Skip to main content
Top
Published in: Journal of Materials Science 1/2015

01-01-2015 | Original Paper

CO2-facilitated transport performance of poly(ionic liquids) in supported liquid membranes

Authors: Xiangjun Sun, Meng Zhang, Ruiqian Guo, Jujie Luo, Jinping Li

Published in: Journal of Materials Science | Issue 1/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Six types of PILs were designed and synthesized by radical polymerization reaction and ion exchange reaction and the 1H NMR analysis and TG-MS analysis proved the successful procedure and their CO2 permeation properties were evaluated. 1-butyl 3-methylimidazole double trifluoromethane sulfonate ([bmim][Tf2N])-based facilitated transport membrane, with 10 wt% poly([ViEtIm] Tf2N), showed an excellent CO2 permeability of 920 Barrer, similar to that of the others investigated. PILs were distributed in the SILM using the “like dissolves like” theory to investigate the gas permeation separation performance before and after doping of the PILs in SILM. Owing to the reversible interaction between the CO2 molecules and electropositive PIL chains, this supported ionic liquid membrane selectively transfer CO2 more rapidly. The polymer chains play the role of mobile CO2 carrier in the SLM, and introduce facilitated transport mechanism. This concept may provide a means for fabricating a highly permeable and selective membrane to break through Robeson’s upper bound.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Li P, Pramoda KP, Chung TS (2011) CO2 separation from flue gas using polyvinyl-(room temperature ionic liquid)room temperature ionic liquid composite membranes. Ind Eng Chem Res 50:9344–9353CrossRef Li P, Pramoda KP, Chung TS (2011) CO2 separation from flue gas using polyvinyl-(room temperature ionic liquid)room temperature ionic liquid composite membranes. Ind Eng Chem Res 50:9344–9353CrossRef
2.
go back to reference Standing TH (2001) Climate change projections hinge on global CO2, temperature data. Oil Gas J 99:20–21 Standing TH (2001) Climate change projections hinge on global CO2, temperature data. Oil Gas J 99:20–21
3.
go back to reference Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20:14–27CrossRef Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20:14–27CrossRef
4.
go back to reference Yeo ZY, Chew TL, Zhu PW et al (2012) Conventional processes and membrane technology for carbon dioxide removal from natural gas: a review. J Nat Gas Chem 3:282–298CrossRef Yeo ZY, Chew TL, Zhu PW et al (2012) Conventional processes and membrane technology for carbon dioxide removal from natural gas: a review. J Nat Gas Chem 3:282–298CrossRef
5.
go back to reference Xiao YC, Low BT, Hosseini SS et al (2009) The strategy of molecular designand modification of polyimide-based membranes for CO2 removal from natural gas—a review. Prog Polym Sci 34:561–580CrossRef Xiao YC, Low BT, Hosseini SS et al (2009) The strategy of molecular designand modification of polyimide-based membranes for CO2 removal from natural gas—a review. Prog Polym Sci 34:561–580CrossRef
6.
go back to reference Drioli E, Brunetti A, Di Profio G et al (2012) Process intensification strategies and membrane engineering. Green Chem 14:1561–1572CrossRef Drioli E, Brunetti A, Di Profio G et al (2012) Process intensification strategies and membrane engineering. Green Chem 14:1561–1572CrossRef
7.
go back to reference Shao L, Low BT, Chung TS et al (2009) Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future. J Membr Sci 327:18–31CrossRef Shao L, Low BT, Chung TS et al (2009) Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future. J Membr Sci 327:18–31CrossRef
8.
go back to reference Scholes CA, Smith KH, Kentish SE, Stevens GW (2010) CO2 capture from pre-combustion processes—strategies for membrane gas separation. Int J Greenhouse Gas Control 4:739–755CrossRef Scholes CA, Smith KH, Kentish SE, Stevens GW (2010) CO2 capture from pre-combustion processes—strategies for membrane gas separation. Int J Greenhouse Gas Control 4:739–755CrossRef
9.
go back to reference Plasynski SI, Chen Z (2000) Review of CO2 capture technologies and some improvement opportunities. ACS Div Fuel Chem Prepr 45:644–649 Plasynski SI, Chen Z (2000) Review of CO2 capture technologies and some improvement opportunities. ACS Div Fuel Chem Prepr 45:644–649
10.
go back to reference Stern SA (1994) Polymers for gas separations: the next decade. J Membr Sci 94:1–65CrossRef Stern SA (1994) Polymers for gas separations: the next decade. J Membr Sci 94:1–65CrossRef
11.
go back to reference Fortunato R, Afonso CAM, Reis MAM, Crespo JG (2004) Supported liquid membranes using ionic liquid: study of stability and transport mechanisms. J Membr Sci 242:197–209CrossRef Fortunato R, Afonso CAM, Reis MAM, Crespo JG (2004) Supported liquid membranes using ionic liquid: study of stability and transport mechanisms. J Membr Sci 242:197–209CrossRef
12.
go back to reference Iiconich J, Myers C, Pennline H, Luebke D (2007) Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125°C. J Membr Sci 298:41–47CrossRef Iiconich J, Myers C, Pennline H, Luebke D (2007) Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125°C. J Membr Sci 298:41–47CrossRef
13.
go back to reference Ferguson L, Scovazzo P (2007) Solubility, diffusivity, and permeability of gases in phosphonium-based room temperature ionic liquids: data and correlations. Ind Eng Chem Res 46:1369–1374CrossRef Ferguson L, Scovazzo P (2007) Solubility, diffusivity, and permeability of gases in phosphonium-based room temperature ionic liquids: data and correlations. Ind Eng Chem Res 46:1369–1374CrossRef
14.
go back to reference Yokozeki A, Shiflett MB (2007) Hydrogen purification using room-temperature ionic liquids. Appl Energy 84:351–361CrossRef Yokozeki A, Shiflett MB (2007) Hydrogen purification using room-temperature ionic liquids. Appl Energy 84:351–361CrossRef
15.
go back to reference Scovazzo P, Kieft J, Finan DA, Koval C, DuBois D, Noble RD (2004) Gas separation using non-hexafluorophosphate [PF6] anion supported ionic liquid membranes. J Membr Sci 238:57–63CrossRef Scovazzo P, Kieft J, Finan DA, Koval C, DuBois D, Noble RD (2004) Gas separation using non-hexafluorophosphate [PF6] anion supported ionic liquid membranes. J Membr Sci 238:57–63CrossRef
16.
go back to reference Scovazzo P, Havard D, McShea M, Mixon S, Morgan D (2009) Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes. J Membr Sci 327:41–48CrossRef Scovazzo P, Havard D, McShea M, Mixon S, Morgan D (2009) Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes. J Membr Sci 327:41–48CrossRef
17.
go back to reference Bara JE, Gabrel CJ, Carlisle TK, Camper DE, Finotello A, Gin DL, Noble RD (2009) Gas separation in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes. Chem Eng J 47:43–50CrossRef Bara JE, Gabrel CJ, Carlisle TK, Camper DE, Finotello A, Gin DL, Noble RD (2009) Gas separation in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes. Chem Eng J 47:43–50CrossRef
18.
go back to reference Hu X, Tang J, Blasig A, Shen Y, Radosz M (2006) CO2 permeability, diffusivity and solubility in polyethylene glycol-grafted polyionic membranes and their CO2 selectivity relative to methane and nitrogen. J Membr Sci 281:130–138CrossRef Hu X, Tang J, Blasig A, Shen Y, Radosz M (2006) CO2 permeability, diffusivity and solubility in polyethylene glycol-grafted polyionic membranes and their CO2 selectivity relative to methane and nitrogen. J Membr Sci 281:130–138CrossRef
19.
go back to reference Bara JE, Lessmann S, Gabriel CJ, Hatakeyama ES, Noble RD, Gin DL (2007) Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes. Ind Eng Chem Res 46:5397–5404CrossRef Bara JE, Lessmann S, Gabriel CJ, Hatakeyama ES, Noble RD, Gin DL (2007) Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes. Ind Eng Chem Res 46:5397–5404CrossRef
20.
go back to reference Bara JE, Gabriel CJ, Hatakeyama ES, Carlisle TK, Lessmann S, Noble RD, Gin DL (2008) Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents. J Membr Sci 321:3–7CrossRef Bara JE, Gabriel CJ, Hatakeyama ES, Carlisle TK, Lessmann S, Noble RD, Gin DL (2008) Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents. J Membr Sci 321:3–7CrossRef
21.
go back to reference Min GH, Yim T, Lee HY (2006) Synthesis and properties of ionic liquids: imidazolium tetrafluoroborates with unsaturated side chains. Bull Korean Chem Soc 27:847–852CrossRef Min GH, Yim T, Lee HY (2006) Synthesis and properties of ionic liquids: imidazolium tetrafluoroborates with unsaturated side chains. Bull Korean Chem Soc 27:847–852CrossRef
22.
go back to reference Placido GM, Letizia L, Sandra LS et al (2012) Fast and reversible CO2 quartz crystal microbalance response of vinylimidazolium based poly(ionic liquid)s. Polym Adv Technol 23:1511–1519CrossRef Placido GM, Letizia L, Sandra LS et al (2012) Fast and reversible CO2 quartz crystal microbalance response of vinylimidazolium based poly(ionic liquid)s. Polym Adv Technol 23:1511–1519CrossRef
23.
go back to reference Iz´ak P, Ruth W, Fei Z et al (2008) Selective removal of acetone and butan-1-ol from water with supported ionic liquid–polydimethylsiloxane membrane by pervaporation. Chem Eng J 139:318–321CrossRef Iz´ak P, Ruth W, Fei Z et al (2008) Selective removal of acetone and butan-1-ol from water with supported ionic liquid–polydimethylsiloxane membrane by pervaporation. Chem Eng J 139:318–321CrossRef
24.
go back to reference Yuan S, Deng Q, Fang G et al (2012) A novel ionic liquid polymer material with high binding capacity for proteins. J Mater Chem 22:3965–3972CrossRef Yuan S, Deng Q, Fang G et al (2012) A novel ionic liquid polymer material with high binding capacity for proteins. J Mater Chem 22:3965–3972CrossRef
25.
go back to reference Bara JE, Hatakeyama ES, Gin DL, Noble RD (2008) Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid. Polym Adv Technol 19:1415–1420CrossRef Bara JE, Hatakeyama ES, Gin DL, Noble RD (2008) Improving CO2 permeability in polymerized room-temperature ionic liquid gas separation membranes through the formation of a solid composite with a room-temperature ionic liquid. Polym Adv Technol 19:1415–1420CrossRef
26.
go back to reference Bara JE, Noble RD, Gin DL (2009) Effect of “Free” cation substituent on gas separation performance of polymer-room-temperature ionic liquid composite membranes. Ind Eng Chem Res 48:4607–4610CrossRef Bara JE, Noble RD, Gin DL (2009) Effect of “Free” cation substituent on gas separation performance of polymer-room-temperature ionic liquid composite membranes. Ind Eng Chem Res 48:4607–4610CrossRef
27.
go back to reference Bara JE, Camper DE, Gin DL, Noble RD (2010) Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Acc Chem Res 43:152–159CrossRef Bara JE, Camper DE, Gin DL, Noble RD (2010) Room-temperature ionic liquids and composite materials: platform technologies for CO2 capture. Acc Chem Res 43:152–159CrossRef
28.
go back to reference Lee JH, Hong J, Kim JH, Kang YS, Kang SW (2012) Facilitated CO2 transport membranes utilizing positively polarized copper nanoparticles. Chem Commun 48:5298–5300CrossRef Lee JH, Hong J, Kim JH, Kang YS, Kang SW (2012) Facilitated CO2 transport membranes utilizing positively polarized copper nanoparticles. Chem Commun 48:5298–5300CrossRef
29.
go back to reference Hudiono YC, Carlisle TK, LaFrate AL, Gin DL, Noble RD (2011) Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation. J Membr Sci 370:141–148CrossRef Hudiono YC, Carlisle TK, LaFrate AL, Gin DL, Noble RD (2011) Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation. J Membr Sci 370:141–148CrossRef
30.
go back to reference Sun X, Zhang M, Luo J, Li J (2014) Constructing CO2-facilitated transport highway in supported ionic liquid membranes. Funct Mater Lett 7:1450012CrossRef Sun X, Zhang M, Luo J, Li J (2014) Constructing CO2-facilitated transport highway in supported ionic liquid membranes. Funct Mater Lett 7:1450012CrossRef
31.
go back to reference Tang J, Tang H, Sun W, Plancher H, Radosz M, Shen Y (2005) Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. Chem Commun 3325–3327 Tang J, Tang H, Sun W, Plancher H, Radosz M, Shen Y (2005) Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. Chem Commun 3325–3327
32.
go back to reference Tang J, Sun W, Tang H, Radosz M, Shen Y (2005) Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 38:2037–2039CrossRef Tang J, Sun W, Tang H, Radosz M, Shen Y (2005) Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 38:2037–2039CrossRef
33.
go back to reference Blasig A, Tang J, Hu X, Tan S, Shen Y, Radosz M (2007) Carbon dioxide solubility in polymerized ionic liquids containing ammonium and imidazolium cations from magnetic suspension balance: P[VBTMA][BF4] and P[VBMI][BF4]. Ind Eng Chem Res 46:5542–5547CrossRef Blasig A, Tang J, Hu X, Tan S, Shen Y, Radosz M (2007) Carbon dioxide solubility in polymerized ionic liquids containing ammonium and imidazolium cations from magnetic suspension balance: P[VBTMA][BF4] and P[VBMI][BF4]. Ind Eng Chem Res 46:5542–5547CrossRef
34.
go back to reference Blasig A, Tang J, Hu X (2007) Magnetic suspension balance study of carbon dioxide solubility in ammonium-based polymerized ionic liquids: poly(p-vinyl-benzyltrimethyl ammonium tetrafluoroborate) and poly([2-(methacryl oyloxy)ethyl] trimethyl ammonium tetrafluoroborate). Fluid Phase Equilib 256:75–80CrossRef Blasig A, Tang J, Hu X (2007) Magnetic suspension balance study of carbon dioxide solubility in ammonium-based polymerized ionic liquids: poly(p-vinyl-benzyltrimethyl ammonium tetrafluoroborate) and poly([2-(methacryl oyloxy)ethyl] trimethyl ammonium tetrafluoroborate). Fluid Phase Equilib 256:75–80CrossRef
35.
go back to reference Marcilia R, Blazquez JA, Rodriguez J (2004) Tuning the solubility of polymerized ionic liquids by simple anion-exchange reactions. J Polym Sci Pol Chem 42:208–212CrossRef Marcilia R, Blazquez JA, Rodriguez J (2004) Tuning the solubility of polymerized ionic liquids by simple anion-exchange reactions. J Polym Sci Pol Chem 42:208–212CrossRef
36.
go back to reference Jiang YY, Zhou Z, Jiao Z, Li L, Wu YT, Zhang ZB (2007) SO2 gas separation using supported ionic liquid membranes. J Phys Chem B 111:5058–5061CrossRef Jiang YY, Zhou Z, Jiao Z, Li L, Wu YT, Zhang ZB (2007) SO2 gas separation using supported ionic liquid membranes. J Phys Chem B 111:5058–5061CrossRef
37.
go back to reference Kasahara S, Kamio E, Ishigami T, Matsuyama H (2012) Amino acid ionic liquid-based facilitated transport membranes for CO2 separation. Chem Commun 48:6903CrossRef Kasahara S, Kamio E, Ishigami T, Matsuyama H (2012) Amino acid ionic liquid-based facilitated transport membranes for CO2 separation. Chem Commun 48:6903CrossRef
38.
go back to reference Kasahara S, Kamio E, Ishigami T, Matsuyama H (2012) Effect of water in ionic liquids on CO2 permeability in amino acid ionic liquid-based facilitated transport membranes. J Membr Sci 415–416:168–175CrossRef Kasahara S, Kamio E, Ishigami T, Matsuyama H (2012) Effect of water in ionic liquids on CO2 permeability in amino acid ionic liquid-based facilitated transport membranes. J Membr Sci 415–416:168–175CrossRef
Metadata
Title
CO2-facilitated transport performance of poly(ionic liquids) in supported liquid membranes
Authors
Xiangjun Sun
Meng Zhang
Ruiqian Guo
Jujie Luo
Jinping Li
Publication date
01-01-2015
Publisher
Springer US
Published in
Journal of Materials Science / Issue 1/2015
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8570-z

Other articles of this Issue 1/2015

Journal of Materials Science 1/2015 Go to the issue

Premium Partners