Skip to main content
Top
Published in: Wireless Personal Communications 4/2021

13-01-2020

Cluster-Based Systematic Data Aggregation Model (CSDAM) for Real-Time Data Processing in Large-Scale WSN

Authors: M. Shobana, R. Sabitha, S. Karthik

Published in: Wireless Personal Communications | Issue 4/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In present decade, wireless sensor networks is applied in a variety of applications such as health monitoring, agriculture, traffic management, security domains, pollution management, and so on. Owing to the node density, the same data are collected by multiple sensors that introduce redundancy, which should be avoided by means of proper data aggregation methodology. With that note, this paper presents a cluster-based systematic data aggregation model (CSDAM) for real-time data processing. First, the network is formed into a cluster with active and sleep state nodes and cluster-head (CH) is selected based on ranking given to sensors with two criteria: existing energy level (EEL) and geographic-location (GL) to base station (BS), [i.e., Rank(EEL,GL)]. Here, the CH is the aggregator. Second, Aggregation is carried out in 3 levels where the data processing of level 3 has been reduced by aggregating the data at level 1 and level 2. If the energy of aggregator goes below the threshold, we choose another aggregator. Third, Real time application should be given more precedence than other applications, so additionally an application type field is added to each sensor node from which the priority of data processing is given first to real time applications. The simulation results show that CSDAM minimizes the consumption of energy and transmission delay effectively, thereby increasing the network lifespan.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zytoune, Q., & Fakhri, Y. (2009). Aboutajdine D (2009) A balanced cost cluster- heads selection algorithm for wireless sensor networks. International Journal of Computer Science, 4(1), 21–24.MathSciNet Zytoune, Q., & Fakhri, Y. (2009). Aboutajdine D (2009) A balanced cost cluster- heads selection algorithm for wireless sensor networks. International Journal of Computer Science, 4(1), 21–24.MathSciNet
2.
go back to reference Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., & Pister, K. (2000). System architecture directions for networked sensors. ACM SIGOPS Operating Systems Review, 34(5), 93–104.CrossRef Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., & Pister, K. (2000). System architecture directions for networked sensors. ACM SIGOPS Operating Systems Review, 34(5), 93–104.CrossRef
3.
go back to reference Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications., 19(2), 171–209.CrossRef Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications., 19(2), 171–209.CrossRef
4.
go back to reference Jaseena, K. U., & David, J. M. (2014). Issues, challenges, and solutions: Big data mining’. Computer Science & Information Technology, 4, 131–140. Jaseena, K. U., & David, J. M. (2014). Issues, challenges, and solutions: Big data mining’. Computer Science & Information Technology, 4, 131–140.
5.
go back to reference Harb, H., Makhoul, A., Idrees, A. K., Zahwe, O., & Taam, M. A. (2017). Wireless n sensor networks: A big data source in Internet of Things. International Journal of Sensors Wireless Communications and Control, 7(2), 93–109. Harb, H., Makhoul, A., Idrees, A. K., Zahwe, O., & Taam, M. A. (2017). Wireless n sensor networks: A big data source in Internet of Things. International Journal of Sensors Wireless Communications and Control, 7(2), 93–109.
6.
go back to reference Braman, A., & Umapathi, G. R. (2014). A comparative study on advances in LEACH routing protocol for wireless sensor networks: A survey. International Journal of Advanced Research in Computer and Communication Engineering, 3(2), 15–21. Braman, A., & Umapathi, G. R. (2014). A comparative study on advances in LEACH routing protocol for wireless sensor networks: A survey. International Journal of Advanced Research in Computer and Communication Engineering, 3(2), 15–21.
7.
go back to reference Kaura, R., & Majithia, S. (2012). Efficient end to end routing using RSSI & simulated annealing. International Journal of Engineering Research and Technology, 1(10), 1–5. Kaura, R., & Majithia, S. (2012). Efficient end to end routing using RSSI & simulated annealing. International Journal of Engineering Research and Technology, 1(10), 1–5.
8.
go back to reference Dagar, M., & Mahajan, S. (2013). Data aggregation in wireless sensor network: A survey. International Journal of Information and Computation Technology, 3(3), 167–174. Dagar, M., & Mahajan, S. (2013). Data aggregation in wireless sensor network: A survey. International Journal of Information and Computation Technology, 3(3), 167–174.
9.
go back to reference Dhand, G., & Tyagi, S. S. (2016). Data aggregation techniques in WSN: Survey. Procedia Computer Science, 92, 378–384.CrossRef Dhand, G., & Tyagi, S. S. (2016). Data aggregation techniques in WSN: Survey. Procedia Computer Science, 92, 378–384.CrossRef
10.
go back to reference Randhawa, S., & Jain, S. (2017). Data aggregation in wireless sensor networks: Previous research, current status and future directions. Wireless Personal Communications, 97, 3355–3425.CrossRef Randhawa, S., & Jain, S. (2017). Data aggregation in wireless sensor networks: Previous research, current status and future directions. Wireless Personal Communications, 97, 3355–3425.CrossRef
11.
go back to reference Khudonogova, L.I., & Muravyov, S. V. (2016). Energy-accurcay aware active node selection in wireless sensor network. In IEEE. Khudonogova, L.I., & Muravyov, S. V. (2016). Energy-accurcay aware active node selection in wireless sensor network. In IEEE.
12.
go back to reference Patil, N. S., & Patil, P. R. (2010). Data aggregation in wireless sensor network. In IEEE international conference on computational intelligence and computing research. Patil, N. S., & Patil, P. R. (2010). Data aggregation in wireless sensor network. In IEEE international conference on computational intelligence and computing research.
13.
go back to reference Andreu-Perez, J., Poon, C. C. Y., Merrifield, R. D., Wong, S. T. C., & Yang, G. Z. (2015). Big data for health. IEEE Journal of Biomedical and Health Informatics, 19(4), 1193–1208.CrossRef Andreu-Perez, J., Poon, C. C. Y., Merrifield, R. D., Wong, S. T. C., & Yang, G. Z. (2015). Big data for health. IEEE Journal of Biomedical and Health Informatics, 19(4), 1193–1208.CrossRef
14.
go back to reference Chao, W., Birch, D., Silva, D., Tsinalis, C.-H., Lee, O., & Guo, Y. (2014). Concinnity: A generic platform for big sensor data applications. Cloud Computing, 1(2), 42–50.CrossRef Chao, W., Birch, D., Silva, D., Tsinalis, C.-H., Lee, O., & Guo, Y. (2014). Concinnity: A generic platform for big sensor data applications. Cloud Computing, 1(2), 42–50.CrossRef
15.
go back to reference Chen, J., Xu, W., He, S., Sun, Y., Thulasiraman, P., & Shen, X. (2010). Utility-based asynchronous flow control algorithm for wireless sensor networks. IEEE Journal on Selected Areas in Communications, 28(7), 1116–1126.CrossRef Chen, J., Xu, W., He, S., Sun, Y., Thulasiraman, P., & Shen, X. (2010). Utility-based asynchronous flow control algorithm for wireless sensor networks. IEEE Journal on Selected Areas in Communications, 28(7), 1116–1126.CrossRef
16.
go back to reference Lin, C., Chiu, M.-J., Hsiao, C.-C., Lee, R.-G., & Tsai, Y.-S. (2006). Wireless health care service system for elderly with dementia. IEEE Transactions on Information Technology in Biomedicine, 10(4), 696–704.CrossRef Lin, C., Chiu, M.-J., Hsiao, C.-C., Lee, R.-G., & Tsai, Y.-S. (2006). Wireless health care service system for elderly with dementia. IEEE Transactions on Information Technology in Biomedicine, 10(4), 696–704.CrossRef
17.
18.
go back to reference Ding, M., Cheng, X., & Xue, G. (2003). Aggregation tree construction in sensor networks. In Vehicular technology conference, 2003. VTC 2003-Fall. 2003 (Vol. 4, pp. 2168–2172). Ding, M., Cheng, X., & Xue, G. (2003). Aggregation tree construction in sensor networks. In Vehicular technology conference, 2003. VTC 2003-Fall. 2003 (Vol. 4, pp. 2168–2172).
19.
go back to reference Tan, H. Ö., & Körpeoǧlu, I. (2003). Power efficient data gathering and aggregation in wireless sensor networks. ACM Sigmod Record, 32(4), 66–71.CrossRef Tan, H. Ö., & Körpeoǧlu, I. (2003). Power efficient data gathering and aggregation in wireless sensor networks. ACM Sigmod Record, 32(4), 66–71.CrossRef
20.
go back to reference Ahmed, A.A., Shi, H., & Shang, Y. (2003). Survey on network protocols for wireless sensor networks. In Proceedings of the international conference on information technology: Research and education, 11–13 Aug. 2003. Ahmed, A.A., Shi, H., & Shang, Y. (2003). Survey on network protocols for wireless sensor networks. In Proceedings of the international conference on information technology: Research and education, 11–13 Aug. 2003.
21.
go back to reference Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef
22.
go back to reference Yuan, X. X., & Zhang, R. H. (2011). An energy-efficient mobile sink routing algorithm for wireless sensor networks. In IEEEWiCOM. Wuhan, China: IEEE, Sep 2011. Yuan, X. X., & Zhang, R. H. (2011). An energy-efficient mobile sink routing algorithm for wireless sensor networks. In IEEEWiCOM. Wuhan, China: IEEE, Sep 2011.
23.
go back to reference Younis, O., & Fahmy, S. (2004). Heed: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.CrossRef Younis, O., & Fahmy, S. (2004). Heed: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.CrossRef
24.
go back to reference Ma, Y., Guo, Y., Tian, X., & Ghanem, M. (2011). Distributed clustering-based aggregation algorithm for spatial correlated sensor networks. IEEE Sensors Journal, 11(3), 641–648.CrossRef Ma, Y., Guo, Y., Tian, X., & Ghanem, M. (2011). Distributed clustering-based aggregation algorithm for spatial correlated sensor networks. IEEE Sensors Journal, 11(3), 641–648.CrossRef
25.
go back to reference Sinha, A., & Lobiyal, D. K. (2013). Performance evaluation of data aggregation forcluster-based wireless sensor network. Human-Centric Computing and Information Sciences, 3(1), 1–17.CrossRef Sinha, A., & Lobiyal, D. K. (2013). Performance evaluation of data aggregation forcluster-based wireless sensor network. Human-Centric Computing and Information Sciences, 3(1), 1–17.CrossRef
26.
go back to reference Yang, M. (2017).Data aggregation algorithm for wireless sensor network based on time prediction. In 2017 IEEE 3rd information tech and mechatronics engineering conference (ITOEC), Chongqing (pp. 863–867). Yang, M. (2017).Data aggregation algorithm for wireless sensor network based on time prediction. In 2017 IEEE 3rd information tech and mechatronics engineering conference (ITOEC), Chongqing (pp. 863–867).
27.
go back to reference Hamzeloei, F., & Khalilydermany, M. (2016). A TOPSIS based cluster head selection for wireless sensor network (pp. 8–15). Amsterdam: Elsevier. Hamzeloei, F., & Khalilydermany, M. (2016). A TOPSIS based cluster head selection for wireless sensor network (pp. 8–15). Amsterdam: Elsevier.
28.
go back to reference Gavhale, M., & Saraf, P. D. (2016). Survey on algorithms for efficient cluster formation and cluster head selection in MANET (pp. 477–482). Amsterdam: Elsevier. Gavhale, M., & Saraf, P. D. (2016). Survey on algorithms for efficient cluster formation and cluster head selection in MANET (pp. 477–482). Amsterdam: Elsevier.
29.
go back to reference Pal, V., Singh, G., & Yadav, R. P. (2015). Cluster head optimization based on genetic algorithm to prolong the lifetime of WSN (pp. 1417–1423). Amsterdam: Elsevier. Pal, V., Singh, G., & Yadav, R. P. (2015). Cluster head optimization based on genetic algorithm to prolong the lifetime of WSN (pp. 1417–1423). Amsterdam: Elsevier.
30.
go back to reference Zhao, L., Qu, S., & Yi, Y. (2018). A modified Cluster Head selection algorithm in WSN based on LEACH. EURASIP Journal on Wireless Communication and Networking, 1, 1–8. Zhao, L., Qu, S., & Yi, Y. (2018). A modified Cluster Head selection algorithm in WSN based on LEACH. EURASIP Journal on Wireless Communication and Networking, 1, 1–8.
31.
go back to reference Zahedi, A. (2018). An efficient clustering method using weighting coefficients in homogeneous wireless sensor network (pp. 695–710). Amsterdam: Elsevier. Zahedi, A. (2018). An efficient clustering method using weighting coefficients in homogeneous wireless sensor network (pp. 695–710). Amsterdam: Elsevier.
32.
go back to reference Mantri, D. S., & Prasad, R. (2015). Bandwidth efficient cluster based data aggregation for wireless sensor networks (pp. 256–264). Amsterdam: Elsevier. Mantri, D. S., & Prasad, R. (2015). Bandwidth efficient cluster based data aggregation for wireless sensor networks (pp. 256–264). Amsterdam: Elsevier.
33.
go back to reference Khan, F., Gul, T., Ali, S., et al. (2018). Energy aware cluster head selection for improving network lifetime in wireless sensor network (pp. 581–593). Berlin: Springer. Khan, F., Gul, T., Ali, S., et al. (2018). Energy aware cluster head selection for improving network lifetime in wireless sensor network (pp. 581–593). Berlin: Springer.
34.
go back to reference Rao, P. C. S., Jana, P. K., & Banka, H. (2017). A particle swarm optimization based energy efficient cluster head selection algorithm for WSN. Berlin: Springer. Rao, P. C. S., Jana, P. K., & Banka, H. (2017). A particle swarm optimization based energy efficient cluster head selection algorithm for WSN. Berlin: Springer.
35.
go back to reference Shankar, T., Karthikeyan, A., Sivasankar, P., & Rajesh, A. (2017). Hybrid approach for optimal cluster head selection in WSN using LEACH and monkey search algorithms. Journal of Engineering Science and Technology, 12, 506–517. Shankar, T., Karthikeyan, A., Sivasankar, P., & Rajesh, A. (2017). Hybrid approach for optimal cluster head selection in WSN using LEACH and monkey search algorithms. Journal of Engineering Science and Technology, 12, 506–517.
36.
go back to reference Abbasi-Daresari, S., & Abouei, J. (2016). Toward cluster based weighted compressive data aggregation in WSN. Amsterdam: Elsevier. Abbasi-Daresari, S., & Abouei, J. (2016). Toward cluster based weighted compressive data aggregation in WSN. Amsterdam: Elsevier.
37.
go back to reference Sran, S.S., & Kaur, L. et al. (2015). Energy aware chain based data aggregation scheme for WSN. In 2015 international conference on energy systems and applications (pp. 113–117). Sran, S.S., & Kaur, L. et al. (2015). Energy aware chain based data aggregation scheme for WSN. In 2015 international conference on energy systems and applications (pp. 113–117).
38.
go back to reference Srivenkateswaran, C., & Sivakumar, D. (2019). Secure cluster based data aggregation in WSN with aid of ECC. International Journal of Business Information Systems, 31, 153–169.CrossRef Srivenkateswaran, C., & Sivakumar, D. (2019). Secure cluster based data aggregation in WSN with aid of ECC. International Journal of Business Information Systems, 31, 153–169.CrossRef
39.
go back to reference Mistry, Y., & Rana, A. (2018). A survey on data aggregation cluster based technique in WSN for modern railway track monitoring. International Research Journal of engineering and Technology, 5, 70–74. Mistry, Y., & Rana, A. (2018). A survey on data aggregation cluster based technique in WSN for modern railway track monitoring. International Research Journal of engineering and Technology, 5, 70–74.
40.
go back to reference Ebrahimi, D., & Assi, C. (2014). Compressive data gathering using random projection for energy efficient wireless sensor networks. Ad Hoc Networks, 16, 105–119.CrossRef Ebrahimi, D., & Assi, C. (2014). Compressive data gathering using random projection for energy efficient wireless sensor networks. Ad Hoc Networks, 16, 105–119.CrossRef
41.
go back to reference Deng, J., Han, Y. S., & Heinzelman, W.B., & Varshney, P. K. (2004). Balanced-energy sleep scheduling scheme for high density cluster-based sensor networks. In 4th workshop on applications and services in wireless networks, 2004 (pp. 99–108). Deng, J., Han, Y. S., & Heinzelman, W.B., & Varshney, P. K. (2004). Balanced-energy sleep scheduling scheme for high density cluster-based sensor networks. In 4th workshop on applications and services in wireless networks, 2004 (pp. 99–108).
42.
go back to reference Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). Energy efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Hawaii international conference on system sciences, Jan 2000. Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). Energy efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Hawaii international conference on system sciences, Jan 2000.
Metadata
Title
Cluster-Based Systematic Data Aggregation Model (CSDAM) for Real-Time Data Processing in Large-Scale WSN
Authors
M. Shobana
R. Sabitha
S. Karthik
Publication date
13-01-2020
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 4/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07054-2

Other articles of this Issue 4/2021

Wireless Personal Communications 4/2021 Go to the issue