Skip to main content
Top

2013 | OriginalPaper | Chapter

Clustering and Prediction of Rankings Within a Kemeny Distance Framework

Authors : Willem J. Heiser, Antonio D’Ambrosio

Published in: Algorithms from and for Nature and Life

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Rankings and partial rankings are ubiquitous in data analysis, yet there is relatively little work in the classification community that uses the typical properties of rankings. We review the broader literature that we are aware of, and identify a common building block for both prediction of rankings and clustering of rankings, which is also valid for partial rankings. This building block is the Kemeny distance, defined as the minimum number of interchanges of two adjacent elements required to transform one (partial) ranking into another. The Kemeny distance is equivalent to Kendall’s τ for complete rankings, but for partial rankings it is equivalent to Emond and Mason’s extension of τ. For clustering, we use the flexible class of methods proposed by Ben-Israel and Iyigun (Journal of Classification 25: 5–26, 2008), and define the disparity between a ranking and the center of cluster as the Kemeny distance. For prediction, we build a prediction tree by recursive partitioning, and define the impurity measure of the subgroups formed as the sum of all within-node Kemeny distances. The median ranking characterizes subgroups in both cases.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
During the Frankfurt DAGM-GfKl-2011-conference, Eyke Hüllermeier kindly pointed out that there is related work in the computer science community under the name “preference learning” (in particular, Cheng et al. (2009), and more generally, Fürnkranz and Hüllermeier 2010).
 
Literature
go back to reference Barthelémy, J. P., Guénoche, A., & Hudry, O. (1989). Median linear orders: Heuristics and a branch and bound algorithm. European Journal of Operational Research, 42, 313–325.MathSciNetMATHCrossRef Barthelémy, J. P., Guénoche, A., & Hudry, O. (1989). Median linear orders: Heuristics and a branch and bound algorithm. European Journal of Operational Research, 42, 313–325.MathSciNetMATHCrossRef
go back to reference Böckenholt, U. (1992). Thurstonian representation for partial ranking data. British Journal of Mathematical and Statistical Psychology, 45, 31–49.CrossRef Böckenholt, U. (1992). Thurstonian representation for partial ranking data. British Journal of Mathematical and Statistical Psychology, 45, 31–49.CrossRef
go back to reference Böckenholt, U. (2001). Mixed-effects analysis of rank-ordered data. Psychometrika, 77, 45–62.CrossRef Böckenholt, U. (2001). Mixed-effects analysis of rank-ordered data. Psychometrika, 77, 45–62.CrossRef
go back to reference Bradley, R. A., & Terry, M. A. (1952). Rank analysis of incomplete block designs, I. Biometrika, 39, 324–345.MathSciNetMATH Bradley, R. A., & Terry, M. A. (1952). Rank analysis of incomplete block designs, I. Biometrika, 39, 324–345.MathSciNetMATH
go back to reference Breiman, L., Froedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification and regression trees. Wadsworth Publishing Co., Inc, Belmont, CA. Breiman, L., Froedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification and regression trees. Wadsworth Publishing Co., Inc, Belmont, CA.
go back to reference Busing, F. M. T. A. (2009). Some advances in multidimensional unfolding. Doctoral Dissertation, Leiden, The Netherlands: Leiden University. Busing, F. M. T. A. (2009). Some advances in multidimensional unfolding. Doctoral Dissertation, Leiden, The Netherlands: Leiden University.
go back to reference Busing, F. M. T. A., Groenen, P., & Heiser, W. J. (2005). Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation. Psychometrika, 70, 71–98.MathSciNetCrossRef Busing, F. M. T. A., Groenen, P., & Heiser, W. J. (2005). Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation. Psychometrika, 70, 71–98.MathSciNetCrossRef
go back to reference Busing, F. M. T. A., Heiser, W. J., & Cleaver, G. (2010). Restricted unfolding: Preference analysis with optimal transformations of preferences and attributes. Food Quality and Preference, 21, 82–92.CrossRef Busing, F. M. T. A., Heiser, W. J., & Cleaver, G. (2010). Restricted unfolding: Preference analysis with optimal transformations of preferences and attributes. Food Quality and Preference, 21, 82–92.CrossRef
go back to reference Cappelli, C., Mola, F., & Siciliano, R. (2002). A statistical approach to growing a reliable honest tree. Computational Statistics and Data Analysis, 38, 285–299.MathSciNetMATHCrossRef Cappelli, C., Mola, F., & Siciliano, R. (2002). A statistical approach to growing a reliable honest tree. Computational Statistics and Data Analysis, 38, 285–299.MathSciNetMATHCrossRef
go back to reference Carroll, J. D. (1972). Individual differences and multidimensional scaling. In R. N. Shepard et al. (Eds.), Multidimensional scaling, Vol. I theory (pp. 105–155). New York: Seminar Press. Carroll, J. D. (1972). Individual differences and multidimensional scaling. In R. N. Shepard et al. (Eds.), Multidimensional scaling, Vol. I theory (pp. 105–155). New York: Seminar Press.
go back to reference Chan, W., & Bentler, P. M. (1998). Covariance structure analysis of ordinal ipsative data. Psychometrika, 63, 369–399.MathSciNetCrossRef Chan, W., & Bentler, P. M. (1998). Covariance structure analysis of ordinal ipsative data. Psychometrika, 63, 369–399.MathSciNetCrossRef
go back to reference Chapman, R. G., & Staelin, R. (1982). Exploiting rank ordered choice set data within the stochastic utility model. Journal of Marketing Research, 19, 288–301.CrossRef Chapman, R. G., & Staelin, R. (1982). Exploiting rank ordered choice set data within the stochastic utility model. Journal of Marketing Research, 19, 288–301.CrossRef
go back to reference Cheng, W., Hühn, J., & Hüllermeier, E. (2009). Decision tree and instance-based learning for label ranking. In: Proceedings of the 26th international conference on machine learning (pp. 161–168). Montreal. Canada. Cheng, W., Hühn, J., & Hüllermeier, E. (2009). Decision tree and instance-based learning for label ranking. In: Proceedings of the 26th international conference on machine learning (pp. 161–168). Montreal. Canada.
go back to reference Cohen, A., & Mellows, C. L. (1980). Analysis of ranking data (Tech. Rep.). Murray Hill: Bell Telephone Laboratories. Cohen, A., & Mellows, C. L. (1980). Analysis of ranking data (Tech. Rep.). Murray Hill: Bell Telephone Laboratories.
go back to reference Cook, W. D. (2006). Distance-based and ad hoc consensus models in ordinal preference ranking. European Journal of Operational Research, 172, 369–385.MathSciNetMATHCrossRef Cook, W. D. (2006). Distance-based and ad hoc consensus models in ordinal preference ranking. European Journal of Operational Research, 172, 369–385.MathSciNetMATHCrossRef
go back to reference Coombs, C. H. (1950). Psychological scaling without a unit of measurement. Psychological Review, 57, 145–158.CrossRef Coombs, C. H. (1950). Psychological scaling without a unit of measurement. Psychological Review, 57, 145–158.CrossRef
go back to reference Coombs, C. H. (1964). A theory of data. New York: Wiley. Coombs, C. H. (1964). A theory of data. New York: Wiley.
go back to reference Critchlow, D. E., & Fligner, M. A. (1991). Paired comparison, triple comparison, and ranking experiments as generalized linear models, and their implementation on GLIM. Psychometrika, 56, 517–533.MATHCrossRef Critchlow, D. E., & Fligner, M. A. (1991). Paired comparison, triple comparison, and ranking experiments as generalized linear models, and their implementation on GLIM. Psychometrika, 56, 517–533.MATHCrossRef
go back to reference Critchlow, D. E., Fligner, M. A., & Verducci, J. S. (1991). Probability models on rankings. Journal of Mathematical Psychology, 35, 294–318.MathSciNetMATHCrossRef Critchlow, D. E., Fligner, M. A., & Verducci, J. S. (1991). Probability models on rankings. Journal of Mathematical Psychology, 35, 294–318.MathSciNetMATHCrossRef
go back to reference Croon, M. A. (1989). Latent class models for the analysis of rankings. In G. De Soete et al. (Eds.) New developments in psychological choice modeling (pp. 99–121). North-Holland, Elsevier. Croon, M. A. (1989). Latent class models for the analysis of rankings. In G. De Soete et al. (Eds.) New developments in psychological choice modeling (pp. 99–121). North-Holland, Elsevier.
go back to reference D’ambrosio, A. (2007). Tree-based methods for data editing and preference rankings. Doctoral dissertation. Naples, Italy: Department of Mathematics and Statistics. D’ambrosio, A. (2007). Tree-based methods for data editing and preference rankings. Doctoral dissertation. Naples, Italy: Department of Mathematics and Statistics.
go back to reference D’ambrosio, A., & Heiser, W. J. (2011). Distance-based multivariate trees for rankings. Technical report. D’ambrosio, A., & Heiser, W. J. (2011). Distance-based multivariate trees for rankings. Technical report.
go back to reference Daniels, H. E. (1950). Rank correlation and population models. Journal of the Royal Statistical Society, Series B, 12, 171–191.MathSciNetMATH Daniels, H. E. (1950). Rank correlation and population models. Journal of the Royal Statistical Society, Series B, 12, 171–191.MathSciNetMATH
go back to reference Diaconis, P. (1989). A generalization of spectral analysis with application to ranked data. The Annals of Statistics, 17, 949–979.MathSciNetMATHCrossRef Diaconis, P. (1989). A generalization of spectral analysis with application to ranked data. The Annals of Statistics, 17, 949–979.MathSciNetMATHCrossRef
go back to reference Dittrich, R., Katzenbeisser, W., & Reisinger, H. (2000). The analysis of rank ordered preference data based on Bradley-Terry type models. OR-Spektrum, 22, 117–134.MATHCrossRef Dittrich, R., Katzenbeisser, W., & Reisinger, H. (2000). The analysis of rank ordered preference data based on Bradley-Terry type models. OR-Spektrum, 22, 117–134.MATHCrossRef
go back to reference Emond, E. J., & Mason, D. W. (2002). A new rank correlation coefficient with application to the consensus ranking problem. Journal of Multi-Criteria Decision Analysis, 11, 17–28.MATHCrossRef Emond, E. J., & Mason, D. W. (2002). A new rank correlation coefficient with application to the consensus ranking problem. Journal of Multi-Criteria Decision Analysis, 11, 17–28.MATHCrossRef
go back to reference Fligner, M. A., & Verducci, J. S. (1986). Distance based ranking models. Journal of the Royal Statistical Society, Series B, 48, 359–369.MathSciNetMATH Fligner, M. A., & Verducci, J. S. (1986). Distance based ranking models. Journal of the Royal Statistical Society, Series B, 48, 359–369.MathSciNetMATH
go back to reference Fligner, M. A., & Verducci, J. S. (1988). Multistage ranking models. Journal of the American Statistical Association, 83, 892–901.MathSciNetMATHCrossRef Fligner, M. A., & Verducci, J. S. (1988). Multistage ranking models. Journal of the American Statistical Association, 83, 892–901.MathSciNetMATHCrossRef
go back to reference Francis, B., Dittrich, R., Hatzinger, R., & Penn, R. (2002). Analysing partial ranks by using smoothed paired comparison methods: An investigation of value orientation in Europe. Applied Statistics, 51, 319–336.MathSciNetMATH Francis, B., Dittrich, R., Hatzinger, R., & Penn, R. (2002). Analysing partial ranks by using smoothed paired comparison methods: An investigation of value orientation in Europe. Applied Statistics, 51, 319–336.MathSciNetMATH
go back to reference Fürnkranz, J., & Hüllermeier, E. (Eds.). (2010). Preference learning. Heidelberg: Springer.MATH Fürnkranz, J., & Hüllermeier, E. (Eds.). (2010). Preference learning. Heidelberg: Springer.MATH
go back to reference Gormley, I. C., & Murphy, T. B. (2008a). Exploring voting blocs within the Irish electorate: A mixture modeling approach. Journal of the American Statistical Association, 103, 1014–1027.MathSciNetMATHCrossRef Gormley, I. C., & Murphy, T. B. (2008a). Exploring voting blocs within the Irish electorate: A mixture modeling approach. Journal of the American Statistical Association, 103, 1014–1027.MathSciNetMATHCrossRef
go back to reference Gormley, I. C., & Murphy, T. B. (2008b). A mixture of experts model for rank data with applications in election studies. The Annals of Applied Statistics, 2, 1452–1477.MathSciNetMATHCrossRef Gormley, I. C., & Murphy, T. B. (2008b). A mixture of experts model for rank data with applications in election studies. The Annals of Applied Statistics, 2, 1452–1477.MathSciNetMATHCrossRef
go back to reference Guttman, L. (1946). An approach for quantifying paired comparisons and rank order. Annals of Mathematical Statistics, 17, 144–163.MathSciNetMATHCrossRef Guttman, L. (1946). An approach for quantifying paired comparisons and rank order. Annals of Mathematical Statistics, 17, 144–163.MathSciNetMATHCrossRef
go back to reference Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.CrossRef Hastie, T., Tibshirani, R., & Friedman, J. (2001). The elements of statistical learning: Data mining, inference, and prediction. New York: Springer.CrossRef
go back to reference Heiser, W. J., & Busing, F. M. T. A. (2004). Multidimensional scaling and unfolding of symmetric and asymmetric proximity relations. In D. Kaplan (Ed.), The SAGE handbook of quantitative methodology for the social sciences (pp. 25–48). Thousand Oaks: Sage. Heiser, W. J., & Busing, F. M. T. A. (2004). Multidimensional scaling and unfolding of symmetric and asymmetric proximity relations. In D. Kaplan (Ed.), The SAGE handbook of quantitative methodology for the social sciences (pp. 25–48). Thousand Oaks: Sage.
go back to reference Heiser, W. J., & D’ambrosio, A. (2011). K-Median cluster component analysis. Technical report. Heiser, W. J., & D’ambrosio, A. (2011). K-Median cluster component analysis. Technical report.
go back to reference Heiser, W. J., & De Leeuw, J. (1981). Multidimensional mapping of preference data. Mathématiques et Sciences Humaines, 19, 39–96. Heiser, W. J., & De Leeuw, J. (1981). Multidimensional mapping of preference data. Mathématiques et Sciences Humaines, 19, 39–96.
go back to reference Hojo, H. (1997). A marginalization model for the multidimensional unfolding analysis of ranking data. Japanese Psychological Research, 39, 33–42.CrossRef Hojo, H. (1997). A marginalization model for the multidimensional unfolding analysis of ranking data. Japanese Psychological Research, 39, 33–42.CrossRef
go back to reference Hojo, H. (1998). Multidimensional unfolding analysis of ranking data for groups. Japanese Psychological Research, 40, 166–171.CrossRef Hojo, H. (1998). Multidimensional unfolding analysis of ranking data for groups. Japanese Psychological Research, 40, 166–171.CrossRef
go back to reference Iyigun, C., & Ben-Israel, A. (2008). Probabilistic distance clustering adjusted for cluster size. Probability in the Engineering and Informational Sciences, 22, 603–621.MathSciNetMATHCrossRef Iyigun, C., & Ben-Israel, A. (2008). Probabilistic distance clustering adjusted for cluster size. Probability in the Engineering and Informational Sciences, 22, 603–621.MathSciNetMATHCrossRef
go back to reference Iyigun, C., & Ben-Israel, A. (2010). Semi-supervised probabilistic distance clustering and the uncertainty of classification. In A. Fink et al. (Eds.), Advances in data analysis, data handling and business intelligence (pp. 3–20). Heidelberg: Springer. Iyigun, C., & Ben-Israel, A. (2010). Semi-supervised probabilistic distance clustering and the uncertainty of classification. In A. Fink et al. (Eds.), Advances in data analysis, data handling and business intelligence (pp. 3–20). Heidelberg: Springer.
go back to reference Kamakura, W. A., & Srivastava, R. K. (1986). An ideal-point probabilistic choice model for heterogeneous preferences. Marketing Science, 5, 199–218.CrossRef Kamakura, W. A., & Srivastava, R. K. (1986). An ideal-point probabilistic choice model for heterogeneous preferences. Marketing Science, 5, 199–218.CrossRef
go back to reference Kamiya, H., & Takemura, A. (1997). On rankings generated by pairwise linear discriminant analysis of m populations. Journal of Multivariate Analysis, 61, 1–28.MathSciNetMATHCrossRef Kamiya, H., & Takemura, A. (1997). On rankings generated by pairwise linear discriminant analysis of m populations. Journal of Multivariate Analysis, 61, 1–28.MathSciNetMATHCrossRef
go back to reference Kamiya, H., & Takemura, A. (2005). Characterization of rankings generated by linear discriminant analysis. Journal of Multivariate Analysis, 92, 343–358.MathSciNetMATHCrossRef Kamiya, H., & Takemura, A. (2005). Characterization of rankings generated by linear discriminant analysis. Journal of Multivariate Analysis, 92, 343–358.MathSciNetMATHCrossRef
go back to reference Kamiya, H., Orlik, P., Takemura, A., & Terao, H. (2006). Arrangements and ranking patterns. Annals of Combinatorics, 10, 219–235.MathSciNetMATHCrossRef Kamiya, H., Orlik, P., Takemura, A., & Terao, H. (2006). Arrangements and ranking patterns. Annals of Combinatorics, 10, 219–235.MathSciNetMATHCrossRef
go back to reference Kamiya, H., Takemura, A., & Terao, H. (2011). Ranking patterns of unfolding models of codimension one. Advances in Applied Mathematics, 47, 379–400.MathSciNetMATHCrossRef Kamiya, H., Takemura, A., & Terao, H. (2011). Ranking patterns of unfolding models of codimension one. Advances in Applied Mathematics, 47, 379–400.MathSciNetMATHCrossRef
go back to reference Kemeny, J. G. (1959). Mathematics without numbers. Daedalus, 88, 577–591. Kemeny, J. G. (1959). Mathematics without numbers. Daedalus, 88, 577–591.
go back to reference Kemeny, J. G., & Snell, J. L. (1962). Preference rankings: An axiomatic approach. In J. G. Kemeny & J. L. Snell (Eds.), Mathematical models in the social sciences (pp. 9–23). New York: Blaisdell. Kemeny, J. G., & Snell, J. L. (1962). Preference rankings: An axiomatic approach. In J. G. Kemeny & J. L. Snell (Eds.), Mathematical models in the social sciences (pp. 9–23). New York: Blaisdell.
go back to reference Kendall, M. G. (1948). Rank correlation methods. London: Charles Griffin.MATH Kendall, M. G. (1948). Rank correlation methods. London: Charles Griffin.MATH
go back to reference Kruskal, J. B., & Carroll, J. D. (1969). Geometrical models and badness-of-fit functions. In P. R. Krishnaiah (Ed.), Multivariate analysis (Vol. 2, pp. 639–671). New York: Academic. Kruskal, J. B., & Carroll, J. D. (1969). Geometrical models and badness-of-fit functions. In P. R. Krishnaiah (Ed.), Multivariate analysis (Vol. 2, pp. 639–671). New York: Academic.
go back to reference Luce, R. D. (1959). Individual choice behavior. New York: Wiley.MATH Luce, R. D. (1959). Individual choice behavior. New York: Wiley.MATH
go back to reference Marden, J. I. (1995). Analyzing and modeling rank data. New York: Chapman & Hall.MATH Marden, J. I. (1995). Analyzing and modeling rank data. New York: Chapman & Hall.MATH
go back to reference Maydeu-Olivares, A. (1999). Thurstonian modeling of ranking data via mean and covariance structure analysis. Psychometrika, 64, 325–340.MathSciNetCrossRef Maydeu-Olivares, A. (1999). Thurstonian modeling of ranking data via mean and covariance structure analysis. Psychometrika, 64, 325–340.MathSciNetCrossRef
go back to reference Meulman, J. J., Van Der Kooij, A. J., & Heiser, W. J. (2004). Principal components analysis with nonlinear optimal scaling transformations for ordinal and nominal data. In D. Kaplan (Ed.), The SAGE handbook of quantitative methodology for the social sciences (pp. 49–70). Thousand Oaks: Sage. Meulman, J. J., Van Der Kooij, A. J., & Heiser, W. J. (2004). Principal components analysis with nonlinear optimal scaling transformations for ordinal and nominal data. In D. Kaplan (Ed.), The SAGE handbook of quantitative methodology for the social sciences (pp. 49–70). Thousand Oaks: Sage.
go back to reference Mingers, J. (1989). An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4, 227–243.CrossRef Mingers, J. (1989). An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4, 227–243.CrossRef
go back to reference Morgan, K. O., & Morgan, S. (2010). State rankings 2010: A statistical view of America. Washington, DC: CQ Press. Morgan, K. O., & Morgan, S. (2010). State rankings 2010: A statistical view of America. Washington, DC: CQ Press.
go back to reference Murphy, T. B., & Martin, D. (2003). Mixtures of distance-based models for ranking data. Computational Statistics and Data Analysis, 41, 645–655.MathSciNetMATHCrossRef Murphy, T. B., & Martin, D. (2003). Mixtures of distance-based models for ranking data. Computational Statistics and Data Analysis, 41, 645–655.MathSciNetMATHCrossRef
go back to reference Roskam, Ed. E. C. I. (1968). Metric analysis of ordinal data in psychology: Models and numerical methods for metric analysis of conjoint ordinal data in psychology. Doctoral dissertation, Voorschoten, The Netherlands: VAM. Roskam, Ed. E. C. I. (1968). Metric analysis of ordinal data in psychology: Models and numerical methods for metric analysis of conjoint ordinal data in psychology. Doctoral dissertation, Voorschoten, The Netherlands: VAM.
go back to reference Skrondal, A., & Rabe-Hesketh, S. (2003). Multilevel logistic regression for polytomous data and rankings. Psychometrika, 68, 267–287.MathSciNetCrossRef Skrondal, A., & Rabe-Hesketh, S. (2003). Multilevel logistic regression for polytomous data and rankings. Psychometrika, 68, 267–287.MathSciNetCrossRef
go back to reference Slater, P. (1960). The analysis of personal preferences. British Journal of Statistical Psychology, 13, 119–135.CrossRef Slater, P. (1960). The analysis of personal preferences. British Journal of Statistical Psychology, 13, 119–135.CrossRef
go back to reference Thompson, G. L. (1993). Generalized permutation polytopes and exploratory graphical methods for ranked data. The Annals of Statistics, 21, 1401–1430.MathSciNetMATHCrossRef Thompson, G. L. (1993). Generalized permutation polytopes and exploratory graphical methods for ranked data. The Annals of Statistics, 21, 1401–1430.MathSciNetMATHCrossRef
go back to reference Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34, 273–286.CrossRef Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34, 273–286.CrossRef
go back to reference Thurstone, L. L. (1931). Rank order as a psychophysical method. Journal of Experimental Psychology, 14, 187–201.CrossRef Thurstone, L. L. (1931). Rank order as a psychophysical method. Journal of Experimental Psychology, 14, 187–201.CrossRef
go back to reference Tucker, L. R. (1960). Intra-individual and inter-individual multidimensionality. In H. Gulliksen & S. Messick (Eds.), Psychological scaling: Theory and applications (pp. 155–167). New York: Wiley. Tucker, L. R. (1960). Intra-individual and inter-individual multidimensionality. In H. Gulliksen & S. Messick (Eds.), Psychological scaling: Theory and applications (pp. 155–167). New York: Wiley.
go back to reference Van Blokland-Vogelesang, A. W. (1989). Unfolding and consensus ranking: A prestige ladder for technical occupations. In G. De Soete et al. (Eds.), New developments in psychological choice modeling (pp. 237–258). The Netherlands\North-Holland: Amsterdam.CrossRef Van Blokland-Vogelesang, A. W. (1989). Unfolding and consensus ranking: A prestige ladder for technical occupations. In G. De Soete et al. (Eds.), New developments in psychological choice modeling (pp. 237–258). The Netherlands\North-Holland: Amsterdam.CrossRef
go back to reference van Buuren, S., & Heiser, W. J. (1989). Clustering n objects into k groups under optimal scaling of variables. Psychometrika, 54, 699–706.MathSciNetCrossRef van Buuren, S., & Heiser, W. J. (1989). Clustering n objects into k groups under optimal scaling of variables. Psychometrika, 54, 699–706.MathSciNetCrossRef
go back to reference Van Deun, K. (2005). Degeneracies in multidimensional unfolding. Doctoral dissertation, Leuven, Belgium: Catholic University of Leuven. Van Deun, K. (2005). Degeneracies in multidimensional unfolding. Doctoral dissertation, Leuven, Belgium: Catholic University of Leuven.
go back to reference Yao, G., & Böckenholt, U. (1999). Bayesian estimation of Thurstonian ranking models based on the Gibbs sampler. British Journal of Mathematical and Statistical Psychology, 52, 79–92.CrossRef Yao, G., & Böckenholt, U. (1999). Bayesian estimation of Thurstonian ranking models based on the Gibbs sampler. British Journal of Mathematical and Statistical Psychology, 52, 79–92.CrossRef
go back to reference Zhang, J. (2004). Binary choice, subset choice, random utility, and ranking: A unified perspective using the permutahedron. Journal of Mathematical Psychology, 48, 107–134.MathSciNetMATHCrossRef Zhang, J. (2004). Binary choice, subset choice, random utility, and ranking: A unified perspective using the permutahedron. Journal of Mathematical Psychology, 48, 107–134.MathSciNetMATHCrossRef
Metadata
Title
Clustering and Prediction of Rankings Within a Kemeny Distance Framework
Authors
Willem J. Heiser
Antonio D’Ambrosio
Copyright Year
2013
DOI
https://doi.org/10.1007/978-3-319-00035-0_2

Premium Partner