Skip to main content
Top

2016 | OriginalPaper | Chapter

4. CNT-Based Nanocomposites

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

As one of the major classes of polymeric materials, various types of epoxies are used extensively in different engineering applications such as automotive and electronic industries. Epoxy-based composite materials have become proper substitutes for traditional materials like metals, metal alloys, wood, etc. due to their prominent properties such as lightness, ease of processing and relatively low cost. However, one of the major drawbacks in their increasing applications is their poor surface properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aguilar, J.O., Bautista-Quijano, J.R., Avilés, F.: Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. Polym. Lett. 4(5), 292–299 (2010)CrossRef Aguilar, J.O., Bautista-Quijano, J.R., Avilés, F.: Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. Polym. Lett. 4(5), 292–299 (2010)CrossRef
go back to reference Aihara, J.: Lack of superaromaticity in carbon nanotubes. Phys. Chem. 98(39), 9773–9776 (1994)CrossRef Aihara, J.: Lack of superaromaticity in carbon nanotubes. Phys. Chem. 98(39), 9773–9776 (1994)CrossRef
go back to reference Ajayan, P.M., Schadler, L.S., Giannaris, G., Rubio, A.: Single-walled carbon nanotube–polymer composites: strength and weakness. Adv. Mater. 12(10), 750–753 (2000) Ajayan, P.M., Schadler, L.S., Giannaris, G., Rubio, A.: Single-walled carbon nanotube–polymer composites: strength and weakness. Adv. Mater. 12(10), 750–753 (2000)
go back to reference Aliha, M.R.M., Ayatollahi, M.R.: On mixed-mode I/II crack growth in dental resin materials. Scripta Mater. 59(2), 258–261 (2008)CrossRef Aliha, M.R.M., Ayatollahi, M.R.: On mixed-mode I/II crack growth in dental resin materials. Scripta Mater. 59(2), 258–261 (2008)CrossRef
go back to reference Aliha, M.R.M., Ayatollahi, M.R.: Geometry effects on fracture behaviour of polymethyl methacrylate. Mater. Sci. Eng. A 527(3), 526–530 (2010)CrossRef Aliha, M.R.M., Ayatollahi, M.R.: Geometry effects on fracture behaviour of polymethyl methacrylate. Mater. Sci. Eng. A 527(3), 526–530 (2010)CrossRef
go back to reference Alishahi, E., Shadlou, S., Doagou-R, S., Ayatollahi, M.R.: Effects of carbon nanoreinforcements of different shapes on the mechanical properties of epoxy-based nanocomposites. Macromolecular 298(6), 670–678 (2013) Alishahi, E., Shadlou, S., Doagou-R, S., Ayatollahi, M.R.: Effects of carbon nanoreinforcements of different shapes on the mechanical properties of epoxy-based nanocomposites. Macromolecular 298(6), 670–678 (2013)
go back to reference Allaoui, A., Bai, S., Cheng, H.M., Bai, J.B.: Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 62(15), 1993–1998 (2002)CrossRef Allaoui, A., Bai, S., Cheng, H.M., Bai, J.B.: Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 62(15), 1993–1998 (2002)CrossRef
go back to reference Al-Saleh, M.H., Saadeh, W.: Hybrids of conductive polymer nanocomposites. Mater. Des. 52, 1071–1076 (2013)CrossRef Al-Saleh, M.H., Saadeh, W.: Hybrids of conductive polymer nanocomposites. Mater. Des. 52, 1071–1076 (2013)CrossRef
go back to reference Andrews, R., Jacques, D., Minot, M., Rantell, T.: Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol. Mater. Eng. 287(6), 395–403 (2002a)CrossRef Andrews, R., Jacques, D., Minot, M., Rantell, T.: Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol. Mater. Eng. 287(6), 395–403 (2002a)CrossRef
go back to reference Andrews, R., Jacques, D., Qian, D., Rantell, T.: Multiwall carbon nanotubes: synthesis and application. Acc. Chem. Res. 35(12), 1008–1017 (2002b)CrossRef Andrews, R., Jacques, D., Qian, D., Rantell, T.: Multiwall carbon nanotubes: synthesis and application. Acc. Chem. Res. 35(12), 1008–1017 (2002b)CrossRef
go back to reference Araki, W., Nemoto, K., Adachi, T., Yamaji, A.: Fracture toughness for mixed mode I/II of epoxy resin. Acta. Mater. 53(3), 869–861 (2005) Araki, W., Nemoto, K., Adachi, T., Yamaji, A.: Fracture toughness for mixed mode I/II of epoxy resin. Acta. Mater. 53(3), 869–861 (2005)
go back to reference Ashton, H.C.: The Incorporation of Nanomaterials. Polymer Nanocomposites, pp. 21–44. CRC Press, New York (2010) Ashton, H.C.: The Incorporation of Nanomaterials. Polymer Nanocomposites, pp. 21–44. CRC Press, New York (2010)
go back to reference Ayatollahi, M.R., Aliha, M.R.M.: Analysis of a new specimen for mixed mode fracture tests on brittle materials. Eng. Fract. Mech. 76(11), 1563–1573 (2009)CrossRef Ayatollahi, M.R., Aliha, M.R.M.: Analysis of a new specimen for mixed mode fracture tests on brittle materials. Eng. Fract. Mech. 76(11), 1563–1573 (2009)CrossRef
go back to reference Ayatollahi, M.R., Aliha, M.R.M., Hassani, M.M.: Mixed mode brittle fracture in PMMA—an experimental study using SCB specimens. Mater. Sci. Engng. A 417(1–2), 348–356 (2006)CrossRef Ayatollahi, M.R., Aliha, M.R.M., Hassani, M.M.: Mixed mode brittle fracture in PMMA—an experimental study using SCB specimens. Mater. Sci. Engng. A 417(1–2), 348–356 (2006)CrossRef
go back to reference Ayatollahi, M.R., Alishahi, E., Shadlou, S.: Mechanical behavior of nanodiamond/epoxy nanocomposites. Int. J. Fract. 170(1), 95–100 (2011a) Ayatollahi, M.R., Alishahi, E., Shadlou, S.: Mechanical behavior of nanodiamond/epoxy nanocomposites. Int. J. Fract. 170(1), 95–100 (2011a)
go back to reference Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M.: Multiscale modeling for mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading. Compos. Struct. 93(9), 2250–2259 (2011b)CrossRef Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M.: Multiscale modeling for mechanical properties of carbon nanotube reinforced nanocomposites subjected to different types of loading. Compos. Struct. 93(9), 2250–2259 (2011b)CrossRef
go back to reference Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M.: Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions. Mater. Des. 32(4), 2115–2124 (2011c)CrossRef Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M.: Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions. Mater. Des. 32(4), 2115–2124 (2011c)CrossRef
go back to reference Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M., Chitsazzadeh, M.: d. Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites. Polym. Test. 30(5), 548–556 (2011d)CrossRef Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M., Chitsazzadeh, M.: d. Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites. Polym. Test. 30(5), 548–556 (2011d)CrossRef
go back to reference Ayatollahi, M.R., et al.: Mechanical and electrical properties of epoxy/MWNT-nanoclay nanocomposites. Iran. Polym. J. 20(10), 832–843 (2011e) Ayatollahi, M.R., et al.: Mechanical and electrical properties of epoxy/MWNT-nanoclay nanocomposites. Iran. Polym. J. 20(10), 832–843 (2011e)
go back to reference Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M.: Mixed mode brittle fracture in epoxy/multi-walled carbon nanotube nanocomposites. Eng. Fract. Mech. 78(14), 2620–2632 (2011f)CrossRef Ayatollahi, M.R., Shadlou, S., Shokrieh, M.M.: Mixed mode brittle fracture in epoxy/multi-walled carbon nanotube nanocomposites. Eng. Fract. Mech. 78(14), 2620–2632 (2011f)CrossRef
go back to reference Ayatollahi, M.R., Shadloua, S., Shokrieh, M.M.: Correlation between aspect ratio of MWCNTs and mixed mode fracture of epoxy based nanocomposites. Mater. Sci. Eng. A 528(19–20), 6173–6178 (2011g)CrossRef Ayatollahi, M.R., Shadloua, S., Shokrieh, M.M.: Correlation between aspect ratio of MWCNTs and mixed mode fracture of epoxy based nanocomposites. Mater. Sci. Eng. A 528(19–20), 6173–6178 (2011g)CrossRef
go back to reference Ayatollahi, M.R., Doagou-Rad, S., Shadlou, S.: Nano-/microscale investigation of tribological and mechanical properties of epoxy/MWNT nanocomposites. Macromol. Mater. Eng. (Wiley) 297(7), 689–701 (2012a) Ayatollahi, M.R., Doagou-Rad, S., Shadlou, S.: Nano-/microscale investigation of tribological and mechanical properties of epoxy/MWNT nanocomposites. Macromol. Mater. Eng. (Wiley) 297(7), 689–701 (2012a)
go back to reference Ayatollahi, M.R., Alishahi, E., Doagou-R, S., Shadlou, S.: Tribological and mechanical properties of low content nanodiamond/epoxy nanocomposites. Compos. B 43(8), 3425–3430 (2012b) Ayatollahi, M.R., Alishahi, E., Doagou-R, S., Shadlou, S.: Tribological and mechanical properties of low content nanodiamond/epoxy nanocomposites. Compos. B 43(8), 3425–3430 (2012b)
go back to reference Bahr, J.L., et al.: Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J. Am. Chem. Soc. 123(27), 6536–6542 (2001)CrossRef Bahr, J.L., et al.: Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J. Am. Chem. Soc. 123(27), 6536–6542 (2001)CrossRef
go back to reference Bai, J.: Evidence of the reinforcement role of chemical vapour deposition multi-walled carbon nanotubes in a polymer matrix. Carbon 41(6), 1325–1328 (2003)CrossRef Bai, J.: Evidence of the reinforcement role of chemical vapour deposition multi-walled carbon nanotubes in a polymer matrix. Carbon 41(6), 1325–1328 (2003)CrossRef
go back to reference Barber, A.H., Cohen, S.R., Kenig, S., Wagner, H.D.: Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix. Compos. Sci. Technol. 64(15), 2283–2289 (2004)CrossRef Barber, A.H., Cohen, S.R., Kenig, S., Wagner, H.D.: Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix. Compos. Sci. Technol. 64(15), 2283–2289 (2004)CrossRef
go back to reference Bhattacharjee, D., Knott, J.F.: Effect of mixed mode I and II loading on the fracture surface of polymethyl methacrylate (PMMA). Int. J. Fract. 72(4), 359–381 (1995)CrossRef Bhattacharjee, D., Knott, J.F.: Effect of mixed mode I and II loading on the fracture surface of polymethyl methacrylate (PMMA). Int. J. Fract. 72(4), 359–381 (1995)CrossRef
go back to reference Bhattacharyya, S., Sinturel, C., Salvetat, J.P., Saboungi, M.L.: Proteinfunctionalized CNT polymer composites. Appl. Phys. Lett. 86, 113104 (2005)CrossRef Bhattacharyya, S., Sinturel, C., Salvetat, J.P., Saboungi, M.L.: Proteinfunctionalized CNT polymer composites. Appl. Phys. Lett. 86, 113104 (2005)CrossRef
go back to reference Bhattacharyya, S., Salvetat, J.P., Saboungi, M.L.: Reinforcement of semicrystalline polymers with collagen modified SWCNTs. Appl. Phys. Lett. 88, 233119 (2006)CrossRef Bhattacharyya, S., Salvetat, J.P., Saboungi, M.L.: Reinforcement of semicrystalline polymers with collagen modified SWCNTs. Appl. Phys. Lett. 88, 233119 (2006)CrossRef
go back to reference Bhuiyan, M.A., Pucha, R.V., Karevan, M., Kalaitzidou, K.: Tensile modulus of carbon nanotube/polypropylene composites—a computational study based on experimental characterization. Comput. Mater. Sci. 60(8), 2347–2353 (2011)CrossRef Bhuiyan, M.A., Pucha, R.V., Karevan, M., Kalaitzidou, K.: Tensile modulus of carbon nanotube/polypropylene composites—a computational study based on experimental characterization. Comput. Mater. Sci. 60(8), 2347–2353 (2011)CrossRef
go back to reference Bhuiyan, M.A., et al.: Defining the lower and upper limit of the effective modulus of CNT/polypropylene composites through integration of modeling and experiments. Compos. Struct. 95, 80–87 (2013)CrossRef Bhuiyan, M.A., et al.: Defining the lower and upper limit of the effective modulus of CNT/polypropylene composites through integration of modeling and experiments. Compos. Struct. 95, 80–87 (2013)CrossRef
go back to reference Bin, Y., Kitanaka, M., Zhu, D., Matsuo, M.: Development of highly oriented polyethylene filled with aligned carbon nanotubes by gelation/crystallization from solutions. Macromolecules 36(6), 6213–6219 (2003)CrossRef Bin, Y., Kitanaka, M., Zhu, D., Matsuo, M.: Development of highly oriented polyethylene filled with aligned carbon nanotubes by gelation/crystallization from solutions. Macromolecules 36(6), 6213–6219 (2003)CrossRef
go back to reference Blake, R., et al.: Reinforcement of poly(vinyl chloride) and polystyrene using chlorinated polypropylene grafted carbon nanotubes. J. Mater. Chem. 16(43), 4206–4213 (2006)CrossRef Blake, R., et al.: Reinforcement of poly(vinyl chloride) and polystyrene using chlorinated polypropylene grafted carbon nanotubes. J. Mater. Chem. 16(43), 4206–4213 (2006)CrossRef
go back to reference Blanco, J., García, E.J., Villoria, R.G., Wardle, B.L.: Limiting mechanisms of mode I interlaminar toughening of composites reinforced with aligned carbon nanotubes. J. Compos. Mater. 43(8), 825–841 (2009)CrossRef Blanco, J., García, E.J., Villoria, R.G., Wardle, B.L.: Limiting mechanisms of mode I interlaminar toughening of composites reinforced with aligned carbon nanotubes. J. Compos. Mater. 43(8), 825–841 (2009)CrossRef
go back to reference Blond, D., et al.: Enhancement of modulus, strength, and toughness in poly(methyl methacrylate)-based composites by the incorporation of poly(methyl methacrylate)-functionalised nanotubes. Adv. Funct. Mater. 16(12), 1608–1614 (2006)CrossRef Blond, D., et al.: Enhancement of modulus, strength, and toughness in poly(methyl methacrylate)-based composites by the incorporation of poly(methyl methacrylate)-functionalised nanotubes. Adv. Funct. Mater. 16(12), 1608–1614 (2006)CrossRef
go back to reference Böger, L., Sumfleth, J., Hedemann, H., Schulte, K.: Improvement of fatigue life by incorporation of nanoparticles in glass fibre reinforced epoxy. Compos. A 41(10), 1419–1424 (2010)CrossRef Böger, L., Sumfleth, J., Hedemann, H., Schulte, K.: Improvement of fatigue life by incorporation of nanoparticles in glass fibre reinforced epoxy. Compos. A 41(10), 1419–1424 (2010)CrossRef
go back to reference Breton, Y., et al.: Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology. Carbon 42(5–6), 1027–1030 (2004)CrossRef Breton, Y., et al.: Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology. Carbon 42(5–6), 1027–1030 (2004)CrossRef
go back to reference Brian, J., Sinha, B.K.: Tribological applications of polymers and their composites: past, present and future prospects. Tribology of Polymeric Nanocomposites, pp. 7–11. Elsevier Science, s.l. (2008) Brian, J., Sinha, B.K.: Tribological applications of polymers and their composites: past, present and future prospects. Tribology of Polymeric Nanocomposites, pp. 7–11. Elsevier Science, s.l. (2008)
go back to reference Cadek, M.: Mechanical and thermal properties of multiwalled carbon nanotube reinforced polymer composites. San Diego, s.n. (2002) Cadek, M.: Mechanical and thermal properties of multiwalled carbon nanotube reinforced polymer composites. San Diego, s.n. (2002)
go back to reference Cadek, M., et al.: Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 81(27), 5123–5125 (2002)CrossRef Cadek, M., et al.: Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 81(27), 5123–5125 (2002)CrossRef
go back to reference Cadek, M., et al.: Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area. Nano Lett. 4(2), 353–356 (2004)CrossRef Cadek, M., et al.: Reinforcement of polymers with carbon nanotubes: the role of nanotube surface area. Nano Lett. 4(2), 353–356 (2004)CrossRef
go back to reference Cai, H., Yan, F.Y., Xue, Q.J.: Investigation of tribological properties of polyimide/carbon nanotube nanocomposites. Mater. Sci. Eng. A 364(1–2), 94 (2004)CrossRef Cai, H., Yan, F.Y., Xue, Q.J.: Investigation of tribological properties of polyimide/carbon nanotube nanocomposites. Mater. Sci. Eng. A 364(1–2), 94 (2004)CrossRef
go back to reference Campo, M., Jiménez-Suárez, A., Ureña, A.: Effect of type, percentage and dispersion method of multi-walled carbon nanotubes on tribological properties of epoxy composites. Wear 324, 100–108 (2015)CrossRef Campo, M., Jiménez-Suárez, A., Ureña, A.: Effect of type, percentage and dispersion method of multi-walled carbon nanotubes on tribological properties of epoxy composites. Wear 324, 100–108 (2015)CrossRef
go back to reference Chang, T.E., et al.: Microscopic mechanism of reinforcement in SWCNT–polypropylene nanocomposite. Polymer 46(2), 439–444 (2005)CrossRef Chang, T.E., et al.: Microscopic mechanism of reinforcement in SWCNT–polypropylene nanocomposite. Polymer 46(2), 439–444 (2005)CrossRef
go back to reference Chen, J., et al.: Solution properties of single-walled carbon nanotubes. Science 282(5386), 95–98 (1998)CrossRef Chen, J., et al.: Solution properties of single-walled carbon nanotubes. Science 282(5386), 95–98 (1998)CrossRef
go back to reference Chen, L., Pang, X.J., Yu, Z.L.: Study on polycarbonate/multi-walled carbon nanotubes composite produced by melt processing. Mater. Sci. Eng. A 457(1–2), 287–291 (2007)CrossRef Chen, L., Pang, X.J., Yu, Z.L.: Study on polycarbonate/multi-walled carbon nanotubes composite produced by melt processing. Mater. Sci. Eng. A 457(1–2), 287–291 (2007)CrossRef
go back to reference Chen, Z., et al.: Improving the mechanical properties of multiwalled carbon nanotube/epoxy nanocomposites using polymerization in a stirring plasma system. Compos. Part A 56, 172–180 (2014) Chen, Z., et al.: Improving the mechanical properties of multiwalled carbon nanotube/epoxy nanocomposites using polymerization in a stirring plasma system. Compos. Part A 56, 172–180 (2014)
go back to reference Coleman, J.N., et al.: High performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv. Funct. Mater. 14(8), 791–798 (2004)CrossRef Coleman, J.N., et al.: High performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv. Funct. Mater. 14(8), 791–798 (2004)CrossRef
go back to reference Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9), 1624–1652 (2006) Coleman, J.N., Khan, U., Blau, W.J., Gun’ko, Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9), 1624–1652 (2006)
go back to reference Cooper, C.A., Young, R.J., Halsall, M.: Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos. A 32(3–4), 401–411 (2001)CrossRef Cooper, C.A., Young, R.J., Halsall, M.: Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos. A 32(3–4), 401–411 (2001)CrossRef
go back to reference Cooper, C.A., et al.: Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Compos. Sci. Technol. 62(7–8), 1105–1112 (2002)CrossRef Cooper, C.A., et al.: Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Compos. Sci. Technol. 62(7–8), 1105–1112 (2002)CrossRef
go back to reference Cui, L.J., et al.: Functionalization of multi-wall carbon nanotubes to reduce the coefficient of the friction and improve the wear resistance of multi-wall carbon nanotube/epoxy composites. Carbon 54, 277–282 (2013)CrossRef Cui, L.J., et al.: Functionalization of multi-wall carbon nanotubes to reduce the coefficient of the friction and improve the wear resistance of multi-wall carbon nanotube/epoxy composites. Carbon 54, 277–282 (2013)CrossRef
go back to reference Dai, L., Mau, A.W.H.: Controlled synthesis and modification of carbon nanotubes and C60: carbon nanostructures for advanced polymeric composite materials. Adv. Mater. 13(12–13), 899–913 (2001)CrossRef Dai, L., Mau, A.W.H.: Controlled synthesis and modification of carbon nanotubes and C60: carbon nanostructures for advanced polymeric composite materials. Adv. Mater. 13(12–13), 899–913 (2001)CrossRef
go back to reference Dalton, A.B., et al.: Super-tough carbon-nanotube fibres. Nature 423, 703 (2003)CrossRef Dalton, A.B., et al.: Super-tough carbon-nanotube fibres. Nature 423, 703 (2003)CrossRef
go back to reference Dasari, A., Yu, Z.Z., Mai, Y.W.: Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Mater. Sci. Eng. R Rep. 63(2), 31–80 (2009)CrossRef Dasari, A., Yu, Z.Z., Mai, Y.W.: Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Mater. Sci. Eng. R Rep. 63(2), 31–80 (2009)CrossRef
go back to reference Dondero, W.E., Gorga, R.E.: Morphological and mechanical properties of CNT–polymer composites via melt compounding. J. Polym. Sci. Part B: Polym. Phys. 44(5), 864–878 (2006)CrossRef Dondero, W.E., Gorga, R.E.: Morphological and mechanical properties of CNT–polymer composites via melt compounding. J. Polym. Sci. Part B: Polym. Phys. 44(5), 864–878 (2006)CrossRef
go back to reference Dong, B., Yang, Z., Huang, Y., Li, H.L.: Study on tribological properties of multiwalled carbon nanotubes/epoxy resin nanocomposite. Tribol. Lett. 20(3–4), 251–254 (2005)CrossRef Dong, B., Yang, Z., Huang, Y., Li, H.L.: Study on tribological properties of multiwalled carbon nanotubes/epoxy resin nanocomposite. Tribol. Lett. 20(3–4), 251–254 (2005)CrossRef
go back to reference Du, F., Fischer, J.E., Winey, K.I.: Coagulation method for preparing singlewalled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. J. Polym. Sci. Part B: Polym. Phys. 41(24), 3333–3338 (2003)CrossRef Du, F., Fischer, J.E., Winey, K.I.: Coagulation method for preparing singlewalled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. J. Polym. Sci. Part B: Polym. Phys. 41(24), 3333–3338 (2003)CrossRef
go back to reference Faber, K.T., Evans, A.G.: Crack deflection processes—I. Theory Acta Metall. 31(4), 565–576 (1983)CrossRef Faber, K.T., Evans, A.G.: Crack deflection processes—I. Theory Acta Metall. 31(4), 565–576 (1983)CrossRef
go back to reference Fiedler, B., et al.: Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 66(16), 3115–3125 (2006)CrossRef Fiedler, B., et al.: Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 66(16), 3115–3125 (2006)CrossRef
go back to reference Fritzsche, J., Lorenz, H., Klüppel, M.: CNT based elastomer-hybrid-nanocomposites with promising mechanical and electrical properties. Macromol. Mater. Eng. 294(9), 551–560 (2009)CrossRef Fritzsche, J., Lorenz, H., Klüppel, M.: CNT based elastomer-hybrid-nanocomposites with promising mechanical and electrical properties. Macromol. Mater. Eng. 294(9), 551–560 (2009)CrossRef
go back to reference Gandhi, R.A., Palanikumar, K., Ragunath, B.K., Davim, J.P.: Role of carbon nanotubes (CNTs) in improving wear properties of polypropylene (PP) in dry sliding condition. Mater. Des. 48, 52–57 (2013)CrossRef Gandhi, R.A., Palanikumar, K., Ragunath, B.K., Davim, J.P.: Role of carbon nanotubes (CNTs) in improving wear properties of polypropylene (PP) in dry sliding condition. Mater. Des. 48, 52–57 (2013)CrossRef
go back to reference Gojny, F.H., Nastalczyk, J., Roslaniec, Z., Schulte, K.: Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem. Phys. Lett. 370(5–6), 820–824 (2003)CrossRef Gojny, F.H., Nastalczyk, J., Roslaniec, Z., Schulte, K.: Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem. Phys. Lett. 370(5–6), 820–824 (2003)CrossRef
go back to reference Gojny, F.H., et al.: Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 64(15), 2663–2671 (2004) Gojny, F.H., et al.: Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 64(15), 2663–2671 (2004)
go back to reference Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Schulte, K.: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Compos. Sci. Technol. 65(15–16), 2300–2313 (2005)CrossRef Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Schulte, K.: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Compos. Sci. Technol. 65(15–16), 2300–2313 (2005)CrossRef
go back to reference Gorga, R.E., Cohen, R.E.: Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes. J. Polym. Sci. Part B: Polym. Phys. 40(14), 2690–2702 (2004)CrossRef Gorga, R.E., Cohen, R.E.: Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes. J. Polym. Sci. Part B: Polym. Phys. 40(14), 2690–2702 (2004)CrossRef
go back to reference Gorrasi, J., et al.: Incorporation of carbon nanotubes into polyethylene by high energy ball milling: morphology and physical properties. J. Polym. Sci. Part B: Polym. Phys. 45(5), 597–606 (2007)CrossRef Gorrasi, J., et al.: Incorporation of carbon nanotubes into polyethylene by high energy ball milling: morphology and physical properties. J. Polym. Sci. Part B: Polym. Phys. 45(5), 597–606 (2007)CrossRef
go back to reference Grady, B.P., Pompeo, F., Shambaugh, R.L., Resasco, D.E.: Nucleation of polypropylene crystallization by SWCNTs. J. Phys. Chem. B 106(23), 5852–5858 (2002)CrossRef Grady, B.P., Pompeo, F., Shambaugh, R.L., Resasco, D.E.: Nucleation of polypropylene crystallization by SWCNTs. J. Phys. Chem. B 106(23), 5852–5858 (2002)CrossRef
go back to reference Guo, P., et al.: Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/epoxy composites. Compos. Sci. Technol. 67(15–16), 3331–3337 (2007)CrossRef Guo, P., et al.: Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/epoxy composites. Compos. Sci. Technol. 67(15–16), 3331–3337 (2007)CrossRef
go back to reference Haggenmueller, R., et al.: Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330(3–4), 219–225 (2000)CrossRef Haggenmueller, R., et al.: Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330(3–4), 219–225 (2000)CrossRef
go back to reference Haggenmueller, R., Zhou, W., Fischer, J.E., Winey, K.I.: Production and characterization of polymer nanocomposites with highly aligned single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 3(1–2), 1105–1110 (2003) Haggenmueller, R., Zhou, W., Fischer, J.E., Winey, K.I.: Production and characterization of polymer nanocomposites with highly aligned single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 3(1–2), 1105–1110 (2003)
go back to reference Han, J.H., et al.: CNT buckypaper/thermoplastic polyurethane composites with enhanced stiffness, strength and toughness. Compos. Sci. Technol. 103, 63–71 (2014)CrossRef Han, J.H., et al.: CNT buckypaper/thermoplastic polyurethane composites with enhanced stiffness, strength and toughness. Compos. Sci. Technol. 103, 63–71 (2014)CrossRef
go back to reference He, X.J., et al.: Positive temperature coefficient effect in multiwalled carbon nanotube/high-density polyethylene composites. Appl. Phys. Lett. 86(6), 062112 (2005)CrossRef He, X.J., et al.: Positive temperature coefficient effect in multiwalled carbon nanotube/high-density polyethylene composites. Appl. Phys. Lett. 86(6), 062112 (2005)CrossRef
go back to reference Hough, L.A., Islam, M.F., Janmey, P.A., Yodh, A.G.: Viscoelasticity of singlewall carbon nanotube suspensions. Phys. Rev. Lett. 93(6), 168102 1–4 (2004) Hough, L.A., Islam, M.F., Janmey, P.A., Yodh, A.G.: Viscoelasticity of singlewall carbon nanotube suspensions. Phys. Rev. Lett. 93(6), 168102 1–4 (2004)
go back to reference Hou, Y., et al.: Functionalised few-walled carbon nanotubes for mechanical reinforcement of polymeric composites. ACS Nano 3(5), 1057–1062 (2009)CrossRef Hou, Y., et al.: Functionalised few-walled carbon nanotubes for mechanical reinforcement of polymeric composites. ACS Nano 3(5), 1057–1062 (2009)CrossRef
go back to reference Huang, G.L.: Efficient load transfer to polymer-grafted MWCNTs in polymer composites. Adv. Funct. Mater. 487–91 (2004) Huang, G.L.: Efficient load transfer to polymer-grafted MWCNTs in polymer composites. Adv. Funct. Mater. 487–91 (2004)
go back to reference Hull, D.: An Introduction to Composite Materials. Cambridge University Press, s.l. (1981) Hull, D.: An Introduction to Composite Materials. Cambridge University Press, s.l. (1981)
go back to reference Jen, M.H.R.: Experiments and Simulations. DEStech Publications, s.l. (2012) Jen, M.H.R.: Experiments and Simulations. DEStech Publications, s.l. (2012)
go back to reference Jia, Z., et al.: Study on poly(methyl methacrylate)/carbon nanotube composites. Mater. Sci. Eng. A 271(1–2), 395–400 (1999)CrossRef Jia, Z., et al.: Study on poly(methyl methacrylate)/carbon nanotube composites. Mater. Sci. Eng. A 271(1–2), 395–400 (1999)CrossRef
go back to reference Jin, Z., Pramoda, K.P., Xu, G., Goh, S.H.: Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chem. Phys. Lett. 337(1–3), 43–47 (2001)CrossRef Jin, Z., Pramoda, K.P., Xu, G., Goh, S.H.: Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chem. Phys. Lett. 337(1–3), 43–47 (2001)CrossRef
go back to reference Jin, Z., Pramoda, K.P., Goh, S.H., Xu, G.: PVDF-assisted melt blending of MWCNT/PMMA composites. Mater. Res. Bull. 37(2), 271–278 (2002)CrossRef Jin, Z., Pramoda, K.P., Goh, S.H., Xu, G.: PVDF-assisted melt blending of MWCNT/PMMA composites. Mater. Res. Bull. 37(2), 271–278 (2002)CrossRef
go back to reference Jose, M.V., et al.: Polypropylene/CNT nanocomposite fibers: process–morphology–property relationships. J. Appl. Polym. Sci. 103(6), 3844–3850 (2007)CrossRef Jose, M.V., et al.: Polypropylene/CNT nanocomposite fibers: process–morphology–property relationships. J. Appl. Polym. Sci. 103(6), 3844–3850 (2007)CrossRef
go back to reference Kalin, M., Zalaznik, M., Novak, S.: Wear and friction behaviour of poly-ether-ether-ketone (PEEK) filled with graphene, WS2 and CNT nanoparticles. Wear WEA101203 (2014) Kalin, M., Zalaznik, M., Novak, S.: Wear and friction behaviour of poly-ether-ether-ketone (PEEK) filled with graphene, WS2 and CNT nanoparticles. Wear WEA101203 (2014)
go back to reference Kanagaraj, S., et al.: Mechanical properties of high density polyethylene/carbon nanotube composites. Compos. Sci. Technol. 67(15–16), 3071–3077 (2007)CrossRef Kanagaraj, S., et al.: Mechanical properties of high density polyethylene/carbon nanotube composites. Compos. Sci. Technol. 67(15–16), 3071–3077 (2007)CrossRef
go back to reference Kearns, J.C., Shambaugh, R.L.: Polypropylene fibers reinforced with carbon nanotubes. J. Appl. Polym. Sci. 86(6), 2079–2084 (2002)CrossRef Kearns, J.C., Shambaugh, R.L.: Polypropylene fibers reinforced with carbon nanotubes. J. Appl. Polym. Sci. 86(6), 2079–2084 (2002)CrossRef
go back to reference Khan, U., Coleman, J.N.: The effect of solvent choice on the mechanical properties of carbon nanotube–polymer composites. Compos. Sci. Technol. 3158–3167 (2007) Khan, U., Coleman, J.N.: The effect of solvent choice on the mechanical properties of carbon nanotube–polymer composites. Compos. Sci. Technol. 3158–3167 (2007)
go back to reference Kim, K.H., Jo, W.H.: Improvement of tensile properties of poly(methyl methacrylate) by dispersing multi-walled carbon nanotubes functionalized with poly(3-hexylthiophene)-graft-poly(methyl methacrylate). Compos. Sci. Technol. 68(9), 2120–2124 (2008)CrossRef Kim, K.H., Jo, W.H.: Improvement of tensile properties of poly(methyl methacrylate) by dispersing multi-walled carbon nanotubes functionalized with poly(3-hexylthiophene)-graft-poly(methyl methacrylate). Compos. Sci. Technol. 68(9), 2120–2124 (2008)CrossRef
go back to reference Kim, H.M., et al.: Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl. Phys. Lett. 84(4), 589–591 (2004a)CrossRef Kim, H.M., et al.: Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl. Phys. Lett. 84(4), 589–591 (2004a)CrossRef
go back to reference Kim, H.M., et al.: Charge transport properties of composites of multiwalled carbon nanotube with metal catalyst and polymer: application to electromagnetic interference shielding. Curr. Appl. Phys. 4(6), 577–580 (2004b)CrossRef Kim, H.M., et al.: Charge transport properties of composites of multiwalled carbon nanotube with metal catalyst and polymer: application to electromagnetic interference shielding. Curr. Appl. Phys. 4(6), 577–580 (2004b)CrossRef
go back to reference Kim, H.S., et al.: Electrical and mechanical properties of poly(L-lactide)/carbon nanotubes/clay nanocomposites. J. Nanosci. Nanotechnol. 10(5), 3576–3580 (2010)CrossRef Kim, H.S., et al.: Electrical and mechanical properties of poly(L-lactide)/carbon nanotubes/clay nanocomposites. J. Nanosci. Nanotechnol. 10(5), 3576–3580 (2010)CrossRef
go back to reference Lahelin, M., et al.: In situ polymerized nanocomposites: polystyrene/CNT and poly(methyl methacrylate)/CNT composites. Compos. Sci. Technol. 71(6), 900–907 (2011)CrossRef Lahelin, M., et al.: In situ polymerized nanocomposites: polystyrene/CNT and poly(methyl methacrylate)/CNT composites. Compos. Sci. Technol. 71(6), 900–907 (2011)CrossRef
go back to reference Lee, S.M., Shin, M.W., Jang, H.: Effect of carbon-nanotube length on friction and wear of polyamide 6,6 nanocomposites. Wear 103–110 (2014) Lee, S.M., Shin, M.W., Jang, H.: Effect of carbon-nanotube length on friction and wear of polyamide 6,6 nanocomposites. Wear 103–110 (2014)
go back to reference Leelapornpisit, W., et al.: Effect of carbon nanotubes on the crystallization and properties of polypropylene. J. Polym. Sci. Part B 43(18), 2445–2453 (2005)CrossRef Leelapornpisit, W., et al.: Effect of carbon nanotubes on the crystallization and properties of polypropylene. J. Polym. Sci. Part B 43(18), 2445–2453 (2005)CrossRef
go back to reference Li, Q., Zaiser, M., Koutsos, V.: Carbon nanotube/epoxy resin composites using a block copolymer as a dispersing agent. Phys. Status Solidi (a) 201(13), 89–91 (2004a)CrossRef Li, Q., Zaiser, M., Koutsos, V.: Carbon nanotube/epoxy resin composites using a block copolymer as a dispersing agent. Phys. Status Solidi (a) 201(13), 89–91 (2004a)CrossRef
go back to reference Li, X., et al.: Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites. Nanotechnology 15(11), 1416–1423 (2004b)CrossRef Li, X., et al.: Nanomechanical characterization of single-walled carbon nanotube reinforced epoxy composites. Nanotechnology 15(11), 1416–1423 (2004b)CrossRef
go back to reference Li, J., Wong, P.S., Kim, J.K.: Hybrid nanocomposites containing carbon nanotubes and graphite nanoplatelets. Mater. Sci. Eng. A 483–484, 660–663 (2008)CrossRef Li, J., Wong, P.S., Kim, J.K.: Hybrid nanocomposites containing carbon nanotubes and graphite nanoplatelets. Mater. Sci. Eng. A 483–484, 660–663 (2008)CrossRef
go back to reference Liao, Y.H., et al.: Investigation of the dispersion process of SWCNTs/SC15 epoxy resin nanocomposites. Mater. Sci. Eng. A 385(1–2), 175–181 (2004)CrossRef Liao, Y.H., et al.: Investigation of the dispersion process of SWCNTs/SC15 epoxy resin nanocomposites. Mater. Sci. Eng. A 385(1–2), 175–181 (2004)CrossRef
go back to reference Lin, Y., Taylor, S., Huang, W., Sun, Y.: Characterization of fractions from repeated functionalization reactions of carbon nanotubes. Phys. Chem. 107(4), 914–919 (2003)CrossRef Lin, Y., Taylor, S., Huang, W., Sun, Y.: Characterization of fractions from repeated functionalization reactions of carbon nanotubes. Phys. Chem. 107(4), 914–919 (2003)CrossRef
go back to reference Liu, L., Grunlan, J.C.: Clay assisted dispersion of carbon nanotubes in conductive epoxy nanocomposites. Adv. Funct. Mater. 17(14), 2343–2348 (2007)CrossRef Liu, L., Grunlan, J.C.: Clay assisted dispersion of carbon nanotubes in conductive epoxy nanocomposites. Adv. Funct. Mater. 17(14), 2343–2348 (2007)CrossRef
go back to reference Liu, T., et al.: Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37(9), 7214–7222 (2004)CrossRef Liu, T., et al.: Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37(9), 7214–7222 (2004)CrossRef
go back to reference Liu, L., Barber, A., Nuriel, S., Wagner, H.D.: Mechanical properties of functionalized SWCNT/PVA nanocomposites. Adv. Funct. Mater. 15(6), 975–980 (2005)CrossRef Liu, L., Barber, A., Nuriel, S., Wagner, H.D.: Mechanical properties of functionalized SWCNT/PVA nanocomposites. Adv. Funct. Mater. 15(6), 975–980 (2005)CrossRef
go back to reference Liu, L., et al.: Comparison of covalently and noncovalently functionalized carbon nanotubes in epoxy. Macromol. Rapid Commun. 30(8), 627–632 (2009)CrossRef Liu, L., et al.: Comparison of covalently and noncovalently functionalized carbon nanotubes in epoxy. Macromol. Rapid Commun. 30(8), 627–632 (2009)CrossRef
go back to reference Liu, L., et al.: The effects of the variations of carbon nanotubes on the micro-tribological behavior of carbon nanotubes/bismaleimide nanocomposite. Compos. A 38(9), 1957–1964 (2007a)CrossRef Liu, L., et al.: The effects of the variations of carbon nanotubes on the micro-tribological behavior of carbon nanotubes/bismaleimide nanocomposite. Compos. A 38(9), 1957–1964 (2007a)CrossRef
go back to reference Liu, L.Q., et al.: One step electrospun nanofiber-based composite ropes. Appl. Phys. Lett. 9(8), 083108 (2007b)CrossRef Liu, L.Q., et al.: One step electrospun nanofiber-based composite ropes. Appl. Phys. Lett. 9(8), 083108 (2007b)CrossRef
go back to reference Liu, L.Q., Tasis, D., Prato, M., Wagner, H.D.: Tensile mechanics of electrospun multiwalled nanotube/poly(methyl methacrylate) nanofibers. Adv. Mater. 19(9), 1228–1233 (2007c)CrossRef Liu, L.Q., Tasis, D., Prato, M., Wagner, H.D.: Tensile mechanics of electrospun multiwalled nanotube/poly(methyl methacrylate) nanofibers. Adv. Mater. 19(9), 1228–1233 (2007c)CrossRef
go back to reference López Manchado, M.A., Valentini, L., Biagiotti, J., Kenny, J.M.: Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon 43(7), 1499–1505 (2005)CrossRef López Manchado, M.A., Valentini, L., Biagiotti, J., Kenny, J.M.: Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon 43(7), 1499–1505 (2005)CrossRef
go back to reference Maccagno, T.M., Knott, J.F.: The fracture behaviour of PMMA in mixed modes I and II. Eng. Fract. Mech. 34(1), 65–86 (1989)CrossRef Maccagno, T.M., Knott, J.F.: The fracture behaviour of PMMA in mixed modes I and II. Eng. Fract. Mech. 34(1), 65–86 (1989)CrossRef
go back to reference Manoharan, M.P., et al.: The interfacial strength of carbon nanofiber epoxy composite using single fiber pullout experiments. Nanotechnology 20(29), 295701 (2009)CrossRef Manoharan, M.P., et al.: The interfacial strength of carbon nanofiber epoxy composite using single fiber pullout experiments. Nanotechnology 20(29), 295701 (2009)CrossRef
go back to reference Ma, P.C., Kim, J.K., Tang, B.Z.: Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos. Sci. Technol. 67(14), 2965–2972 (2007)CrossRef Ma, P.C., Kim, J.K., Tang, B.Z.: Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos. Sci. Technol. 67(14), 2965–2972 (2007)CrossRef
go back to reference Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K.: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. A 41(10), 1345–1367 (2010)CrossRef Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K.: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. A 41(10), 1345–1367 (2010)CrossRef
go back to reference Masuda, J., Torkelson, J.M.: Dispersion and major property enhancements in polymer/multiwall carbon nanotube nanocomposites via solid-state shear pulverization followed by melt mixing. Macromolecules 41(16), 5974–5977 (2008)CrossRef Masuda, J., Torkelson, J.M.: Dispersion and major property enhancements in polymer/multiwall carbon nanotube nanocomposites via solid-state shear pulverization followed by melt mixing. Macromolecules 41(16), 5974–5977 (2008)CrossRef
go back to reference McIntosh, D., Khabashesku, V.N., Barrera, E.V.: Nanocomposite fiber systems processed from fluorinated SWCNTs and a polypropylene matrix. Chem. Mater. 18(9), 4561–4569 (2006)CrossRef McIntosh, D., Khabashesku, V.N., Barrera, E.V.: Nanocomposite fiber systems processed from fluorinated SWCNTs and a polypropylene matrix. Chem. Mater. 18(9), 4561–4569 (2006)CrossRef
go back to reference McIntosh, D., Khabashesku, V.N., Barrera, E.V.: Benzoyl peroxide initiated in situ functionalization, processing and mechanical properties of SWCNT–polypropylene composite fibers. J. Phys. Chem. C 111(4), 1592–1600 (2007)CrossRef McIntosh, D., Khabashesku, V.N., Barrera, E.V.: Benzoyl peroxide initiated in situ functionalization, processing and mechanical properties of SWCNT–polypropylene composite fibers. J. Phys. Chem. C 111(4), 1592–1600 (2007)CrossRef
go back to reference Meincke, O., et al.: Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45(3), 739–748 (2004)CrossRef Meincke, O., et al.: Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45(3), 739–748 (2004)CrossRef
go back to reference Mikelson, E.T., et al.: Fluorination of single-wall carbon nanotubes. Chem. Phys. Lett. 296(1–2), 188–194 (1998)CrossRef Mikelson, E.T., et al.: Fluorination of single-wall carbon nanotubes. Chem. Phys. Lett. 296(1–2), 188–194 (1998)CrossRef
go back to reference Mirjalili, V., Hubert, P.: Modelling of the carbon nanotube bridging effect on the toughening of polymers and experimental verification. Compos. Sci. Technol. 70(10), 1537–1543 (2010)CrossRef Mirjalili, V., Hubert, P.: Modelling of the carbon nanotube bridging effect on the toughening of polymers and experimental verification. Compos. Sci. Technol. 70(10), 1537–1543 (2010)CrossRef
go back to reference Mittal, G., et al.: A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 21, 11–25 (2015)CrossRef Mittal, G., et al.: A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 21, 11–25 (2015)CrossRef
go back to reference Miyagawa, H., Drzal, L.T.: Thermophysical and impact properties of epoxy nanocomposites reinforced by SWCNTs. Polymer 45(15), 5163–5170 (2004)CrossRef Miyagawa, H., Drzal, L.T.: Thermophysical and impact properties of epoxy nanocomposites reinforced by SWCNTs. Polymer 45(15), 5163–5170 (2004)CrossRef
go back to reference Moore, E.M., et al.: Enhancing the strength of polypropylene fibers with CNTs. J. Appl. Polym. Sci. 93(6), 2926–2933 (2004)CrossRef Moore, E.M., et al.: Enhancing the strength of polypropylene fibers with CNTs. J. Appl. Polym. Sci. 93(6), 2926–2933 (2004)CrossRef
go back to reference Ogasawara, T., Ishida, Y., Ishikawa, T., Yokota, R.: Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites. Compos. A 35(1), 67–74 (2004)CrossRef Ogasawara, T., Ishida, Y., Ishikawa, T., Yokota, R.: Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimide composites. Compos. A 35(1), 67–74 (2004)CrossRef
go back to reference Paiva, M.C., et al.: Mechanical and morphological characterization of polymer–carbon nanocomposites from functionalized CNTs. Carbon 42(14), 2849–2854 (2004)CrossRef Paiva, M.C., et al.: Mechanical and morphological characterization of polymer–carbon nanocomposites from functionalized CNTs. Carbon 42(14), 2849–2854 (2004)CrossRef
go back to reference Park, C., et al.: Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett. 364(3–4), 303–308 (2002)CrossRef Park, C., et al.: Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett. 364(3–4), 303–308 (2002)CrossRef
go back to reference Park, J.M., Kim, D.S., Lee, J.R., Kim, T.W.: Nondestructive damage sensitivity and reinforcing effect of CNT/epoxy composites using electromicromechanical technique. Mater. Sci. Eng. C 23(6–8), 971–975 (2003)CrossRef Park, J.M., Kim, D.S., Lee, J.R., Kim, T.W.: Nondestructive damage sensitivity and reinforcing effect of CNT/epoxy composites using electromicromechanical technique. Mater. Sci. Eng. C 23(6–8), 971–975 (2003)CrossRef
go back to reference Pekker, S., et al.: Hydrogenation of carbon nanotubes and graphite in liquid ammonia. Phys. Chem. 105(33), 7938–7943 (2001)CrossRef Pekker, S., et al.: Hydrogenation of carbon nanotubes and graphite in liquid ammonia. Phys. Chem. 105(33), 7938–7943 (2001)CrossRef
go back to reference Potschke, P., Bhattacharyya, A.R., Janke, A., Goering, H.: Melt mixing of polycarbonate/multi-wall carbon nanotube composites. Compos. Interf. 10(4), 389–404 (2003)CrossRef Potschke, P., Bhattacharyya, A.R., Janke, A., Goering, H.: Melt mixing of polycarbonate/multi-wall carbon nanotube composites. Compos. Interf. 10(4), 389–404 (2003)CrossRef
go back to reference Pötschke, P., Bhattacharyya, A.R., Janke, A.: Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon 42(5), 965–969 (2004)CrossRef Pötschke, P., Bhattacharyya, A.R., Janke, A.: Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon 42(5), 965–969 (2004)CrossRef
go back to reference Probst, O., Moore, E.M., Resasco, D.E., Grady, B.P.: Nucleation of PVA crystallization by SWCNTs. Polymer 45(13), 4437–4443 (2004)CrossRef Probst, O., Moore, E.M., Resasco, D.E., Grady, B.P.: Nucleation of PVA crystallization by SWCNTs. Polymer 45(13), 4437–4443 (2004)CrossRef
go back to reference Putz, K.W., Mitchell, C.A., Krishnamoorti, R., Green, P.F.: Elastic modulus of single-walled carbon nanotube/poly(methyl methacrylate) nanocomposites. J. Polym. Sci. Part B: Polym. Phys. 42(12), 2286–2293 (2004)CrossRef Putz, K.W., Mitchell, C.A., Krishnamoorti, R., Green, P.F.: Elastic modulus of single-walled carbon nanotube/poly(methyl methacrylate) nanocomposites. J. Polym. Sci. Part B: Polym. Phys. 42(12), 2286–2293 (2004)CrossRef
go back to reference Qian, D., Dickey, E.C., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube–polystyrene composites. Appl. Phys. Lett. 76(20), 2868–2870 (2000)CrossRef Qian, D., Dickey, E.C., Andrews, R., Rantell, T.: Load transfer and deformation mechanisms in carbon nanotube–polystyrene composites. Appl. Phys. Lett. 76(20), 2868–2870 (2000)CrossRef
go back to reference Rahmanian, S., et al.: Growth of carbon nanotubes on silica microparticles and their effects on mechanical properties of polypropylene nanocomposites. Mater. Des. 69, 181–189 (2014)CrossRef Rahmanian, S., et al.: Growth of carbon nanotubes on silica microparticles and their effects on mechanical properties of polypropylene nanocomposites. Mater. Des. 69, 181–189 (2014)CrossRef
go back to reference Ren, Y., Li, F., Cheng, H.M., Liao, K.: Tension–tension fatigue behavior of unidirectional single-walled carbon nanotube. Carbon 41(11), 2159–2179 (2003)CrossRef Ren, Y., Li, F., Cheng, H.M., Liao, K.: Tension–tension fatigue behavior of unidirectional single-walled carbon nanotube. Carbon 41(11), 2159–2179 (2003)CrossRef
go back to reference Ruan, S.L., Gao, P., Yang, X.G., Yu, T.X.: Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer 44(19), 5643–5654 (2003)CrossRef Ruan, S.L., Gao, P., Yang, X.G., Yu, T.X.: Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. Polymer 44(19), 5643–5654 (2003)CrossRef
go back to reference Ruan, S., Gao, P., Yu, T.X.: Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer 47(5), 1604–1611 (2006)CrossRef Ruan, S., Gao, P., Yu, T.X.: Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. Polymer 47(5), 1604–1611 (2006)CrossRef
go back to reference Ryan, K.P., et al.: Carbon nanotubes for reinforcements of plastics? A case study with PVA. Compos. Sci. Technol. 67(7–8), 1640–1649 (2007)CrossRef Ryan, K.P., et al.: Carbon nanotubes for reinforcements of plastics? A case study with PVA. Compos. Sci. Technol. 67(7–8), 1640–1649 (2007)CrossRef
go back to reference Sabba, Y., Thomas, E.L.: High-concentration dispersion of single-wall carbon nanotubes. Macromolecules 37(13), 4815–4820 (2004)CrossRef Sabba, Y., Thomas, E.L.: High-concentration dispersion of single-wall carbon nanotubes. Macromolecules 37(13), 4815–4820 (2004)CrossRef
go back to reference Safadi, B., Andrews, R., Grulke, E.A.: Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J. Appl. Polym. Sci. 84(14), 2660–2669 (2002)CrossRef Safadi, B., Andrews, R., Grulke, E.A.: Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J. Appl. Polym. Sci. 84(14), 2660–2669 (2002)CrossRef
go back to reference Safdari, M., Al-Haik, M.S.: Synergistic electrical and thermal transport properties of hybrid polymeric nanocomposites based on carbon nanotubes and graphite nanoplatelets. Carbon 64, 111–121 (2013)CrossRef Safdari, M., Al-Haik, M.S.: Synergistic electrical and thermal transport properties of hybrid polymeric nanocomposites based on carbon nanotubes and graphite nanoplatelets. Carbon 64, 111–121 (2013)CrossRef
go back to reference Sandler, J.K.W., et al.: Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19), 5893–5899 (2003)CrossRef Sandler, J.K.W., et al.: Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19), 5893–5899 (2003)CrossRef
go back to reference Santangelo, S., et al.: Polylactide and carbon nanotubes/smectite-clay nanocomposites: preparation, characterization, sorptive and electrical properties. Appl. Clay Sci. 53(2), 188–194 (2011)CrossRef Santangelo, S., et al.: Polylactide and carbon nanotubes/smectite-clay nanocomposites: preparation, characterization, sorptive and electrical properties. Appl. Clay Sci. 53(2), 188–194 (2011)CrossRef
go back to reference Satapathy, B.K., Weidisch, R., Pötschke, P., Janke, A.: Tough-to-brittle transition in multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites. Compos. Sci. Technol. 67(5), 867–879 (2007)CrossRef Satapathy, B.K., Weidisch, R., Pötschke, P., Janke, A.: Tough-to-brittle transition in multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites. Compos. Sci. Technol. 67(5), 867–879 (2007)CrossRef
go back to reference Schmid, C.F., Klingenberg, D.J.: Mechanical flocculation in flowing fiber suspensions. Phys. Rev. Lett. 84(2), 290–293 (2000)CrossRef Schmid, C.F., Klingenberg, D.J.: Mechanical flocculation in flowing fiber suspensions. Phys. Rev. Lett. 84(2), 290–293 (2000)CrossRef
go back to reference Seyhan, A.T., Tanoğlu, M., Schulte, K.: Tensile mechanical behavior and fracture toughness of Mwcnt and Dwcnt modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling. Mater. Sci. Eng. A 523(1–2), 85–92 (2009)CrossRef Seyhan, A.T., Tanoğlu, M., Schulte, K.: Tensile mechanical behavior and fracture toughness of Mwcnt and Dwcnt modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling. Mater. Sci. Eng. A 523(1–2), 85–92 (2009)CrossRef
go back to reference S-Hadavand, B., Mahdavi Javid, K., Gharagozlou, M.: Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite. Mater. Des. 50, 62–67 (2013) S-Hadavand, B., Mahdavi Javid, K., Gharagozlou, M.: Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite. Mater. Des. 50, 62–67 (2013)
go back to reference Shadlou, S., Alishahi, E., Ayatollahi, M.R.: Fracture behavior of epoxy nanocomposites reinforced with different carbon nano-reinforcements. Compos. Struct. 95, 577–581 (2013)CrossRef Shadlou, S., Alishahi, E., Ayatollahi, M.R.: Fracture behavior of epoxy nanocomposites reinforced with different carbon nano-reinforcements. Compos. Struct. 95, 577–581 (2013)CrossRef
go back to reference Shaffer, M.S.P., Windle, A.H.: Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv. Mater. 11(11), 937–941 (1999)CrossRef Shaffer, M.S.P., Windle, A.H.: Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv. Mater. 11(11), 937–941 (1999)CrossRef
go back to reference Shen, X.J., Pei, X.Q., Liu, Y., Fu, S.Y.: Tribological performance of carbon nanotube–graphene oxide hybrid/epoxy composites. Compos. Part B 57, 120–125 (2014) Shen, X.J., Pei, X.Q., Liu, Y., Fu, S.Y.: Tribological performance of carbon nanotube–graphene oxide hybrid/epoxy composites. Compos. Part B 57, 120–125 (2014)
go back to reference Shim, M., Wang, C., Guyot-Sionnest, P.: Charge-tunable optical properties in colloidal semiconductor nanocrystals. Phys. Chem. B 105(12), 2369–2373 (2001)CrossRef Shim, M., Wang, C., Guyot-Sionnest, P.: Charge-tunable optical properties in colloidal semiconductor nanocrystals. Phys. Chem. B 105(12), 2369–2373 (2001)CrossRef
go back to reference Shofner, M.L., Khabashesku, V.N., Barrera, E.V.: Processing and mechanical properties of fluorinated SWCNT–polyethylene composites. Chem. Mater. 18(4), 906–913 (2006)CrossRef Shofner, M.L., Khabashesku, V.N., Barrera, E.V.: Processing and mechanical properties of fluorinated SWCNT–polyethylene composites. Chem. Mater. 18(4), 906–913 (2006)CrossRef
go back to reference Shokrieh, M.M., Kefayati, A.R., Chitsazzadeh, M.: Investigation of mechanical properties of clay/epoxy nanocomposites. In: Kish Island-Iran, the 2nd International Conference on Composites: Characterization, Fabrication & Application (CCFA-2) (2010) Shokrieh, M.M., Kefayati, A.R., Chitsazzadeh, M.: Investigation of mechanical properties of clay/epoxy nanocomposites. In: Kish Island-Iran, the 2nd International Conference on Composites: Characterization, Fabrication & Application (CCFA-2) (2010)
go back to reference Shokrieh, M.M., Esmkhani, M., Haghighatkhah, A.R., Zhao, Z.: Flexural fatigue behavior of synthesized graphene/carbon-nanofiber/epoxy hybrid nanocomposites. Mater. Des. 62, 401–408 (2014)CrossRef Shokrieh, M.M., Esmkhani, M., Haghighatkhah, A.R., Zhao, Z.: Flexural fatigue behavior of synthesized graphene/carbon-nanofiber/epoxy hybrid nanocomposites. Mater. Des. 62, 401–408 (2014)CrossRef
go back to reference Spitalsky, Z., Krontiras, C.A., Georga, S.N., Galiotis, C.: Effect of oxidation treatment of multiwalled carbon nanotubes on the mechanical and electrical properties of their epoxy composites. Compos. A 40(6–7), 778–783 (2009a)CrossRef Spitalsky, Z., Krontiras, C.A., Georga, S.N., Galiotis, C.: Effect of oxidation treatment of multiwalled carbon nanotubes on the mechanical and electrical properties of their epoxy composites. Compos. A 40(6–7), 778–783 (2009a)CrossRef
go back to reference Spitalsky, Z., et al.: Modification of carbon nanotubes and its effect on properties of carbon nanotube/epoxy nanocomposites. Polym. Compos. 30(10), 1378–1387 (2009b)CrossRef Spitalsky, Z., et al.: Modification of carbon nanotubes and its effect on properties of carbon nanotube/epoxy nanocomposites. Polym. Compos. 30(10), 1378–1387 (2009b)CrossRef
go back to reference Spitalsky, Z., Tasis, D., Papagelis, K., Galiotis, C.: Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 56(3), 357–401 (2010)CrossRef Spitalsky, Z., Tasis, D., Papagelis, K., Galiotis, C.: Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 56(3), 357–401 (2010)CrossRef
go back to reference Sui, G., Zhong, W.H., Liu, M.C., Wu, P.H.: Enhancing mechanical properties of an epoxy resin using “liquid nano-reinforcements”. Mater. Sci. Eng. A 512(1–2), 139–142 (2009)CrossRef Sui, G., Zhong, W.H., Liu, M.C., Wu, P.H.: Enhancing mechanical properties of an epoxy resin using “liquid nano-reinforcements”. Mater. Sci. Eng. A 512(1–2), 139–142 (2009)CrossRef
go back to reference Sulong, A.B., et al.: Electrical conductivity behaviour of chemical functionalized MWCNTs epoxy nanocomposites. Eur. J. Sci. Res. 59(1), 13–21 (2009) Sulong, A.B., et al.: Electrical conductivity behaviour of chemical functionalized MWCNTs epoxy nanocomposites. Eur. J. Sci. Res. 59(1), 13–21 (2009)
go back to reference Sun, Y.P., et al.: Soluble dendron-functionalized carbon nanotubes: preparation, characterization. Chem. Mater. 13(9), 2864–2869 (2001)CrossRef Sun, Y.P., et al.: Soluble dendron-functionalized carbon nanotubes: preparation, characterization. Chem. Mater. 13(9), 2864–2869 (2001)CrossRef
go back to reference Sun, Y.P., Fu, K., Lin, Y., Huang, W.: Functionalized carbon nanotubes: properties and applications. Acc. Chem. Res. 35(12), 1096–1104 (2002)CrossRef Sun, Y.P., Fu, K., Lin, Y., Huang, W.: Functionalized carbon nanotubes: properties and applications. Acc. Chem. Res. 35(12), 1096–1104 (2002)CrossRef
go back to reference Sun, L., et al.: Mechanical properties of surface-functionalized SWCNT/epoxy composites. Carbon 46(2), 320–328 (2008)CrossRef Sun, L., et al.: Mechanical properties of surface-functionalized SWCNT/epoxy composites. Carbon 46(2), 320–328 (2008)CrossRef
go back to reference Switzer, L.H., Klingenberg, D.J.: Flocculation in simulations of sheared fiber suspensions. Int. J. Multiph. Flow 30(1), 67–87 (2004)CrossRef Switzer, L.H., Klingenberg, D.J.: Flocculation in simulations of sheared fiber suspensions. Int. J. Multiph. Flow 30(1), 67–87 (2004)CrossRef
go back to reference Tang, W., Santare, M.H., Advani, S.G.: Melt processing and mechanical property characterization of multi-walled carbon nanotube high density polyethylene composite films. Carbon 41(14), 2779–2785 (2003)CrossRef Tang, W., Santare, M.H., Advani, S.G.: Melt processing and mechanical property characterization of multi-walled carbon nanotube high density polyethylene composite films. Carbon 41(14), 2779–2785 (2003)CrossRef
go back to reference Thostenson, E.T., Chou, T.W.: Aligned multi-walled carbon nanotube reinforced composites: processing and mechanical characterization. J. Phys. D Appl. Phys. 35(16), 77–80 (2002)CrossRef Thostenson, E.T., Chou, T.W.: Aligned multi-walled carbon nanotube reinforced composites: processing and mechanical characterization. J. Phys. D Appl. Phys. 35(16), 77–80 (2002)CrossRef
go back to reference Thostenson, E.T., Chou, T.W.: Processing–structure–multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44(14), 3022–3029 (2006)CrossRef Thostenson, E.T., Chou, T.W.: Processing–structure–multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44(14), 3022–3029 (2006)CrossRef
go back to reference Tong, X., et al.: Surface modification of single-walled carbon nanotubes with polyethylene via in situ Ziegler-Natta polymerization. J. Appl. Polym. Sci. 92(6), 3697–3700 (2004)CrossRef Tong, X., et al.: Surface modification of single-walled carbon nanotubes with polyethylene via in situ Ziegler-Natta polymerization. J. Appl. Polym. Sci. 92(6), 3697–3700 (2004)CrossRef
go back to reference Tong, L., Sun, X., Tan, P.: Effect of long multi-walled carbon nanotubes on delamination toughness of laminated composites. J. Compos. Mater. 42(1), 5–23 (2008) Tong, L., Sun, X., Tan, P.: Effect of long multi-walled carbon nanotubes on delamination toughness of laminated composites. J. Compos. Mater. 42(1), 5–23 (2008)
go back to reference Tseng, C.H., Wang, C.C., Chen, C.Y.: Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites. Chem. Mater. 19(2), 308–315 (2007)CrossRef Tseng, C.H., Wang, C.C., Chen, C.Y.: Functionalizing carbon nanotubes by plasma modification for the preparation of covalent-integrated epoxy composites. Chem. Mater. 19(2), 308–315 (2007)CrossRef
go back to reference Valentini, L., et al.: Use of plasma fluorinated single-walled carbon nanotubes for the preparation of nanocomposites with epoxy matrix. Compos. Sci. Technol. 68(3–4), 1008–1014 (2008)CrossRef Valentini, L., et al.: Use of plasma fluorinated single-walled carbon nanotubes for the preparation of nanocomposites with epoxy matrix. Compos. Sci. Technol. 68(3–4), 1008–1014 (2008)CrossRef
go back to reference Velasco-Santos, C., et al.: Dynamical–mechanical and thermal analysis of carbon nanotube–methyl-ethyl methacrylate nanocomposites. J. Phys. D Appl. Phys. 36(12), 1423–1428 (2003a)CrossRef Velasco-Santos, C., et al.: Dynamical–mechanical and thermal analysis of carbon nanotube–methyl-ethyl methacrylate nanocomposites. J. Phys. D Appl. Phys. 36(12), 1423–1428 (2003a)CrossRef
go back to reference Velasco-Santos, C., et al.: Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem. Mater. 15(23), 4470–4475 (2003b)CrossRef Velasco-Santos, C., et al.: Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem. Mater. 15(23), 4470–4475 (2003b)CrossRef
go back to reference Vigolo, B., et al.: An experimental approach to the percolation of sticky nanotubes. Science 309(5736), 920–923 (2005)CrossRef Vigolo, B., et al.: An experimental approach to the percolation of sticky nanotubes. Science 309(5736), 920–923 (2005)CrossRef
go back to reference Wang, Q., Pei, X.: The influence of nanoparticle fillers on the friction and wear behavior of polymer matrices. Tribology of Polymeric Nanocomposites, pp. 63–64. Elsevier Science, s.l. (2008) Wang, Q., Pei, X.: The influence of nanoparticle fillers on the friction and wear behavior of polymer matrices. Tribology of Polymeric Nanocomposites, pp. 63–64. Elsevier Science, s.l. (2008)
go back to reference Wang, Z., et al.: Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Compos. A 35(10), 1225–1232 (2004)CrossRef Wang, Z., et al.: Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites. Compos. A 35(10), 1225–1232 (2004)CrossRef
go back to reference Wang, Y., Cheng, R., Liang, L., Wang, Y.: Study on the preparation and characterization of ultra high molecular weight polyethylene–carbon nanotubes composite fiber. Compos. Sci. Technol. 65(5), 793–797 (2005)CrossRef Wang, Y., Cheng, R., Liang, L., Wang, Y.: Study on the preparation and characterization of ultra high molecular weight polyethylene–carbon nanotubes composite fiber. Compos. Sci. Technol. 65(5), 793–797 (2005)CrossRef
go back to reference Wang, M., Pramoda, K.P., Goh, S.H.: Enhancement of interfacial adhesion and dynamic mechanical properties of PMMA–MWCNT composites with amine-terminated poly(ethylenoxide). Carbon 44(4), 613–617 (2006a)CrossRef Wang, M., Pramoda, K.P., Goh, S.H.: Enhancement of interfacial adhesion and dynamic mechanical properties of PMMA–MWCNT composites with amine-terminated poly(ethylenoxide). Carbon 44(4), 613–617 (2006a)CrossRef
go back to reference Wang, S., et al.: Effective functionalization of carbon nanotubes for reinforcing epoxy polymer composites. Nanotechnology 17(6), 1551–1557 (2006b)CrossRef Wang, S., et al.: Effective functionalization of carbon nanotubes for reinforcing epoxy polymer composites. Nanotechnology 17(6), 1551–1557 (2006b)CrossRef
go back to reference Wang, C., et al.: A study on microhardness and tribological behaviour of carbon nanotubes reinforced AMMA-CNTs copolymer nanocomposites. Mater. Sci. Eng. A 478(1–2), 314–318 (2008) Wang, C., et al.: A study on microhardness and tribological behaviour of carbon nanotubes reinforced AMMA-CNTs copolymer nanocomposites. Mater. Sci. Eng. A 478(1–2), 314–318 (2008)
go back to reference Weisenberger, M.C., et al.: Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers. J. Nanosci. Nanotechnol. 3(6), 535–539 (2003)CrossRef Weisenberger, M.C., et al.: Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers. J. Nanosci. Nanotechnol. 3(6), 535–539 (2003)CrossRef
go back to reference Wetzel, B., Rosso, P., Haupert, F., Friedrich, K.: Epoxy nanocomposites—fracture and toughening mechanisms. Eng. Fract. Mech. 73(16), 2375–2398 (2006)CrossRef Wetzel, B., Rosso, P., Haupert, F., Friedrich, K.: Epoxy nanocomposites—fracture and toughening mechanisms. Eng. Fract. Mech. 73(16), 2375–2398 (2006)CrossRef
go back to reference Witt, N., Tang, Y., Ye, L., Fang, L.: Silicone rubber nanocomposites containing a small amount of hybrid fillers with enhanced electrical sensitivity. Mater. Des. 45, 548–554 (2013)CrossRef Witt, N., Tang, Y., Ye, L., Fang, L.: Silicone rubber nanocomposites containing a small amount of hybrid fillers with enhanced electrical sensitivity. Mater. Des. 45, 548–554 (2013)CrossRef
go back to reference Xia, H., Wang, Q., Li, K., Hu, G.H.: Preparation of CNT/polypropylene composite powder with a solid state mechanochemical pulverization process. J. Appl. Polym. Sci. 93(1), 378–386 (2004)CrossRef Xia, H., Wang, Q., Li, K., Hu, G.H.: Preparation of CNT/polypropylene composite powder with a solid state mechanochemical pulverization process. J. Appl. Polym. Sci. 93(1), 378–386 (2004)CrossRef
go back to reference Xiao, K.Q., Zhang, L.C., Zarudi, I.: Mechanical and rheological properties of CNT–reinforced polyethylene composites. Compos. Sci. Technol. 67(2), 177–182 (2007a)CrossRef Xiao, K.Q., Zhang, L.C., Zarudi, I.: Mechanical and rheological properties of CNT–reinforced polyethylene composites. Compos. Sci. Technol. 67(2), 177–182 (2007a)CrossRef
go back to reference Xiao, Y., et al.: Dispersion and mechanical properties of polypropylene/multiwall carbon nanotubes composites obtained via dynamic packing injection molding. J. Appl. Polym. Sci. 104(3), 1880–1886 (2007b)CrossRef Xiao, Y., et al.: Dispersion and mechanical properties of polypropylene/multiwall carbon nanotubes composites obtained via dynamic packing injection molding. J. Appl. Polym. Sci. 104(3), 1880–1886 (2007b)CrossRef
go back to reference Xie, L., et al.: Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40(9), 3296–3305 (2007)CrossRef Xie, L., et al.: Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40(9), 3296–3305 (2007)CrossRef
go back to reference Xu, X., Thwe, M.M., Shearwood, C., Liao, K.: Mechanical properties and interfacial characteristics of carbon-nanotube–reinforced epoxy thin films. Appl. Phys. Lett. 81(15), 2833–2835 (2002)CrossRef Xu, X., Thwe, M.M., Shearwood, C., Liao, K.: Mechanical properties and interfacial characteristics of carbon-nanotube–reinforced epoxy thin films. Appl. Phys. Lett. 81(15), 2833–2835 (2002)CrossRef
go back to reference Yang, B.X., Pramoda, K.P., Xu, G.Q., Goh, S.H.: Mechanical reinforcement of polyethylene using polyethylene-grafted multiwalled carbon nanotubes. Adv. Funct. Mater. 17(13), 2062–2069 (2007)CrossRef Yang, B.X., Pramoda, K.P., Xu, G.Q., Goh, S.H.: Mechanical reinforcement of polyethylene using polyethylene-grafted multiwalled carbon nanotubes. Adv. Funct. Mater. 17(13), 2062–2069 (2007)CrossRef
go back to reference Yang, K., et al.: Effects of carbon nanotube functionalisation on the mechanical and thermal properties of epoxy composites. Carbon 47(7), 1723–1737 (2009)CrossRef Yang, K., et al.: Effects of carbon nanotube functionalisation on the mechanical and thermal properties of epoxy composites. Carbon 47(7), 1723–1737 (2009)CrossRef
go back to reference Zhang, X., et al.: Poly(vinyl alcohol)/SWCNT composite film. Nano Lett. 3(9), 1285–1288 (2003)CrossRef Zhang, X., et al.: Poly(vinyl alcohol)/SWCNT composite film. Nano Lett. 3(9), 1285–1288 (2003)CrossRef
go back to reference Zhang, X., et al.: Gel spinning of PVA/SWCNT composite fiber. Polymer 45(26), 8801–8807 (2004)CrossRef Zhang, X., et al.: Gel spinning of PVA/SWCNT composite fiber. Polymer 45(26), 8801–8807 (2004)CrossRef
go back to reference Zhang, W., Picu, R.C., Koratkar, N.: The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites. Nanotechnology 19(28), 285709 (2008)CrossRef Zhang, W., Picu, R.C., Koratkar, N.: The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites. Nanotechnology 19(28), 285709 (2008)CrossRef
go back to reference Zhao, P., et al.: Excellent tensile ductility in highly oriented injection-molded bars of polypropylene/carbon nanotubes composites. Polymer 48(19), 5688–5695 (2007)CrossRef Zhao, P., et al.: Excellent tensile ductility in highly oriented injection-molded bars of polypropylene/carbon nanotubes composites. Polymer 48(19), 5688–5695 (2007)CrossRef
go back to reference Zhou, Y., Pervin, F., Lewis, L., Jeelani, S.: Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes. Mater. Sci. Eng. A 475(1–2), 230–237 (2008) Zhou, Y., Pervin, F., Lewis, L., Jeelani, S.: Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes. Mater. Sci. Eng. A 475(1–2), 230–237 (2008)
go back to reference Zou, Y., Feng, Y., Wang, L., Liu, X.: Processing and properties of MWNT/HDPE composites. Carbon 42(2), 271–277 (2004)CrossRef Zou, Y., Feng, Y., Wang, L., Liu, X.: Processing and properties of MWNT/HDPE composites. Carbon 42(2), 271–277 (2004)CrossRef
Metadata
Title
CNT-Based Nanocomposites
Authors
Moones Rahmandoust
Majid R. Ayatollahi
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-00251-4_4

Premium Partners