitive approach that treats observations on semantically different levels. Furthermore we discuss the application of methods necessary to assess the information of different scale levels including signal processing, pattern recognition and Fourier analysis. In this way we show how maneuvers, trips and trip sections as well as the total insurance period can be analyzed to individually or collectively gain significantly scoreable insights into individual driving behaviour.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Not the insured risk, i.e. the vehicle, but the vehicle driver causes insurance losses. A driver recognition is therefore essential for an adequate assessment of the factual, underlying risk.
 
2
Therefore, a sophisticated logic for measuring and transmission is the decisive quality factor, clarified further in Weidner and Transchel [23].
 
3
At this point fraud prevention, i.e. an extensive detection of data manipulation, should already be started. For example, a comparison of the measured data of a single vehicle and measurements of the whole ensemble is conceivable for this.
 
4
Since we are not interested in back-transforming examined frequency data, the choice of normalization is somewhat arbitrary. When looking at the self-duality of \(F(F(f(x))) = f(x)\), then a choice of \(1/\sqrt{(}n_k)\) for both the transform itself and the conjugate transform respectively is more reasonable from a mathematical point of view.
 
5
Although the random variables generally represent discrete signals whose information parameters take only a finite number of values, the differentiability of the scoring function s(X) can be guaranteed by means of interpolation, provided that sufficient values within certain limits are available.
 
6
In particular, this means that the classification is executed separately for each scale. Classes from different scales can resemble each other (despite the lack of comparability) by reason of similar contents, but the risk assessment of those classes can vary according to the context.
 
7
Only half of the evolution coefficients are necessary for representing of DFT-results due to Hermitian symmetry (see Sect. 2.2). Therefore, since the driving maneuver is recorded with 4 Hz, Fig. 4 (right) represents the magnitude of Fourier coefficients for frequencies from 0 to 2 Hz. Both, zero and folding frequency are neglected here because they do not provide any information about the maneuver structure.
 
8
The following relationship exists for frequency f [Hz] and period duration T [s]: \(T = \frac{1}{f}\).
 
9
VO (EU) Nr. 267/2010.
 
10
Since the driving behaviour naturally differs between different road types, we chose this particular selector to highlight the significance of the Fourier analysis of driving profiles. Other conditions and contexts are also possible, for example differentiation with respect to weather/light conditions or time of day.
 
11
For the DFT, we reduced the degree of detail to the mean value of 4 seconds, i.e. to a frequency of 0.25 Hz; we thus abstract the information to the required precision at the section level. Therefore, by reason of Hermitian symmetry (see Sect. 2.2), Fig. 5 (below) represents the magnitude of Fourier coefficients for frequencies from 0 to 0.125 Hz. The zero frequency, which generally reflects the homogeneity of the telematic measurements, is also shown.
 
12
Instead of processing the signal data directly, one can resort to model the auto-correlation function instead, given by \(R_{m_k^{(j)}}(\tau ) = \frac{1}{n_k} \sum _{t=1}^{n_k}m_k^{(j)}(t)m_k^{(j)}(t+\tau )\), where \(\tau \in \mathbb {N}\) is the probed period length. However, to address the question when to use which quantity, there is no sufficient portfolio data available to define figures of merit for this particular case and this comment should be considered for brevity.
 
13
We fitted the DFT spectrum after the following considerations: Due to Parseval’s theorem, the total energy of the process (and thus, in the discrete case, the sum of all Fourier coefficients) in the frequency domain matches the integral over the velocity data in positional space. As a consequence from the fact that frequency is proportional to the inverse period, we fit the velocity transform by \(F(x) \sim \mu _{k,2}^{(j)} \cdot e^{-0.57 \cdot x^{0.5}}\), where the scaling factor \(\mu _{k,2}^{(j)}\) is the coefficient of the greatest period length, due to the expectation that higher frequencies must contain exponentially less energy in order to get a bounded expression. It appears as an exponentially less steeper line in the log plots. Although the longitudinal acceleration transform depends linearly on the velocity transform, its fit is almost linear due to the fact that the range of the coefficients is reduced compared to the velocity transform. It is thus sufficient to fit it by a linear expression as mean value for each Fourier coefficient per a portfolio average to indicate the expected distribution according to the central limit theorem that appears as a slightly exponentially decreasing function in the log plots. The dependent part of the lateral acceleration transform shows, like the longitudinal dimension, a limited range. Therefore, even without direct connection with the energy as in the case of the longitudinal acceleration, we fit it by a linear expression too.
 
14
As basic property of Fourier analysis, the longitudinal acceleration behaviour must differ from the velocity coefficients only by a constant as the former is the time derivative of the latter. As such, plotting and analyzing both measurement parameters is redundant if they are derived from the same source. If, however, as is the case with some of the emerging hardware solutions, velocity is obtained from GPS measurement whereas acceleration data is measured by respective acceleration sensors, the comparison at hand provides either redundancy or plausibility checks of either device.
 
15
“Smoothness” of the DFT spectrum of the acceleration behaviour is meant here as in the sense of small coefficients.
 
16
The main point of investigation in Weidner et al. [24] was to determine representative driving styles differentiating the velocity and longitudinal acceleration behaviour for each trip. In their research, they find two groups of driving styles depending on the velocity process—with the same or similar acceleration and deceleration value distribution—those with lower (i.e. up to 50 km/h in the mean) and those with higher velocity values (i.e. more than 50 km/h in the mean), whereas no differentiation regarding road type was made.
 
17
It is worth noting that naturally, the available amount of data for the night time is two orders of magnitudes smaller than at day time, such that all conclusions must be thoroughly checked against both portfolio size and total number of trips, especially if conclusions are drawn with respect to large personal injury and material damage occurring at night time. Consequently, for a risk-adequate scoring it is necessary to compare the distribution of the individual ratio of driving styles (per hour) with the portfolio or segment of choice, weighted with the risk associated with each driving style and time of day.
 
Literature
2.
go back to reference Bracewell RN (1986) The Fourier transform and its applications. McGraw Hill, New YorkMATH Bracewell RN (1986) The Fourier transform and its applications. McGraw Hill, New YorkMATH
3.
go back to reference Bruneteau F (2015) The impact of telematics on the motor insurance business model. Focus-Motor Insurance & Reinsurance, p 14–21 Bruneteau F (2015) The impact of telematics on the motor insurance business model. Focus-Motor Insurance & Reinsurance, p 14–21
5.
go back to reference Daschner D, Gwehenberger H, Schwarz S, Wermuth G, Schönfelder M, Hofmann F (2010) Unfallstruktur- und Wirkpotenzialanalysen zu den AKTIV-Applikationen auf der Basis von Pkw-Haftpflichtschäden mit Personenschaden. Bericht zum Forschungsprojekt AKTIV-AS, Bundesministerium für Wirtschaft und Verkehr, München Daschner D, Gwehenberger H, Schwarz S, Wermuth G, Schönfelder M, Hofmann F (2010) Unfallstruktur- und Wirkpotenzialanalysen zu den AKTIV-Applikationen auf der Basis von Pkw-Haftpflichtschäden mit Personenschaden. Bericht zum Forschungsprojekt AKTIV-AS, Bundesministerium für Wirtschaft und Verkehr, München
6.
go back to reference Duda RO, Hart PE, Stork DG (2000) Pattern classification, 2nd edn. Wiley-Interscience, New YorkMATH Duda RO, Hart PE, Stork DG (2000) Pattern classification, 2nd edn. Wiley-Interscience, New YorkMATH
7.
go back to reference Dym H, McKean HP (1972) Fourier Series and Integrals. Academic Press, New YorkMATH Dym H, McKean HP (1972) Fourier Series and Integrals. Academic Press, New YorkMATH
8.
go back to reference Unfalltypen-Katalog GDV (1998) Leitfaden zur Bestimmung des Unfalltyps. Gesamtverband der Deutschen Versicherungswirtschaft e.V. (damals: Institut für Straßenverkehr), Köln Unfalltypen-Katalog GDV (1998) Leitfaden zur Bestimmung des Unfalltyps. Gesamtverband der Deutschen Versicherungswirtschaft e.V. (damals: Institut für Straßenverkehr), Köln
9.
go back to reference Gschwendtner K, Kiss M, Gwehenberger J, Lienkamp M (2014) “In-Depth”-Schadenanalyse, Anforderungen und Potenziale. VKU Verkehrsunfall und Fahrzeugtechnik 272–284 Gschwendtner K, Kiss M, Gwehenberger J, Lienkamp M (2014) “In-Depth”-Schadenanalyse, Anforderungen und Potenziale. VKU Verkehrsunfall und Fahrzeugtechnik 272–284
11.
go back to reference KPMG, Gibt es eine Zukunft für die KFZ-Versicherung? KPMG AG Wirtschaftsprüfungsgesellschaft, Berlin, 2015 KPMG, Gibt es eine Zukunft für die KFZ-Versicherung? KPMG AG Wirtschaftsprüfungsgesellschaft, Berlin, 2015
12.
go back to reference Karapiperis D, Obersteadt A, Brandenburg A, Castagna S, Birnbaum B, Greenberg A, Harbage R (2015) Usage-based insurance and vehicle telematics: insurance market and regulatory implications. CIPR Study Series 2015–1:1–79 Karapiperis D, Obersteadt A, Brandenburg A, Castagna S, Birnbaum B, Greenberg A, Harbage R (2015) Usage-based insurance and vehicle telematics: insurance market and regulatory implications. CIPR Study Series 2015–1:1–79
17.
go back to reference Perner P, Petrou M (eds) (1999) Machine learning and data mining in pattern recognition. Springer-Verlag, Berlin Heidelberg Perner P, Petrou M (eds) (1999) Machine learning and data mining in pattern recognition. Springer-Verlag, Berlin Heidelberg
18.
go back to reference Scott AJ, Knott M (1974) A cluster analysis method for grouping means in the analysis of variance. Biometrics 30(3):507–512CrossRefMATH Scott AJ, Knott M (1974) A cluster analysis method for grouping means in the analysis of variance. Biometrics 30(3):507–512CrossRefMATH
19.
go back to reference Statistisches Bundesamt, Verkehr—Verkehrsunfälle 2014. Fachserie 8 Reihe 7, Wiesbaden, 2015 Statistisches Bundesamt, Verkehr—Verkehrsunfälle 2014. Fachserie 8 Reihe 7, Wiesbaden, 2015
20.
go back to reference Swiss Re (2015) Life insurance in the digital age: fundamental transformation ahead. Sigma 6/2015, Zürich, Swiss Re (2015) Life insurance in the digital age: fundamental transformation ahead. Sigma 6/2015, Zürich,
21.
go back to reference Theodoridis S, Koutroumbas K (2008) Pattern recognition, 4th edn. Academic Press, BostonMATH Theodoridis S, Koutroumbas K (2008) Pattern recognition, 4th edn. Academic Press, BostonMATH
22.
go back to reference Walker JS (1988) Fourier analysis. Oxford University Press, New YorkMATH Walker JS (1988) Fourier analysis. Oxford University Press, New YorkMATH
23.
go back to reference Weidner W, Transchel FWG (2015) Aktuarielle Besonderheiten bei der Kalkulation von Telematik-Tarifen in der Kfz-Versicherung. ZVersWiss 104(5):595–614CrossRef Weidner W, Transchel FWG (2015) Aktuarielle Besonderheiten bei der Kalkulation von Telematik-Tarifen in der Kfz-Versicherung. ZVersWiss 104(5):595–614CrossRef
24.
go back to reference Weidner W, Transchel FWG, Weidner R (2015) Telematic Driving Profile Classification in Car Insurance Pricing. Working Paper Weidner W, Transchel FWG, Weidner R (2015) Telematic Driving Profile Classification in Car Insurance Pricing. Working Paper
25.
go back to reference Weidner W, Weidner R, Transchel FWG (2015) Die Implementierung der Pkw-Telematik in die Kfz-Versicherungstarifierung—Ein Analyse-Ansatz für Fahrprofile. Zeitschrift für Verkehrswissenschaft 85(2):91–121 Weidner W, Weidner R, Transchel FWG (2015) Die Implementierung der Pkw-Telematik in die Kfz-Versicherungstarifierung—Ein Analyse-Ansatz für Fahrprofile. Zeitschrift für Verkehrswissenschaft 85(2):91–121
26.
go back to reference Wolff DD, Parsons ML (1983) Pattern recognition approach to data interpretation. Plenum Press, New YorkCrossRef Wolff DD, Parsons ML (1983) Pattern recognition approach to data interpretation. Plenum Press, New YorkCrossRef
Metadata
Title
Classification of scale-sensitive telematic observables for riskindividual pricing
Authors
W. Weidner
F. W. G. Transchel
R. Weidner
Publication date
01-07-2016
Publisher
Springer Berlin Heidelberg
Published in
European Actuarial Journal / Issue 1/2016
Print ISSN: 2190-9733
Electronic ISSN: 2190-9741
DOI
https://doi.org/10.1007/s13385-016-0127-x

Other articles of this Issue 1/2016

European Actuarial Journal 1/2016 Go to the issue