Skip to main content
Top

2020 | OriginalPaper | Chapter

2. Classification

Author : Sanjay Kumar

Published in: Additive Manufacturing Processes

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to classify additive manufacturing (AM) processes, it is checked why they are different from each other. Their differences in terms of materials, energy sources, types of feedstocks used and conveyance of feedstocks are studied and attempts are done to classify on the basis of these differences. AM processes, whether they are additive layer manufacturing type or additive non-layer manufacturing type, are each classified into three types: material bed process, material deposition process and motionless material process. This classification allowed to accommodate all existing AM processes. Besides, this classification provides plenty of space to accommodate future AM processes.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference ASTM F2792-12a (2012) Standard terminology for additive manufacturing technologies (withdrawn 2015). ASTM International, West Conschohocken ASTM F2792-12a (2012) Standard terminology for additive manufacturing technologies (withdrawn 2015). ASTM International, West Conschohocken
go back to reference Baumers M, Tuck C, Hague R (2015) Selective heat sintering versus laser sintering: comparison of deposition rate, process energy consumption and cost performance. In: SFF proceedings, pp 109–121 Baumers M, Tuck C, Hague R (2015) Selective heat sintering versus laser sintering: comparison of deposition rate, process energy consumption and cost performance. In: SFF proceedings, pp 109–121
go back to reference Boyle BM, Xiong PT, Mensch TE et al (2019) 3D printing using powder melt extrusion. Addit Manuf 29:100811 Boyle BM, Xiong PT, Mensch TE et al (2019) 3D printing using powder melt extrusion. Addit Manuf 29:100811
go back to reference Brown R, Morgan C T, Majweski C E (2018) Not just nylon—improving the range of materials for high speed sintering. In: SFF proceedings, pp 1487–1498 Brown R, Morgan C T, Majweski C E (2018) Not just nylon—improving the range of materials for high speed sintering. In: SFF proceedings, pp 1487–1498
go back to reference Bryant FD, Sui G, Leu MC (2003) A study on effects of process parameters in rapid freeze prototyping. Rapid Prototyp J 9(1):19–23CrossRef Bryant FD, Sui G, Leu MC (2003) A study on effects of process parameters in rapid freeze prototyping. Rapid Prototyp J 9(1):19–23CrossRef
go back to reference Chao Y, Qi L, Xiao Y et al (2012) Manufacturing of micro thin-walled metal parts by micro-droplet deposition. J Mater Process Technol 212(2):484–491CrossRef Chao Y, Qi L, Xiao Y et al (2012) Manufacturing of micro thin-walled metal parts by micro-droplet deposition. J Mater Process Technol 212(2):484–491CrossRef
go back to reference Chi Z, Yong C, Zhigang Y, Behrokh K (2013) Digital material fabrication using mask-image-projection-based stereolithography. Rapid Prototyp J 19(3):153–165CrossRef Chi Z, Yong C, Zhigang Y, Behrokh K (2013) Digital material fabrication using mask-image-projection-based stereolithography. Rapid Prototyp J 19(3):153–165CrossRef
go back to reference Cunningham CR, Flynn JM, Shokrani A et al (2018) Invited review article: strategies and processes for high quality wire arc additive manufacturing. Addit Manuf 22:672–686 Cunningham CR, Flynn JM, Shokrani A et al (2018) Invited review article: strategies and processes for high quality wire arc additive manufacturing. Addit Manuf 22:672–686
go back to reference Dass A, Moridi A (2019) State of the art in directed energy deposition: from additive manufacturing to materials design. Coatings 9(418):1–26 Dass A, Moridi A (2019) State of the art in directed energy deposition: from additive manufacturing to materials design. Coatings 9(418):1–26
go back to reference Enneti RK, Prough KC, Wolfe TA et al (2018) Sintering of WC-12%Co processed by binder jet 3D printing (BJ3DP) technology. Int J Refract Met Hard Mater 71:28–35CrossRef Enneti RK, Prough KC, Wolfe TA et al (2018) Sintering of WC-12%Co processed by binder jet 3D printing (BJ3DP) technology. Int J Refract Met Hard Mater 71:28–35CrossRef
go back to reference Feng Y, Zhan B, He J, Wang K (2018) The double-wire feed and plasma arc additive manufacturing process for deposition in Cr-Ni stainless steel. J Mater Process Technol 259:206–215CrossRef Feng Y, Zhan B, He J, Wang K (2018) The double-wire feed and plasma arc additive manufacturing process for deposition in Cr-Ni stainless steel. J Mater Process Technol 259:206–215CrossRef
go back to reference Fredriksson C (2019) Sustainability of metal powder additive manufacturing. Procedia Manuf 33:139–144CrossRef Fredriksson C (2019) Sustainability of metal powder additive manufacturing. Procedia Manuf 33:139–144CrossRef
go back to reference Goh GL, Agarwala S, Tan YJ, Yeong WY (2018) A low cost and flexible carbon nanotube pH sensor fabricated using aerosol jet technology for live cell applications. Sensors Actuators B Chem 260:227–235CrossRef Goh GL, Agarwala S, Tan YJ, Yeong WY (2018) A low cost and flexible carbon nanotube pH sensor fabricated using aerosol jet technology for live cell applications. Sensors Actuators B Chem 260:227–235CrossRef
go back to reference Hafkamp T, Baars G V, Jager B D, Etman P (2017) A trade-off analysis of recoating methods for vat photopolymerization of ceramics. In: SFF proceedings, vol 28, pp 687–711 Hafkamp T, Baars G V, Jager B D, Etman P (2017) A trade-off analysis of recoating methods for vat photopolymerization of ceramics. In: SFF proceedings, vol 28, pp 687–711
go back to reference Holt N, Horn AV, Montazeri M, Zhou W (2018) Microheater array powder sintering: a novel additive manufacturing process. J Manuf Process 31:536–551CrossRef Holt N, Horn AV, Montazeri M, Zhou W (2018) Microheater array powder sintering: a novel additive manufacturing process. J Manuf Process 31:536–551CrossRef
go back to reference Janusziewicz R, Tumbleston JR, Quintanilla AL et al (2016) Layerless fabrication with continuous liquid interface production. PNAS 11(42):11703–11708CrossRef Janusziewicz R, Tumbleston JR, Quintanilla AL et al (2016) Layerless fabrication with continuous liquid interface production. PNAS 11(42):11703–11708CrossRef
go back to reference Jerby E, Meir Y, Salzberg A et al (2015) Incremental metal-powder solidification by localized microwave-heating and its potential for additive manufacturing. Addit Manuf 6:53–66 Jerby E, Meir Y, Salzberg A et al (2015) Incremental metal-powder solidification by localized microwave-heating and its potential for additive manufacturing. Addit Manuf 6:53–66
go back to reference Johannes S J, Keicher D M, Lavin J M et al (2018) Multimaterial aerosol jet printing of passive circuit elements. In: SFF symposium proceedings, pp 473–478 Johannes S J, Keicher D M, Lavin J M et al (2018) Multimaterial aerosol jet printing of passive circuit elements. In: SFF symposium proceedings, pp 473–478
go back to reference Kamraj A, Lewis S, Sundaram M (2016) Numerical study of localized electrochemical deposition for micro electrochemical additive manufacturing. Procedia CIRP 42:788–792CrossRef Kamraj A, Lewis S, Sundaram M (2016) Numerical study of localized electrochemical deposition for micro electrochemical additive manufacturing. Procedia CIRP 42:788–792CrossRef
go back to reference Kanada Y (2015) Support-less horizontal filament stacking by layer-less FDM. In: SFF proceedings, pp 56–70 Kanada Y (2015) Support-less horizontal filament stacking by layer-less FDM. In: SFF proceedings, pp 56–70
go back to reference Kernan BD, Sachs EM, Oliveira MA, Cima MJ (2007) Three dimensional printing of tungsten carbide-10 wt % cobalt using a cobalt oxide precursor. Int J Refract Met Hard Mater 25:82–94CrossRef Kernan BD, Sachs EM, Oliveira MA, Cima MJ (2007) Three dimensional printing of tungsten carbide-10 wt % cobalt using a cobalt oxide precursor. Int J Refract Met Hard Mater 25:82–94CrossRef
go back to reference Korner C (2016) Additive manufacturing of metallic components by selective electron beam melting- a review. Int Mater Rev 61(5):361–377CrossRef Korner C (2016) Additive manufacturing of metallic components by selective electron beam melting- a review. Int Mater Rev 61(5):361–377CrossRef
go back to reference Kumar S (2003) Selective laser sintering-a qualitative and objective approach. JOM 55(10):43–47CrossRef Kumar S (2003) Selective laser sintering-a qualitative and objective approach. JOM 55(10):43–47CrossRef
go back to reference Kumar S (2014) Selective laser sintering/melting. Compr Mater Process 10:93–134. Elsevier LtdCrossRef Kumar S (2014) Selective laser sintering/melting. Compr Mater Process 10:93–134. Elsevier LtdCrossRef
go back to reference Kumar S, Czekanski A (2018) Roadmap to sustainable plastic additive manufacturing. Mater Today Commun 15:109–113CrossRef Kumar S, Czekanski A (2018) Roadmap to sustainable plastic additive manufacturing. Mater Today Commun 15:109–113CrossRef
go back to reference Lanceros-Méndez S, Costa CM (2018) Printed batteries: materials, technologies and applications. Wiley, HobokenCrossRef Lanceros-Méndez S, Costa CM (2018) Printed batteries: materials, technologies and applications. Wiley, HobokenCrossRef
go back to reference Masood SH (2014) Advances in fused deposition modeling. Compr Mater Process 10:69–91CrossRef Masood SH (2014) Advances in fused deposition modeling. Compr Mater Process 10:69–91CrossRef
go back to reference Mora J, Dudoff JK, Moran BD et al (2018) Projection based light-directed electrophoretic deposition for additive manufacturing. Addit Manuf 22:330–333 Mora J, Dudoff JK, Moran BD et al (2018) Projection based light-directed electrophoretic deposition for additive manufacturing. Addit Manuf 22:330–333
go back to reference Nguyen AK, Narayan RJ (2017) Two-photon polymerization for biological applications. Mater Today 20(6):314–322CrossRef Nguyen AK, Narayan RJ (2017) Two-photon polymerization for biological applications. Mater Today 20(6):314–322CrossRef
go back to reference Pham CB, Leong KF, Lim TC, Chian KS (2008) Rapid freeze prototyping technique in bio-plotters for tissue scaffold fabrication. Rapid Prototyp J 14(4):246–253CrossRef Pham CB, Leong KF, Lim TC, Chian KS (2008) Rapid freeze prototyping technique in bio-plotters for tissue scaffold fabrication. Rapid Prototyp J 14(4):246–253CrossRef
go back to reference Ren X, Shao H, Lin T, Zheng H (2016) 3D gel-printing- an additive manufacturing method for producing complex shaped parts. Mater Des 101:80–87CrossRef Ren X, Shao H, Lin T, Zheng H (2016) 3D gel-printing- an additive manufacturing method for producing complex shaped parts. Mater Des 101:80–87CrossRef
go back to reference Roschli A, Gaul KT, Boulger AM et al (2019) Designing for big area additive manufacturing. Addit Manuf 25:275–285 Roschli A, Gaul KT, Boulger AM et al (2019) Designing for big area additive manufacturing. Addit Manuf 25:275–285
go back to reference Salonitis K (2014) Stereolithography. Compr Mater Process 10:19–67. ElsevierCrossRef Salonitis K (2014) Stereolithography. Compr Mater Process 10:19–67. ElsevierCrossRef
go back to reference Scheithauer U, Potschke J, Weingarten S et al (2017) Droplet-based additive manufacturing of hard metal components by thermoplastic 3D printing (T3DP). J Ceram Sci Technol 8(1):155–160 Scheithauer U, Potschke J, Weingarten S et al (2017) Droplet-based additive manufacturing of hard metal components by thermoplastic 3D printing (T3DP). J Ceram Sci Technol 8(1):155–160
go back to reference Schmidt M, Merklein M, Bourell D et al (2017) Laser based additive manufacturing in industry and academia. CIRP Ann 66(2):561–583CrossRef Schmidt M, Merklein M, Bourell D et al (2017) Laser based additive manufacturing in industry and academia. CIRP Ann 66(2):561–583CrossRef
go back to reference Sillani F, Kleijnen RG, Vetterli M et al (2019) Selective laser sintering and multi jet fusion: process-induced modification of the raw materials and analyses of parts performance. Addit Manuf 27:32–41 Sillani F, Kleijnen RG, Vetterli M et al (2019) Selective laser sintering and multi jet fusion: process-induced modification of the raw materials and analyses of parts performance. Addit Manuf 27:32–41
go back to reference Simonelli M, Aboulkhair N, Rasa M et al (2019) Towards digital metal additive manufacturing via high-temperature drop-on-demand jetting. Addit Manuf 30:100930 Simonelli M, Aboulkhair N, Rasa M et al (2019) Towards digital metal additive manufacturing via high-temperature drop-on-demand jetting. Addit Manuf 30:100930
go back to reference Snow Z, Martukanitz R, Joshi S (2019) On the development of powder spreadability metrics and feedstock requirements for powder bed fusion additive manufacturing. Addit Manuf 28:78–86 Snow Z, Martukanitz R, Joshi S (2019) On the development of powder spreadability metrics and feedstock requirements for powder bed fusion additive manufacturing. Addit Manuf 28:78–86
go back to reference Stringer J, Derby B (2009) Limits to feature size and resolution in ink-jet printing. J Eur Ceram Soc 29:913–918CrossRef Stringer J, Derby B (2009) Limits to feature size and resolution in ink-jet printing. J Eur Ceram Soc 29:913–918CrossRef
go back to reference Tabernero I, Paskual A, Alvarez P, Suarez A (2018) Study on arc welding processes for high deposition rate additive manufacturing. Procedia CIRP 68:358–362CrossRef Tabernero I, Paskual A, Alvarez P, Suarez A (2018) Study on arc welding processes for high deposition rate additive manufacturing. Procedia CIRP 68:358–362CrossRef
go back to reference Tang HH (2002) Direct laser fusing to form ceramic parts. Rapid Prototyp J 8(5):284–289CrossRef Tang HH (2002) Direct laser fusing to form ceramic parts. Rapid Prototyp J 8(5):284–289CrossRef
go back to reference Tarasov SY, Filippov AV, Shamarin NN et al (2019) Microstructural evolution and chemical corrosion of electron beam wire-feed additively manufactured AISI 304 stainless steel. J Alloys Compd 803:364–370CrossRef Tarasov SY, Filippov AV, Shamarin NN et al (2019) Microstructural evolution and chemical corrosion of electron beam wire-feed additively manufactured AISI 304 stainless steel. J Alloys Compd 803:364–370CrossRef
go back to reference Wang Z, Liu R, Sparks T, Liou F (2016) Large scale deposition system by an industrial robot (I): design of fused pellet modeling system and extrusion process analysis. 3D. Print Addit Manuf 3(1):39–47CrossRef Wang Z, Liu R, Sparks T, Liou F (2016) Large scale deposition system by an industrial robot (I): design of fused pellet modeling system and extrusion process analysis. 3D. Print Addit Manuf 3(1):39–47CrossRef
go back to reference White D (2003) Ultrasonic object consolidation. U.S. Patent No. 6,519,500. Washington, DC White D (2003) Ultrasonic object consolidation. U.S. Patent No. 6,519,500. Washington, DC
go back to reference Wu S, Serbin J, Gu M (2006) Two-photon polymerization for three-dimensional micro-fabrication. J Photochem Photobiol A Chem 181:1–11CrossRef Wu S, Serbin J, Gu M (2006) Two-photon polymerization for three-dimensional micro-fabrication. J Photochem Photobiol A Chem 181:1–11CrossRef
go back to reference Yan Z, Liu W, Tang Z et al (2018) Review on thermal analysis in laser-based additive manufacturing. Opt Laser Technol 106:427–441CrossRef Yan Z, Liu W, Tang Z et al (2018) Review on thermal analysis in laser-based additive manufacturing. Opt Laser Technol 106:427–441CrossRef
go back to reference Yin S, Cavaliere P, Aldwell B et al (2018) Cold spray additive manufacturing and repair: fundamentals and applications. Addit Manuf 21:628–650 Yin S, Cavaliere P, Aldwell B et al (2018) Cold spray additive manufacturing and repair: fundamentals and applications. Addit Manuf 21:628–650
go back to reference Yu HZ, Jones ME, Brady GW et al (2018) Non-beam-based metal additive manufacturing enabled by additive friction stir deposition. Scr Mater 153:122–130CrossRef Yu HZ, Jones ME, Brady GW et al (2018) Non-beam-based metal additive manufacturing enabled by additive friction stir deposition. Scr Mater 153:122–130CrossRef
go back to reference Zuo H, Li H, Qi L, Zhong S (2016) Influence of interfacial bonding between metal droplets on tensile properties of 7075 Aluminum billets by additive manufacturing technique. J Mater Sci Technol 32(5):485–488CrossRef Zuo H, Li H, Qi L, Zhong S (2016) Influence of interfacial bonding between metal droplets on tensile properties of 7075 Aluminum billets by additive manufacturing technique. J Mater Sci Technol 32(5):485–488CrossRef
Metadata
Title
Classification
Author
Sanjay Kumar
Copyright Year
2020
DOI
https://doi.org/10.1007/978-3-030-45089-2_2

Premium Partners