Skip to main content
Top

2010 | OriginalPaper | Chapter

7. Clustering with ITL Principles

Authors : Robert Jenssen, Sudhir Rao

Published in: Information Theoretic Learning

Publisher: Springer New York

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Learning and adaptation deal with the quantification and exploitation of the input source “structure” as pointed out perhaps for the first time by Watanabe [330]. Although structure is a vague and difficult concept to quantify, structure fills the space with identifiable patterns that may be distinguishable macroscopically by the shape of the probability density function. Therefore, entropy and the concept of dissimilarity naturally form the foundations for unsupervised learning because they are descriptors of PDFs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Aczél J., Daróczy Z., On measures of information and their characterizations, Mathematics in Science and Engineering, vol. 115, Academic Press, New York, 1975. Aczél J., Daróczy Z., On measures of information and their characterizations, Mathematics in Science and Engineering, vol. 115, Academic Press, New York, 1975.
13.
go back to reference Bach F., Jordan M., Finding clusters in independent component analysis, in Int. Symposium on Independent Component Analysis and Blind Signal Separation, Nara, Japan, pp. 891–896, 2003. Bach F., Jordan M., Finding clusters in independent component analysis, in Int. Symposium on Independent Component Analysis and Blind Signal Separation, Nara, Japan, pp. 891–896, 2003.
30.
go back to reference Ben-Hur A., Horn D., Siegelmann H., Vapnik V., Support vector clustering, J.Mach. Learn. Res., 2:125–137, 2001. Ben-Hur A., Horn D., Siegelmann H., Vapnik V., Support vector clustering, J.Mach. Learn. Res., 2:125–137, 2001.
49.
go back to reference Carreira-Perpinan M., Mode-finding for mixtures of Gaussian distributions, IEEE Trans. Pattern Anal. Mach. Inte., 22(11):1318–1323, November 2000.CrossRef Carreira-Perpinan M., Mode-finding for mixtures of Gaussian distributions, IEEE Trans. Pattern Anal. Mach. Inte., 22(11):1318–1323, November 2000.CrossRef
50.
go back to reference Carreira-Perpinan M., Gaussian mean shift is an EM algorithm, IEEE Trans. Pattern Anal. Mach. Inte., 29(5):767–776, 2007.CrossRef Carreira-Perpinan M., Gaussian mean shift is an EM algorithm, IEEE Trans. Pattern Anal. Mach. Inte., 29(5):767–776, 2007.CrossRef
55.
go back to reference Cheng Y., Mean shift, mode seeking and clustering, IEEE Trans. Pattern Anal. Mach. Inte., 17(8):790–799, August 1995.CrossRef Cheng Y., Mean shift, mode seeking and clustering, IEEE Trans. Pattern Anal. Mach. Inte., 17(8):790–799, August 1995.CrossRef
60.
go back to reference Comaniciu D., Ramesh V., Meer P., Real-time tracking of nonrigid objects using mean shift, in Proceedings of IEEE Conf. Comput. Vision and Pattern Recogn., 2:142–149, June 2000. Comaniciu D., Ramesh V., Meer P., Real-time tracking of nonrigid objects using mean shift, in Proceedings of IEEE Conf. Comput. Vision and Pattern Recogn., 2:142–149, June 2000.
61.
go back to reference Comaniciu D., Meer P., Mean shift: A robust approach toward feature space analysis, IEEE Trans. Pattern Anal. Mach. Inte., 24(5):603–619, May 2002.CrossRef Comaniciu D., Meer P., Mean shift: A robust approach toward feature space analysis, IEEE Trans. Pattern Anal. Mach. Inte., 24(5):603–619, May 2002.CrossRef
75.
go back to reference Ding H., He X., Zha H., Gu M., Simon H., A min-max cut algorithm for graph partitioning and data clustering. In Proc. IEEE Int. Conf. Data Mining, pp. 107–114, San Jose, CA, November 29–December 2, 2001. Ding H., He X., Zha H., Gu M., Simon H., A min-max cut algorithm for graph partitioning and data clustering. In Proc. IEEE Int. Conf. Data Mining, pp. 107–114, San Jose, CA, November 29–December 2, 2001.
80.
go back to reference Duda R., Hart P., Stork D., Pattern Classification and Scene Analysis. John Wiley & Sons, New York, 2nd edition, 2001. Duda R., Hart P., Stork D., Pattern Classification and Scene Analysis. John Wiley & Sons, New York, 2nd edition, 2001.
100.
go back to reference Fine S., Scheinberg K., Cristianini N., Shawe-Taylor J., Williamson B., Efficient SVM training using low-rank kernel representations, J. Mach. Learn. Res., 2:243–264, 2001. Fine S., Scheinberg K., Cristianini N., Shawe-Taylor J., Williamson B., Efficient SVM training using low-rank kernel representations, J. Mach. Learn. Res., 2:243–264, 2001.
105.
go back to reference Friedman J., Tukey J., A Projection Pursuit Algorithm for Exploratory Data Analysis, IEEE Trans. Comput., Ser. C, 23:881–889, 1974.CrossRefMATH Friedman J., Tukey J., A Projection Pursuit Algorithm for Exploratory Data Analysis, IEEE Trans. Comput., Ser. C, 23:881–889, 1974.CrossRefMATH
108.
go back to reference Fukunaga K., An Introduction to Statistical Pattern Recognition, Academic Press, New York, 1972 Fukunaga K., An Introduction to Statistical Pattern Recognition, Academic Press, New York, 1972
109.
go back to reference Fukunaga K., Hostetler L., The estimation of the gradient of a density function with applications in pattern recognition, IEEE Trans. Inf. Theor., 21(1);32–40, January 1975.CrossRefMATHMathSciNet Fukunaga K., Hostetler L., The estimation of the gradient of a density function with applications in pattern recognition, IEEE Trans. Inf. Theor., 21(1);32–40, January 1975.CrossRefMATHMathSciNet
111.
go back to reference Gdalyahu Y., Weinshall D., Werman M., Self-organization in vision: Stochastic clustering for image segmentation, perceptual grouping, and image database organization. IEEE Trans. Pattern Anal. Mach. Inte., 23(10):1053–1074, 2001.CrossRef Gdalyahu Y., Weinshall D., Werman M., Self-organization in vision: Stochastic clustering for image segmentation, perceptual grouping, and image database organization. IEEE Trans. Pattern Anal. Mach. Inte., 23(10):1053–1074, 2001.CrossRef
114.
go back to reference Gokcay E., Principe J., Information theoretic clustering, IEEE Trans. Pattern Anal. Mach, Intell., 24(2):158–171, 2002.CrossRef Gokcay E., Principe J., Information theoretic clustering, IEEE Trans. Pattern Anal. Mach, Intell., 24(2):158–171, 2002.CrossRef
115.
go back to reference Grossberg S., Competitive learning: From interactive activation to adaptive resonance, in Connectionist Models and Their Implications: Readings from Cognitive Science (Waltz, D. and Feldman, J. A., Eds.), Ablex, Norwood, NJ, pp. 243–283, 1988. Grossberg S., Competitive learning: From interactive activation to adaptive resonance, in Connectionist Models and Their Implications: Readings from Cognitive Science (Waltz, D. and Feldman, J. A., Eds.), Ablex, Norwood, NJ, pp. 243–283, 1988.
136.
go back to reference Hartigan J., Clustering Algorithms. John Wiley & Sons, New York, 1975.MATH Hartigan J., Clustering Algorithms. John Wiley & Sons, New York, 1975.MATH
153.
go back to reference Hofmann T. and Buhmann J., Pairwise Data Clustering by Deterministic Annealing, IEEE Trans. Pattern Anal. Mach. Intell., 19(1):1–14, 1997.CrossRef Hofmann T. and Buhmann J., Pairwise Data Clustering by Deterministic Annealing, IEEE Trans. Pattern Anal. Mach. Intell., 19(1):1–14, 1997.CrossRef
160.
go back to reference Jain K. and Dubes R., Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs, NJ, 1988.MATH Jain K. and Dubes R., Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs, NJ, 1988.MATH
162.
go back to reference Jenssen R., Principe J., Erdogmus D. and Eltoft T., The Cauchy–Schwartz divergence and Parzen windowing: Connections to graph theory and mercer kernels, J. Franklin Inst., 343:614–629, 2004.CrossRefMathSciNet Jenssen R., Principe J., Erdogmus D. and Eltoft T., The Cauchy–Schwartz divergence and Parzen windowing: Connections to graph theory and mercer kernels, J. Franklin Inst., 343:614–629, 2004.CrossRefMathSciNet
163.
go back to reference Jenssen R., Erdogmus D., Hild II K., Principe J., Eltoft T., Optimizing the Cauchy–Schwarz PDF divergence for information theoretic, non-parametric clustering, in Proc. Int’l. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR2005), pp. 34–45, St. Augustine, FL, November 2005. Jenssen R., Erdogmus D., Hild II K., Principe J., Eltoft T., Optimizing the Cauchy–Schwarz PDF divergence for information theoretic, non-parametric clustering, in Proc. Int’l. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR2005), pp. 34–45, St. Augustine, FL, November 2005.
165.
go back to reference Jenssen R., Erdogmus D., Hild II K., Principe J., Eltoft T., Information cut for clustering using a gradient descent approach, Pattern Recogn., 40:796–806, 2006.CrossRef Jenssen R., Erdogmus D., Hild II K., Principe J., Eltoft T., Information cut for clustering using a gradient descent approach, Pattern Recogn., 40:796–806, 2006.CrossRef
182.
go back to reference King S., Step-wise clustering procedures. J. Amer. Statist. Assoc., pp. 86–101, 1967. King S., Step-wise clustering procedures. J. Amer. Statist. Assoc., pp. 86–101, 1967.
183.
186.
go back to reference Koontz W., Narendra P., Fukunaga K., A graph theoretic approach to non-parametric cluster analysis, IEEE Trans. Comput., 25:936–944, 1975.MathSciNet Koontz W., Narendra P., Fukunaga K., A graph theoretic approach to non-parametric cluster analysis, IEEE Trans. Comput., 25:936–944, 1975.MathSciNet
208.
go back to reference MacQueen J., Some Methods for Classification and Analysis of Multivariate Observations, in Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297. MacQueen J., Some Methods for Classification and Analysis of Multivariate Observations, in Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967, pp. 281–297.
227.
go back to reference Murphy P., Ada D., UCI repository of machine learning databases, Tech. Rep., Department of Computational Science, University of California, Irvine, California, USA, 1994. Murphy P., Ada D., UCI repository of machine learning databases, Tech. Rep., Department of Computational Science, University of California, Irvine, California, USA, 1994.
230.
go back to reference Ng Y., Jordan M., Weiss Y., On spectral clustering: Analysis and an algorithm, in Advances in Neural Information Processing Systems, 14, 2001, vol. 2, pp. 849–856. Ng Y., Jordan M., Weiss Y., On spectral clustering: Analysis and an algorithm, in Advances in Neural Information Processing Systems, 14, 2001, vol. 2, pp. 849–856.
243.
253.
go back to reference Principe J., Euliano N., Lefebvre C., Neural Systems: Fundamentals through Simulations, CD-ROM textbook, John Wiley, New York, 2000. Principe J., Euliano N., Lefebvre C., Neural Systems: Fundamentals through Simulations, CD-ROM textbook, John Wiley, New York, 2000.
256.
go back to reference Ramanan D., Forsyth D., Finding and tracking people from the bottom up, in Proc.IEEE Conf. Computer Vision Pattern Recognition, June 2003, pp. 467–474. Ramanan D., Forsyth D., Finding and tracking people from the bottom up, in Proc.IEEE Conf. Computer Vision Pattern Recognition, June 2003, pp. 467–474.
260.
go back to reference Rao, S., Martins A., Principe J., Mean shift: An information theoretic perspective, Pattern Recogn. Lett., 30(1, 3):222–230, 2009.CrossRef Rao, S., Martins A., Principe J., Mean shift: An information theoretic perspective, Pattern Recogn. Lett., 30(1, 3):222–230, 2009.CrossRef
269.
go back to reference Roberts S., Everson R., Rezek I., Maximum certainty data partitioning, Pattern Recogn., 33:833–839, 2000.CrossRef Roberts S., Everson R., Rezek I., Maximum certainty data partitioning, Pattern Recogn., 33:833–839, 2000.CrossRef
271.
go back to reference Rose K., Gurewitz E., Fox G., Vector quantization by deterministic annealing, IEEE Trans. Inf. Theor., 38(4):1249–1257, 1992.CrossRefMATH Rose K., Gurewitz E., Fox G., Vector quantization by deterministic annealing, IEEE Trans. Inf. Theor., 38(4):1249–1257, 1992.CrossRefMATH
280.
go back to reference Sands N., Cioffi J., An improved detector for channels with nonlinear intersymbol interference, Proc. Intl. Conf. on Communications, vol 2, pp 1226–1230, 1994. Sands N., Cioffi J., An improved detector for channels with nonlinear intersymbol interference, Proc. Intl. Conf. on Communications, vol 2, pp 1226–1230, 1994.
286.
go back to reference Scanlon J., Deo N., Graph-theoretic algorithms for image segmentation. In IEEE International Symposium on Circuits and Systems, pp. VI141–144, Orlando, Florida, 1999. Scanlon J., Deo N., Graph-theoretic algorithms for image segmentation. In IEEE International Symposium on Circuits and Systems, pp. VI141–144, Orlando, Florida, 1999.
295.
go back to reference Sheater S. Jones M., A reliable data-based bandwidth selection method for kernel density estimation, J. Roy. Statist. Soc., Ser. B, 53:683–690, 1991.MathSciNet Sheater S. Jones M., A reliable data-based bandwidth selection method for kernel density estimation, J. Roy. Statist. Soc., Ser. B, 53:683–690, 1991.MathSciNet
296.
go back to reference Shi J., Malik J., Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 22(8):888–905, 2000.CrossRef Shi J., Malik J., Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 22(8):888–905, 2000.CrossRef
306.
go back to reference Sneath P. Sokal R., Numerical Taxonomy. Freeman, London, 1973.MATH Sneath P. Sokal R., Numerical Taxonomy. Freeman, London, 1973.MATH
315.
go back to reference Theodoridis S., K. Koutroumbas, Pattern Recognition, Academic Press, 1999. Theodoridis S., K. Koutroumbas, Pattern Recognition, Academic Press, 1999.
317.
go back to reference Tishby N., Slonim N., Data clustering by markovian relaxation and the information bottleneck method, in Advances in Neural Information Processing Systems, 13, Denver, pp. 640–646, 2000. Tishby N., Slonim N., Data clustering by markovian relaxation and the information bottleneck method, in Advances in Neural Information Processing Systems, 13, Denver, pp. 640–646, 2000.
322.
go back to reference Urquart R., Graph theoretical clustering based on limited neighbor sets, Pattern Recogn., 173–187, 1982 Urquart R., Graph theoretical clustering based on limited neighbor sets, Pattern Recogn., 173–187, 1982
330.
go back to reference Watanabe S., Pattern Recognition: Human and Mechanical. Wiley, New York, 1985. Watanabe S., Pattern Recognition: Human and Mechanical. Wiley, New York, 1985.
336.
go back to reference Wu Z. and Leahy R., An optimal graph theoretic approach to data clustering: Theory and its applications to image segmentation. IEEE Trans. Pattern Anal. and Mach. Intell., 15(11):1101–1113, 1993.CrossRef Wu Z. and Leahy R., An optimal graph theoretic approach to data clustering: Theory and its applications to image segmentation. IEEE Trans. Pattern Anal. and Mach. Intell., 15(11):1101–1113, 1993.CrossRef
347.
go back to reference Zahn T., Graph theoretic methods for detecting and describing gestalt clusters. IEEE Trans. Comput., 20:68–86, 1971.CrossRefMATH Zahn T., Graph theoretic methods for detecting and describing gestalt clusters. IEEE Trans. Comput., 20:68–86, 1971.CrossRefMATH
Metadata
Title
Clustering with ITL Principles
Authors
Robert Jenssen
Sudhir Rao
Copyright Year
2010
Publisher
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-1570-2_7

Premium Partner