Skip to main content
Top

2013 | OriginalPaper | Chapter

CO2 Capture Performance Using Limestone Modified with Propionate Acid During Calcium Looping Cycle

Authors : Sun Rongyue, Li Yingjie, Liu Hongling, Wu Shuimu, Lu Chunmei

Published in: Cleaner Combustion and Sustainable World

Publisher: Springer Berlin Heidelberg

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Limestone was modified with excessive propionate acid solution. The cyclic CO2 capture performance of the modified limestone during calcium looping cycle was investigated using a thermo-gravimetric analyzer (TGA) and a twin fixed-bed calcination/carbonation reactor system. The results obtained prove that the modified limestone can be an effective sorbent for CO2 capture at high temperature. The modified limestone exhibits obviously faster carbonation rate, and achieves higher carbonation conversion than the original one under the same reaction conditions. The optimum carbonation temperature for modified limestone is between 680 and 720°C. Higher calcination temperature can aggravate sintering of the sorbent during calcination periods. The modified limestone shows better anti-sintering properties than original one at high calcinations temperature. Long-term CO2 capture capacity of the sorbent is enhanced by modification using propionate acid, resulting in a carbonation conversion of 0.31 for modified limestone after 100 cycles, while the value for original limestone is only 0.08. The surface morphology of the modified limestone after the first calcination is much more porous and the pores are more connective than that of the original one. A much better pore structure is kept after 100 cycles for modified limestone. It indicates that modified limestone is much more sintering- resistant than original one during cyclic reactions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Notz R, Tonnies I, McCann N, Scheffknecht G, Hasse H. CO2 Capture for fossil fuel-fired power plants. Chem Eng Technol. 2011;34(2):163–72.CrossRef Notz R, Tonnies I, McCann N, Scheffknecht G, Hasse H. CO2 Capture for fossil fuel-fired power plants. Chem Eng Technol. 2011;34(2):163–72.CrossRef
3.
go back to reference Sheppard MC, Socolow RH. Sustaining fossil fuel use in a carbon-constrained world by rapid commercialization of carbon capture and sequestration. AICHE J. 2007;53(12):3022–8.CrossRef Sheppard MC, Socolow RH. Sustaining fossil fuel use in a carbon-constrained world by rapid commercialization of carbon capture and sequestration. AICHE J. 2007;53(12):3022–8.CrossRef
5.
go back to reference Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K. A twin fluid-Bed reactor for removal of CO2 from combustion processes. Chem Eng Res Des. 1999;77(A1):62–8.CrossRef Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K. A twin fluid-Bed reactor for removal of CO2 from combustion processes. Chem Eng Res Des. 1999;77(A1):62–8.CrossRef
6.
go back to reference Salvador C, Lu D, Anthony EJ, Abanades JC. Enhancement of CaO for CO2 capture in an FBC environment. Chem Eng J. 2003;96(1–3):187–95.CrossRef Salvador C, Lu D, Anthony EJ, Abanades JC. Enhancement of CaO for CO2 capture in an FBC environment. Chem Eng J. 2003;96(1–3):187–95.CrossRef
7.
go back to reference Abanades JC, Alvarez D. Conversion limits in the reaction of CO2 with lime. Energy Fuel. 2003;17(2):308–15.CrossRef Abanades JC, Alvarez D. Conversion limits in the reaction of CO2 with lime. Energy Fuel. 2003;17(2):308–15.CrossRef
8.
go back to reference Li YJ, Zhao CS, Duan LB, Liang C, Li QZ, Zhouo W, Chen HC. Cyclic calcination/carbonation looping of dolomite modified with acetic acid for CO2 capture. Fuel Proces Technol. 2008;89(12):1461–9.CrossRef Li YJ, Zhao CS, Duan LB, Liang C, Li QZ, Zhouo W, Chen HC. Cyclic calcination/carbonation looping of dolomite modified with acetic acid for CO2 capture. Fuel Proces Technol. 2008;89(12):1461–9.CrossRef
9.
go back to reference Hughes RW, Lu D, Anthony EJ, Wu YH. Improved long-term conversion of limestone-derived sorbents for in situ capture of CO2 in a fluidized bed combustor. Ind Eng Chem Res. 2004;43(18):5529–39.CrossRef Hughes RW, Lu D, Anthony EJ, Wu YH. Improved long-term conversion of limestone-derived sorbents for in situ capture of CO2 in a fluidized bed combustor. Ind Eng Chem Res. 2004;43(18):5529–39.CrossRef
10.
go back to reference Reddy EP, Smirniotis PG. High-temperature sorbents for CO2 made of alkali metals doped on CaO supports. J Phys Chem B. 2004;108(23):7794–800.CrossRef Reddy EP, Smirniotis PG. High-temperature sorbents for CO2 made of alkali metals doped on CaO supports. J Phys Chem B. 2004;108(23):7794–800.CrossRef
11.
go back to reference Li YJ, Zhao CS, Chen HC, Duan LB, Chen XP. Cyclic CO2 capture behavior of KMnO4-doped CaO-based sorbent. Fuel. 2010;89(3):642–9.CrossRef Li YJ, Zhao CS, Chen HC, Duan LB, Chen XP. Cyclic CO2 capture behavior of KMnO4-doped CaO-based sorbent. Fuel. 2010;89(3):642–9.CrossRef
12.
go back to reference Lu H, Reddy EP, Smirniotis PG. Calcium oxide based sorbents for capture of carbon dioxide at high temperatures. Ind Eng Chem Res. 2006;45(11):3944–9.CrossRef Lu H, Reddy EP, Smirniotis PG. Calcium oxide based sorbents for capture of carbon dioxide at high temperatures. Ind Eng Chem Res. 2006;45(11):3944–9.CrossRef
13.
go back to reference Liu WQ, Low NWL, Feng B, Wang GX, Costa JCDD. Calcium precursors for the production of CaO sorbents for multicycle CO2 capture. Environ Sci Technol. 2010;44(2):841–7.CrossRef Liu WQ, Low NWL, Feng B, Wang GX, Costa JCDD. Calcium precursors for the production of CaO sorbents for multicycle CO2 capture. Environ Sci Technol. 2010;44(2):841–7.CrossRef
14.
go back to reference Li YJ, Zhao CS, Chen HC, Liang C, Duan LB, Zhou W. Modified CaO-based sorbent looping cycle for CO2 mitigation. Fuel. 2009;88(4):697–704.CrossRef Li YJ, Zhao CS, Chen HC, Liang C, Duan LB, Zhou W. Modified CaO-based sorbent looping cycle for CO2 mitigation. Fuel. 2009;88(4):697–704.CrossRef
15.
go back to reference Patsias AA, Nimmo W, Gibbs BM, Williams PT. Calcium-based sorbents for simultaneous NOx/SOx reduction in a down-fired furnace. Fuel. 2005;84(14–15):1864–73.CrossRef Patsias AA, Nimmo W, Gibbs BM, Williams PT. Calcium-based sorbents for simultaneous NOx/SOx reduction in a down-fired furnace. Fuel. 2005;84(14–15):1864–73.CrossRef
16.
go back to reference Niu SL, Han KH, Lu CM. Release of sulfur dioxide and nitric oxide and characteristic of coal combustion under the effect of calcium based organic compounds. Chem Eng J. 2011;168(1):255–61.CrossRef Niu SL, Han KH, Lu CM. Release of sulfur dioxide and nitric oxide and characteristic of coal combustion under the effect of calcium based organic compounds. Chem Eng J. 2011;168(1):255–61.CrossRef
17.
go back to reference Li YJ, Zhao CS, Chen HC, Liu YK. Enhancement of Ca-based sorbent multicyclic behavior in Ca looping process for CO2 separation. Chem Eng Technol. 2009;32(4):548–55.CrossRef Li YJ, Zhao CS, Chen HC, Liu YK. Enhancement of Ca-based sorbent multicyclic behavior in Ca looping process for CO2 separation. Chem Eng Technol. 2009;32(4):548–55.CrossRef
18.
go back to reference Grasa GS, Abanades JC. CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Ind Eng Chem Res. 2006;45(26):8846–51.CrossRef Grasa GS, Abanades JC. CO2 capture capacity of CaO in long series of carbonation/calcination cycles. Ind Eng Chem Res. 2006;45(26):8846–51.CrossRef
19.
go back to reference Niu SL, Han KH, Lu CM. Kinetic calculations for the thermal decomposition of calcium propionate under non-isothermal conditions. Chin Sci Bull. 2010;55(3):1–7.CrossRef Niu SL, Han KH, Lu CM. Kinetic calculations for the thermal decomposition of calcium propionate under non-isothermal conditions. Chin Sci Bull. 2010;55(3):1–7.CrossRef
20.
go back to reference Sun P, Lim J, Grace JR. Cyclic CO2 capture by limestone-derived sorbent during prolonged calcination/carbonation cycling. AICHE J. 2008;54(6):1668–77.CrossRef Sun P, Lim J, Grace JR. Cyclic CO2 capture by limestone-derived sorbent during prolonged calcination/carbonation cycling. AICHE J. 2008;54(6):1668–77.CrossRef
21.
go back to reference Abanades JC, Anthony EJ, Lu DY, Salvador C, Alvares D. Capture of CO2 from combustion gases in a fluidized bed of CaO. AICHE J. 2004;50(7):1614–22.CrossRef Abanades JC, Anthony EJ, Lu DY, Salvador C, Alvares D. Capture of CO2 from combustion gases in a fluidized bed of CaO. AICHE J. 2004;50(7):1614–22.CrossRef
22.
go back to reference Chrissafis K, Paraskevopoulos KM. The effect of sintering on the maximum capture efficiency of CO2 using a carbonation/calcination cycle of carbonate rocks. J Therm Anal Calorim. 2005;81(2):463–8.CrossRef Chrissafis K, Paraskevopoulos KM. The effect of sintering on the maximum capture efficiency of CO2 using a carbonation/calcination cycle of carbonate rocks. J Therm Anal Calorim. 2005;81(2):463–8.CrossRef
Metadata
Title
CO2 Capture Performance Using Limestone Modified with Propionate Acid During Calcium Looping Cycle
Authors
Sun Rongyue
Li Yingjie
Liu Hongling
Wu Shuimu
Lu Chunmei
Copyright Year
2013
Publisher
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-30445-3_153