Skip to main content
Top
Published in: Journal of Materials Science 1/2019

20-08-2018 | Energy materials

CNTs–C@TiO2 composites with 3D networks as anode material for lithium/sodium ion batteries

Authors: Jin Chen, Enqi Wang, Jiechen Mu, Bing Ai, Tiezhu Zhang, Wenqing Ge, Lipeng Zhang

Published in: Journal of Materials Science | Issue 1/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

CNTs–C@TiO2 composite with 3D networks as electrode has been synthesized for lithium ion batteries (LIBs)/sodium ion batteries (SIBs) by a traditional solvothermal process. The composites were characterized by scanning electron microscopy, field emission electron microscopy, X-ray diffraction, Raman spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The continuous 3D conductive networks, which consisted of acid-treated CNTs, provided numerous attachment sites for TiO2 particles and carbon layers (similar to a shell) produced by the Ti4+-induced polymerization of ethylene glycol, thereby promoting electron and ion transfer. The composites contained 10.09 wt% CNTs (excellent conductor) and 12.75 wt% pyrolytic carbon. The Raman spectra confirmed the high degree of graphitization of the composites, and the improved conductivity resulted in outstanding electrochemical behavior. The electrochemical performance in the Li+/Na+ storage of CNTs–C@TiO2 composites was greatly enhanced, as revealed by this material’s outstanding capacity of 205 mA h g−1 at a current density of 0.1 A g−1 after 200 scanning cycles for LIBs and 148 mA h g−1 at 0.1 A g−1 over 100 cycles for SIBs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901CrossRef Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ Sci 5:5884–5901CrossRef
2.
go back to reference Cheng F, Liang J, Tao Z, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715CrossRef Cheng F, Liang J, Tao Z, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715CrossRef
3.
go back to reference Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2:638–654CrossRef Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2:638–654CrossRef
4.
go back to reference Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Func Mater 23:947–958CrossRef Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Func Mater 23:947–958CrossRef
5.
go back to reference Seman RNAR, Azam MA, Mohamad AA (2017) Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors. Renew Sustain Energy Rev 75:644–659CrossRef Seman RNAR, Azam MA, Mohamad AA (2017) Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors. Renew Sustain Energy Rev 75:644–659CrossRef
6.
go back to reference Longoni G, Pena Cabrera RL, Polizzi S, D’Arienzo M, Mari CM, Cui Y, Ruffo R (2017) Shape-controlled TiO2 nanocrystals for Na-Ion battery electrodes: the role of different exposed crystal facets on the electrochemical properties. Nano Lett 17:992–1000CrossRef Longoni G, Pena Cabrera RL, Polizzi S, D’Arienzo M, Mari CM, Cui Y, Ruffo R (2017) Shape-controlled TiO2 nanocrystals for Na-Ion battery electrodes: the role of different exposed crystal facets on the electrochemical properties. Nano Lett 17:992–1000CrossRef
7.
go back to reference Suo L, Hu YS, Li H, Armand M, Chen L (2013) A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481–1489CrossRef Suo L, Hu YS, Li H, Armand M, Chen L (2013) A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481–1489CrossRef
8.
go back to reference Wu L, Bresser D, Buchholz D, Giffin GA, Castro CR, Ochel A, Passerini S (2015) Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv Energy Mater 5:1401142–1401152CrossRef Wu L, Bresser D, Buchholz D, Giffin GA, Castro CR, Ochel A, Passerini S (2015) Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles. Adv Energy Mater 5:1401142–1401152CrossRef
9.
go back to reference Zhang W, Xu T, Liu Z, Wu N, Wei M (2018) Hierarchical TiO2−x imbedded with graphene quantum dots for high-performance lithium storage. Chem Commun 54:1413–1416CrossRef Zhang W, Xu T, Liu Z, Wu N, Wei M (2018) Hierarchical TiO2−x imbedded with graphene quantum dots for high-performance lithium storage. Chem Commun 54:1413–1416CrossRef
10.
go back to reference Li W, Wang F, Liu Y, Wang J, Yang J, Zhang L, Elzatahry AA, Al-Dahyan D, Xia Y, Zhao D (2015) General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage. Nano Lett 15:2186–2193CrossRef Li W, Wang F, Liu Y, Wang J, Yang J, Zhang L, Elzatahry AA, Al-Dahyan D, Xia Y, Zhao D (2015) General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage. Nano Lett 15:2186–2193CrossRef
11.
go back to reference Liu H, Li W, Shen D, Zhao D, Wang G (2015) Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J Am Chem Soc 137:13161–13166CrossRef Liu H, Li W, Shen D, Zhao D, Wang G (2015) Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J Am Chem Soc 137:13161–13166CrossRef
12.
go back to reference Mao M, Yan F, Cui C, Ma J, Zhang M, Wang T, Wang C (2017) Pipe-wire TiO2-Sn@Carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett 17:3830–3836CrossRef Mao M, Yan F, Cui C, Ma J, Zhang M, Wang T, Wang C (2017) Pipe-wire TiO2-Sn@Carbon nanofibers paper anodes for lithium and sodium ion batteries. Nano Lett 17:3830–3836CrossRef
13.
go back to reference Hoshide T, Zheng Y, Hou J, Wang Z, Li Q, Zhao Z, Ma R, Sasaki T, Geng F (2017) Flexible lithium-ion fiber battery by the regular stacking of two-dimensional titanium oxide nanosheets hybridized with reduced graphene oxide. Nano Lett 17:3543–3549CrossRef Hoshide T, Zheng Y, Hou J, Wang Z, Li Q, Zhao Z, Ma R, Sasaki T, Geng F (2017) Flexible lithium-ion fiber battery by the regular stacking of two-dimensional titanium oxide nanosheets hybridized with reduced graphene oxide. Nano Lett 17:3543–3549CrossRef
14.
go back to reference Chen C, Wen Y, Hu X, Ji X, Yan M, Mai L, Hu P, Shan B, Huang Y (2015) Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun 6:6929–6936CrossRef Chen C, Wen Y, Hu X, Ji X, Yan M, Mai L, Hu P, Shan B, Huang Y (2015) Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun 6:6929–6936CrossRef
15.
go back to reference Rudola A, Saravanan K, Mason CW, Balaya P (2013) Na2Ti3O7: an intercalation based anode for sodium-ion battery applications. J Mater Chem A 1:2653–2662CrossRef Rudola A, Saravanan K, Mason CW, Balaya P (2013) Na2Ti3O7: an intercalation based anode for sodium-ion battery applications. J Mater Chem A 1:2653–2662CrossRef
16.
go back to reference Wu L, Buchholz D, Bresser D, Gomes Chagas L, Passerini S (2014) Anatase TiO2 nanoparticles for high power sodium-ion anodes. J Power Sources 251:379–385CrossRef Wu L, Buchholz D, Bresser D, Gomes Chagas L, Passerini S (2014) Anatase TiO2 nanoparticles for high power sodium-ion anodes. J Power Sources 251:379–385CrossRef
17.
go back to reference Zhu G-N, Liu H-J, Zhuang J-H, Wang C-X, Wang Y-G, Xia Y-Y (2011) Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ Sci 4:4016–4022CrossRef Zhu G-N, Liu H-J, Zhuang J-H, Wang C-X, Wang Y-G, Xia Y-Y (2011) Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energy Environ Sci 4:4016–4022CrossRef
18.
go back to reference Wen Z, Ci S, Mao S, Cui S, Lu G, Yu K, Luo S, He Z, Chen J (2013) TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells. J Power Sources 234:100–106CrossRef Wen Z, Ci S, Mao S, Cui S, Lu G, Yu K, Luo S, He Z, Chen J (2013) TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells. J Power Sources 234:100–106CrossRef
19.
go back to reference Mehmood U, Malaibari Z, Rabani FA, Rehman AU, Ahmad SHA, Atieh MA, Kamal MS (2016) Photovoltaic improvement and charge recombination reduction by aluminum oxide impregnated MWCNTs/TiO2 based photoanode for dye-sensitized solar cells. Electrochim Acta 203:162–170CrossRef Mehmood U, Malaibari Z, Rabani FA, Rehman AU, Ahmad SHA, Atieh MA, Kamal MS (2016) Photovoltaic improvement and charge recombination reduction by aluminum oxide impregnated MWCNTs/TiO2 based photoanode for dye-sensitized solar cells. Electrochim Acta 203:162–170CrossRef
20.
go back to reference Wang J, Lin Y, Pinault M, Filoramo A, Fabert M, Ratier B, Boucle J, Herlin-Boime N (2015) Single-step preparation of TiO2/MWCNT Nanohybrid materials by laser pyrolysis and application to efficient photovoltaic energy conversion. ACS Appl Mater Interfaces 7:51–56CrossRef Wang J, Lin Y, Pinault M, Filoramo A, Fabert M, Ratier B, Boucle J, Herlin-Boime N (2015) Single-step preparation of TiO2/MWCNT Nanohybrid materials by laser pyrolysis and application to efficient photovoltaic energy conversion. ACS Appl Mater Interfaces 7:51–56CrossRef
21.
go back to reference Saravanan K, Ananthanarayanan K, Balaya P (2010) Mesoporous TiO2 with high packing density for superior lithium storage. Energy Environ Sci 3:939–948CrossRef Saravanan K, Ananthanarayanan K, Balaya P (2010) Mesoporous TiO2 with high packing density for superior lithium storage. Energy Environ Sci 3:939–948CrossRef
22.
go back to reference Eder D, Windle AH (2008) Carbon-Inorganic hybrid materials: the carbon-nanotube/TiO2 interface. Adv Mater 20:1787–1793CrossRef Eder D, Windle AH (2008) Carbon-Inorganic hybrid materials: the carbon-nanotube/TiO2 interface. Adv Mater 20:1787–1793CrossRef
23.
go back to reference Eder D, Windle AH (2008) Morphology control of CNT-TiO2 hybrid materials and rutile nanotubes. J Mater Chem 18:2036–2043CrossRef Eder D, Windle AH (2008) Morphology control of CNT-TiO2 hybrid materials and rutile nanotubes. J Mater Chem 18:2036–2043CrossRef
24.
go back to reference Liu Y, Chen W, Yang C, Wei Q, Wei M (2018) Hierarchical TiO2-B composed of nanosheets with exposed 010 facets as a high-performance anode for lithium ion batteries. J Power Sources 392:226–231CrossRef Liu Y, Chen W, Yang C, Wei Q, Wei M (2018) Hierarchical TiO2-B composed of nanosheets with exposed 010 facets as a high-performance anode for lithium ion batteries. J Power Sources 392:226–231CrossRef
25.
go back to reference Xu Y, Lotfabad EM, Wang H, Farbod B, Xu Z, Kohandehghan A, Mitlin D (2013) Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem Commun 49:8973–8975CrossRef Xu Y, Lotfabad EM, Wang H, Farbod B, Xu Z, Kohandehghan A, Mitlin D (2013) Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chem Commun 49:8973–8975CrossRef
26.
go back to reference Liu Y, Liu M, Lan T, Dou J, Wei M (2015) One-step hydrothermal synthesis of Nb doped brookite TiO2 nanosheets with enhanced lithium-ion intercalation properties. J Mater Chem A 3:18882–18888CrossRef Liu Y, Liu M, Lan T, Dou J, Wei M (2015) One-step hydrothermal synthesis of Nb doped brookite TiO2 nanosheets with enhanced lithium-ion intercalation properties. J Mater Chem A 3:18882–18888CrossRef
27.
go back to reference Qiu S, Xiao L, Ai X, Yang H, Cao Y (2017) Yolk–Shell TiO2@C nanocomposite as high-performance anode material for sodium-ion batteries. ACS Appl Mater Interfaces 9:345–353CrossRef Qiu S, Xiao L, Ai X, Yang H, Cao Y (2017) Yolk–Shell TiO2@C nanocomposite as high-performance anode material for sodium-ion batteries. ACS Appl Mater Interfaces 9:345–353CrossRef
28.
go back to reference Zhang W, Lan T, Ding T, Wu N, Wei M (2017) Carbon coated anatase TiO2 mesocrystals enabling ultrastable and robust sodium storage. J Power Sources 359:64–70CrossRef Zhang W, Lan T, Ding T, Wu N, Wei M (2017) Carbon coated anatase TiO2 mesocrystals enabling ultrastable and robust sodium storage. J Power Sources 359:64–70CrossRef
29.
go back to reference Liu X, Xu G, Xiao H, Wei X, Yang L (2017) Free-standing hierarchical porous assemblies of commercial TiO2 nanocrystals and multi-walled carbon nanotubes as high-performance anode materials for sodium ion batteries. Electrochim Acta 236:33–42CrossRef Liu X, Xu G, Xiao H, Wei X, Yang L (2017) Free-standing hierarchical porous assemblies of commercial TiO2 nanocrystals and multi-walled carbon nanotubes as high-performance anode materials for sodium ion batteries. Electrochim Acta 236:33–42CrossRef
30.
go back to reference Liu Y, Elzatahry AA, Luo W, Lan K, Zhang P, Fan J, Wei Y, Wang C, Deng Y, Zheng G, Zhang F, Tang Y, Mai L, Zhao D (2016) Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy 25:80–90CrossRef Liu Y, Elzatahry AA, Luo W, Lan K, Zhang P, Fan J, Wei Y, Wang C, Deng Y, Zheng G, Zhang F, Tang Y, Mai L, Zhao D (2016) Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. Nano Energy 25:80–90CrossRef
31.
go back to reference Liu J, Feng H, Jiang J, Qian D, Li J, Peng S, Liu Y (2014) Anatase-TiO2/CNTs nanocomposite as a superior high-rate anode material for lithium-ion batteries. J Alloys Compd 603:144–148CrossRef Liu J, Feng H, Jiang J, Qian D, Li J, Peng S, Liu Y (2014) Anatase-TiO2/CNTs nanocomposite as a superior high-rate anode material for lithium-ion batteries. J Alloys Compd 603:144–148CrossRef
32.
go back to reference Chen J, Li Y, Mu J, Zhang Y, Yu Z, Han K, Zhang L (2018) C@TiO2 nanocomposites with impressive electrochemical performances as anode material for lithium-ion batteries. J Alloys Compd 742:828–834CrossRef Chen J, Li Y, Mu J, Zhang Y, Yu Z, Han K, Zhang L (2018) C@TiO2 nanocomposites with impressive electrochemical performances as anode material for lithium-ion batteries. J Alloys Compd 742:828–834CrossRef
33.
go back to reference Moriguchi I, Hidaka R, Yamada H, Kudo T, Murakami H, Nakashima N (2006) A Mesoporous nanocomposite of TiO2 and carbon nanotubes as a high-rate Li-intercalation electrode material. Adv Mater 18:69–73CrossRef Moriguchi I, Hidaka R, Yamada H, Kudo T, Murakami H, Nakashima N (2006) A Mesoporous nanocomposite of TiO2 and carbon nanotubes as a high-rate Li-intercalation electrode material. Adv Mater 18:69–73CrossRef
34.
go back to reference Li W, Wang F, Feng S, Wang J, Sun Z, Li B, Li Y, Yang J, Elzatahry AA, Xia Y, Zhao D (2013) Sol–gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries. J Am Chem Soc 135:18300–18303CrossRef Li W, Wang F, Feng S, Wang J, Sun Z, Li B, Li Y, Yang J, Elzatahry AA, Xia Y, Zhao D (2013) Sol–gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries. J Am Chem Soc 135:18300–18303CrossRef
35.
go back to reference Kim H-K, Mhamane D, Kim M-S, Roh H-K, Aravindan V, Madhavi S, Roh KC, Kim K-B (2016) TiO2-reduced graphene oxide nanocomposites by microwave-assisted forced hydrolysis as excellent insertion anode for Li-ion battery and capacitor. J Power Sources 327:171–177CrossRef Kim H-K, Mhamane D, Kim M-S, Roh H-K, Aravindan V, Madhavi S, Roh KC, Kim K-B (2016) TiO2-reduced graphene oxide nanocomposites by microwave-assisted forced hydrolysis as excellent insertion anode for Li-ion battery and capacitor. J Power Sources 327:171–177CrossRef
36.
go back to reference Trang NT, Ali Z, Kang DJ (2015) Mesoporous TiO2 spheres interconnected by multiwalled carbon nanotubes as an anode for high-performance lithium ion batteries. ACS Appl Mater Interfaces 7:3676–3683CrossRef Trang NT, Ali Z, Kang DJ (2015) Mesoporous TiO2 spheres interconnected by multiwalled carbon nanotubes as an anode for high-performance lithium ion batteries. ACS Appl Mater Interfaces 7:3676–3683CrossRef
37.
go back to reference Liu Y, Guo M, Liu Z, Wei Q, Wei M (2018) Rapid and facile synthesis of hierarchically mesoporous TiO2-B with enhanced reversible capacity and rate capability. J Mater Chem A 6:1196–1200CrossRef Liu Y, Guo M, Liu Z, Wei Q, Wei M (2018) Rapid and facile synthesis of hierarchically mesoporous TiO2-B with enhanced reversible capacity and rate capability. J Mater Chem A 6:1196–1200CrossRef
38.
go back to reference Cao F-F, Guo Y-G, Zheng S-F, Wu X-L, Jiang L-Y, Bi R-R, Wan L-J, Maier J (2010) Symbiotic coaxial nanocables: facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chem Mater 22:1908–1914CrossRef Cao F-F, Guo Y-G, Zheng S-F, Wu X-L, Jiang L-Y, Bi R-R, Wan L-J, Maier J (2010) Symbiotic coaxial nanocables: facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chem Mater 22:1908–1914CrossRef
39.
go back to reference Wang D, Shan Z, Na R, Huang W, Tian J (2017) Solvothermal synthesis of hedgehog-like mesoporous rutile TiO2 with improved lithium storage properties. J Power Sources 337:11–17CrossRef Wang D, Shan Z, Na R, Huang W, Tian J (2017) Solvothermal synthesis of hedgehog-like mesoporous rutile TiO2 with improved lithium storage properties. J Power Sources 337:11–17CrossRef
40.
go back to reference Tao H, Zhou M, Wang K, Cheng S, Jiang K (2017) Glycol derived carbon-TiO2 as low cost and high performance anode material for sodium-ion batteries. Sci Rep 7:43895–43901CrossRef Tao H, Zhou M, Wang K, Cheng S, Jiang K (2017) Glycol derived carbon-TiO2 as low cost and high performance anode material for sodium-ion batteries. Sci Rep 7:43895–43901CrossRef
41.
go back to reference Liu Y, Lan T, Zhang W, Ding X, Wei M (2014) Hierarchically porous anatase TiO2 microspheres composed of tiny octahedra with enhanced electrochemical properties in lithium-ion batteries. J Mater Chem A 2:20133–20138CrossRef Liu Y, Lan T, Zhang W, Ding X, Wei M (2014) Hierarchically porous anatase TiO2 microspheres composed of tiny octahedra with enhanced electrochemical properties in lithium-ion batteries. J Mater Chem A 2:20133–20138CrossRef
42.
go back to reference Lee J, Chen YM, Zhu Y, Vogt BD (2014) Fabrication of porous carbon/TiO2 composites through polymerization-induced phase separation and use as an anode for Na-ion batteries. ACS Appl Mater Interfaces 6:21011–21018CrossRef Lee J, Chen YM, Zhu Y, Vogt BD (2014) Fabrication of porous carbon/TiO2 composites through polymerization-induced phase separation and use as an anode for Na-ion batteries. ACS Appl Mater Interfaces 6:21011–21018CrossRef
43.
go back to reference Le Z, Liu F, Nie P, Li X, Liu X, Bian Z, Chen G, Wu HB, Lu Y (2017) Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11:2952–2960CrossRef Le Z, Liu F, Nie P, Li X, Liu X, Bian Z, Chen G, Wu HB, Lu Y (2017) Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano 11:2952–2960CrossRef
44.
go back to reference Hyder MN, Gallant BM, Shah NJ, Shao-Horn Y, Hammond PT (2013) Synthesis of highly stable sub-8 nm TiO2 nanoparticles and their multilayer electrodes of TiO2/MWNT for electrochemical applications. Nano Lett 13:4610–4619CrossRef Hyder MN, Gallant BM, Shah NJ, Shao-Horn Y, Hammond PT (2013) Synthesis of highly stable sub-8 nm TiO2 nanoparticles and their multilayer electrodes of TiO2/MWNT for electrochemical applications. Nano Lett 13:4610–4619CrossRef
45.
go back to reference He H, Zhang Q, Wang H, Zhang H, Li J, Peng Z, Tang Y, Shao M (2017) Defect-rich TiO2−δ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode. J Power Sources 354:179–188CrossRef He H, Zhang Q, Wang H, Zhang H, Li J, Peng Z, Tang Y, Shao M (2017) Defect-rich TiO2−δ nanocrystals confined in a mooncake-shaped porous carbon matrix as an advanced Na ion battery anode. J Power Sources 354:179–188CrossRef
46.
go back to reference Liu B, Zeng HC (2008) Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2. Chem Mater 20:2711–2718CrossRef Liu B, Zeng HC (2008) Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2. Chem Mater 20:2711–2718CrossRef
47.
go back to reference Jia X, Kan Y, Zhu X, Ning G, Lu Y, Wei F (2014) Building flexible Li4Ti5O12/CNT lithium-ion battery anodes with superior rate performance and ultralong cycling stability. Nano Energy 10:344–352CrossRef Jia X, Kan Y, Zhu X, Ning G, Lu Y, Wei F (2014) Building flexible Li4Ti5O12/CNT lithium-ion battery anodes with superior rate performance and ultralong cycling stability. Nano Energy 10:344–352CrossRef
48.
go back to reference Gao H, Hou F, Wan Z, Zhao S, Yang D, Liu J, Guo A, Gong Y (2015) One-step synthesis of continuous free-standing carbon nanotubes-titanium oxide composite films as anodes for lithium-ion batteries. Electrochim Acta 154:321–328CrossRef Gao H, Hou F, Wan Z, Zhao S, Yang D, Liu J, Guo A, Gong Y (2015) One-step synthesis of continuous free-standing carbon nanotubes-titanium oxide composite films as anodes for lithium-ion batteries. Electrochim Acta 154:321–328CrossRef
49.
go back to reference Wang B, Xin H, Li X, Cheng J, Yang G, Nie F (2014) Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Sci Rep 4:3729–3736CrossRef Wang B, Xin H, Li X, Cheng J, Yang G, Nie F (2014) Mesoporous CNT@TiO2-C nanocable with extremely durable high rate capability for lithium-ion battery anodes. Sci Rep 4:3729–3736CrossRef
50.
go back to reference Shoaib A, Huang Y, Liu J, Liu J, Xu M, Wang Z, Chen R, Zhang J, Wu F (2017) Ultrathin single-crystalline TiO2 nanosheets anchored on graphene to be hybrid network for high-rate and long cycle-life sodium battery electrode application. J Power Sources 342:405–413CrossRef Shoaib A, Huang Y, Liu J, Liu J, Xu M, Wang Z, Chen R, Zhang J, Wu F (2017) Ultrathin single-crystalline TiO2 nanosheets anchored on graphene to be hybrid network for high-rate and long cycle-life sodium battery electrode application. J Power Sources 342:405–413CrossRef
Metadata
Title
CNTs–C@TiO2 composites with 3D networks as anode material for lithium/sodium ion batteries
Authors
Jin Chen
Enqi Wang
Jiechen Mu
Bing Ai
Tiezhu Zhang
Wenqing Ge
Lipeng Zhang
Publication date
20-08-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 1/2019
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2814-2

Other articles of this Issue 1/2019

Journal of Materials Science 1/2019 Go to the issue

Premium Partners