Skip to main content
Top
Published in: Autonomous Agents and Multi-Agent Systems 3/2017

22-03-2016

Collaborative privacy preserving multi-agent planning

Planners and heuristics

Published in: Autonomous Agents and Multi-Agent Systems | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In many cases several entities, such as commercial companies, need to work together towards the achievement of joint goals, while hiding certain private information. To collaborate effectively, some sort of plan is needed to coordinate the different entities. We address the problem of automatically generating such a coordination plan while preserving the agents’ privacy. Maintaining privacy is challenging when planning for multiple agents, especially when tight collaboration is needed and a global high-level view of the plan is required. In this work we present the Greedy Privacy-Preserving Planner (GPPP), a privacy preserving planning algorithm in which the agents collaboratively generate an abstract and approximate global coordination plan and then individually extend the global plan to executable plans. To guide GPPP, we propose two domain independent privacy preserving heuristics based on landmarks and pattern databases, which are classical heuristics for single agent search. These heuristics, called privacy-preserving landmarks and privacy preserving PDBs, are agnostic to the planning algorithm and can be used by other privacy-preserving planning algorithms. Empirically, we demonstrate on benchmark domains the benefits of using these heuristics and the advantage of GPPP over existing privacy preserving planners for the multi-agent STRIPS formalism.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
The exact details of this relaxed problem are more involved, and are explained later in the paper.
 
2
When computing the achievers of p, only actions that can be performed before obtaining p are considered. This is usually estimated using delete relaxation [39].
 
3
We also experimented with using the A* [23] algorithm to find optimal plans for the PDB. Experimentally, we did not observe a substantial difference between the performance of the two algorithms for solving these simple single fact problems.
 
5
In the results in the previous tables, the averages were over a subset of these instances, as other planning algorithm/heuristic configurations did not solve all problem instances under the time limit.
 
Literature
1.
go back to reference Albore, A., Palacios, H., & Geffner, H. (2009). A translation-based approach to contingent planning. In IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, CA, USA, July 11-17, 2009 (pp. 1623–1628). Albore, A., Palacios, H., & Geffner, H. (2009). A translation-based approach to contingent planning. In IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, CA, USA, July 11-17, 2009 (pp. 1623–1628).
2.
go back to reference Alcázar, V., Borrajo, D., Fernández, S., & Fuentetaja, R. (2013). Revisiting regression in planning. In International Joint Conference on Artificial Intelligence (IJCAI) (pp. 2254–2260). Alcázar, V., Borrajo, D., Fernández, S., & Fuentetaja, R. (2013). Revisiting regression in planning. In International Joint Conference on Artificial Intelligence (IJCAI) (pp. 2254–2260).
3.
go back to reference Bäckström, C. (1998). Computational aspects of reordering plans. Journal of Artificial Intelligence Research (JAIR), 9(1), 99–137.MathSciNetMATH Bäckström, C. (1998). Computational aspects of reordering plans. Journal of Artificial Intelligence Research (JAIR), 9(1), 99–137.MathSciNetMATH
4.
go back to reference Bernstein, D. S., Givan, R., Zilberstein, S., & Immerman, N. (2002). The complexity of decentralized control of Markov decision processes. Mathematics of Operations Research, 27, 819–840.MathSciNetCrossRefMATH Bernstein, D. S., Givan, R., Zilberstein, S., & Immerman, N. (2002). The complexity of decentralized control of Markov decision processes. Mathematics of Operations Research, 27, 819–840.MathSciNetCrossRefMATH
6.
go back to reference Boutilier, C. (1996). Planning, learning and coordination in multiagent decision processes. In the conference on Theoretical aspects of rationality and knowledge (pp. 195–210). Boutilier, C. (1996). Planning, learning and coordination in multiagent decision processes. In the conference on Theoretical aspects of rationality and knowledge (pp. 195–210).
7.
go back to reference Boutilier, C., & Brafman, R. I. (2001). Partial-order planning with concurrent interacting actions. Journal of Artificial Intelligence Research, 14, 105–136.MATH Boutilier, C., & Brafman, R. I. (2001). Partial-order planning with concurrent interacting actions. Journal of Artificial Intelligence Research, 14, 105–136.MATH
8.
go back to reference Bratman, M. (1987). Intention, plans, and practical reason. Bratman, M. (1987). Intention, plans, and practical reason.
9.
go back to reference Brafman, R. I. (2015). A privacy preserving algorithm for multi-agent planning and search. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015 (pp. 1530–1536). Brafman, R. I. (2015). A privacy preserving algorithm for multi-agent planning and search. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015 (pp. 1530–1536).
10.
go back to reference Brafman, R. I., & Domshlak, C. (2008). From one to many: Planning for loosely coupled multi-agent systems. In ICAPS (pp. 28–35). Brafman, R. I., & Domshlak, C. (2008). From one to many: Planning for loosely coupled multi-agent systems. In ICAPS (pp. 28–35).
11.
go back to reference Brafman, R. I., & Domshlak, C. (2013). On the complexity of planning for agent teams and its implications for single agent planning. Artificial Intelligence, 198, 52–71.MathSciNetCrossRefMATH Brafman, R. I., & Domshlak, C. (2013). On the complexity of planning for agent teams and its implications for single agent planning. Artificial Intelligence, 198, 52–71.MathSciNetCrossRefMATH
12.
go back to reference Brafman, R. I., Shani, G., & Zilberstein, S. (2013). Qualitative planning under partial observability in multi-agent domains. In Proceedings of the Conference on Artificial Intelligence (AAAI), Bellevue, WA, USA, July 14–18, 2013 (pp. 130–137). Brafman, R. I., Shani, G., & Zilberstein, S. (2013). Qualitative planning under partial observability in multi-agent domains. In Proceedings of the Conference on Artificial Intelligence (AAAI), Bellevue, WA, USA, July 14–18, 2013 (pp. 130–137).
13.
go back to reference Crosby, M., & Petrick, R.P. (2014). Temporal multiagent planning with concurrent action constraints. In ICAPS workshop on Distributed and Multi-Agent Planning (DMAP). Crosby, M., & Petrick, R.P. (2014). Temporal multiagent planning with concurrent action constraints. In ICAPS workshop on Distributed and Multi-Agent Planning (DMAP).
14.
go back to reference Crosby, M., Jonsson, A., & Rovatsos, M. (2014). A single-agent approach to multiagent planning. European Conference on Artificial Intelligence (ECAI), 263, 237. Crosby, M., Jonsson, A., & Rovatsos, M. (2014). A single-agent approach to multiagent planning. European Conference on Artificial Intelligence (ECAI), 263, 237.
15.
16.
go back to reference Edelkamp, S. (2001). Planning with pattern databases. In the European Conference on Planning (ECP) (pp. 13–34). Edelkamp, S. (2001). Planning with pattern databases. In the European Conference on Planning (ECP) (pp. 13–34).
17.
go back to reference Felner, A., Korf, R. E., & Hanan, S. (2004). Additive pattern database heuristics. Journal of Artificial Intelligence Research (JAIR), 22, 279–318.MathSciNetMATH Felner, A., Korf, R. E., & Hanan, S. (2004). Additive pattern database heuristics. Journal of Artificial Intelligence Research (JAIR), 22, 279–318.MathSciNetMATH
18.
go back to reference Georgeff, M., Pell, B., Pollack, M., Tambe, M., & Wooldridge, M. (1999). The belief-desire-intention model of agency. In Intelligent Agents V: Agents Theories, Architectures, and Languages (pp. 1–10). Berlin: Springer. Georgeff, M., Pell, B., Pollack, M., Tambe, M., & Wooldridge, M. (1999). The belief-desire-intention model of agency. In Intelligent Agents V: Agents Theories, Architectures, and Languages (pp. 1–10). Berlin: Springer.
19.
go back to reference Greenstadt, R., Grosz, B. J., & Smith, M. D. (2007). SSDPOP: Improving the privacy of DCOP with secret sharing. In AAMAS. Greenstadt, R., Grosz, B. J., & Smith, M. D. (2007). SSDPOP: Improving the privacy of DCOP with secret sharing. In AAMAS.
20.
go back to reference Grinshpoun, T., & Tassa, T. (2014). A privacy-preserving algorithm for distributed constraint optimization. In International Conference on Autonomous Agents and Multi-agent Systems (AAMAS) (pp. 909–916). Grinshpoun, T., & Tassa, T. (2014). A privacy-preserving algorithm for distributed constraint optimization. In International Conference on Autonomous Agents and Multi-agent Systems (AAMAS) (pp. 909–916).
21.
go back to reference Grinshpoun, T., Grubshtein, A., Zivan, R., Netzer, A., & Meisels, A. (2013). Asymmetric distributed constraint optimization problems. Journal of Artificial Intelligence Research, 47, 613–647.MathSciNetMATH Grinshpoun, T., Grubshtein, A., Zivan, R., Netzer, A., & Meisels, A. (2013). Asymmetric distributed constraint optimization problems. Journal of Artificial Intelligence Research, 47, 613–647.MathSciNetMATH
22.
go back to reference Grosz, B., & Kraus, S. (1996). Collaborative plans for complex group action. Artificial Intelligence, 86(2), 269–357.MathSciNetCrossRef Grosz, B., & Kraus, S. (1996). Collaborative plans for complex group action. Artificial Intelligence, 86(2), 269–357.MathSciNetCrossRef
23.
go back to reference Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.CrossRef Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100–107.CrossRef
24.
go back to reference Helmert, M., & Geffner, H. (2008). Unifying the causal graph and additive heuristics. In ICAPS (pp. 140–147). Helmert, M., & Geffner, H. (2008). Unifying the causal graph and additive heuristics. In ICAPS (pp. 140–147).
25.
go back to reference Helmert, M., Haslum, P., Hoffmann, J., & Nissim, R. (2014). Merge-and-shrink abstraction: A method for generating lower bounds in factored state spaces. Journal of the Alternative and Complementary Medicine, 61(3), 16.MathSciNetMATH Helmert, M., Haslum, P., Hoffmann, J., & Nissim, R. (2014). Merge-and-shrink abstraction: A method for generating lower bounds in factored state spaces. Journal of the Alternative and Complementary Medicine, 61(3), 16.MathSciNetMATH
26.
go back to reference Hoffmann, J. (2001). FF: The fast-forward planning system. AI Magazine, 22(3), 57. Hoffmann, J. (2001). FF: The fast-forward planning system. AI Magazine, 22(3), 57.
27.
go back to reference Hoffmann, J. (2005). Where ’ignoring delete lists’ works: Local search topology in planning benchmarks. Journal of Artificial Intelligence Research, 24, 685–758.MATH Hoffmann, J. (2005). Where ’ignoring delete lists’ works: Local search topology in planning benchmarks. Journal of Artificial Intelligence Research, 24, 685–758.MATH
28.
go back to reference Hoffmann, J., Porteous, J., & Sebastia, L. (2004). Ordered landmarks in planning. Journal of Artificial Intelligence Research (JAIR), 22, 215–278.MathSciNetMATH Hoffmann, J., Porteous, J., & Sebastia, L. (2004). Ordered landmarks in planning. Journal of Artificial Intelligence Research (JAIR), 22, 215–278.MathSciNetMATH
29.
go back to reference Jakubuv, J., Tozicka, J., & Komenda, A. (2015). Multiagent planning by plan set intersection and plan verification. ICAART 15. Jakubuv, J., Tozicka, J., & Komenda, A. (2015). Multiagent planning by plan set intersection and plan verification. ICAART 15.
30.
go back to reference Karpas, E., & Domshlak, C. (2009). Cost-optimal planning with landmarks. In IJCAI (pp. 1728–1733). Karpas, E., & Domshlak, C. (2009). Cost-optimal planning with landmarks. In IJCAI (pp. 1728–1733).
31.
go back to reference Kovacs, D. L. (2012). A multi-agent extension of pddl3.1. In Workshop on the International Planning Competition (IPC) in the International Conference on Automated Planning and Scheduling (ICAPS) (pp. 19–27). Kovacs, D. L. (2012). A multi-agent extension of pddl3.1. In Workshop on the International Planning Competition (IPC) in the International Conference on Automated Planning and Scheduling (ICAPS) (pp. 19–27).
33.
go back to reference Luis, N., & Borrajo, D. (2014). Plan merging by reuse for multi-agent planning. In ICAPS workshop on Distributed and Multi-Agent Planning (DMAP). Luis, N., & Borrajo, D. (2014). Plan merging by reuse for multi-agent planning. In ICAPS workshop on Distributed and Multi-Agent Planning (DMAP).
34.
go back to reference Maliah, S., Shani, G., & Stern, R. (2014). Privacy preserving landmark detection. In the European Conference on Artificial Intelligence (ECAI) (pp. 597–602). Maliah, S., Shani, G., & Stern, R. (2014). Privacy preserving landmark detection. In the European Conference on Artificial Intelligence (ECAI) (pp. 597–602).
35.
go back to reference Nissim, R., & Brafman, R. I. (2014). Distributed heuristic forward search for multi-agent planning. Journal of Artificial Intelligence Research (JAIR), 51, 293–332.MathSciNetMATH Nissim, R., & Brafman, R. I. (2014). Distributed heuristic forward search for multi-agent planning. Journal of Artificial Intelligence Research (JAIR), 51, 293–332.MathSciNetMATH
36.
go back to reference Nissim, R., Brafman, R. I., & Domshlak, C. (2010). A general, fully distributed multi-agent planning algorithm. In International Conference on Autonomous Agents and Multiagent Systems (AAMAS) (pp. 1323–1330). Nissim, R., Brafman, R. I., & Domshlak, C. (2010). A general, fully distributed multi-agent planning algorithm. In International Conference on Autonomous Agents and Multiagent Systems (AAMAS) (pp. 1323–1330).
37.
go back to reference Pommerening, F., Röger, G., & Helmert, M. (2013). Getting the most out of pattern databases for classical planning. In the International Joint Conference on Artificial Intelligence, IJCAI (pp. 2357–2364). Pommerening, F., Röger, G., & Helmert, M. (2013). Getting the most out of pattern databases for classical planning. In the International Joint Conference on Artificial Intelligence, IJCAI (pp. 2357–2364).
38.
go back to reference Pynadath, D. V., & Tambe, M. (2002). The communicative multiagent team decision problem: Analyzing teamwork theories and models. Journal of Artificial Intelligence Research, 16(1), 389–423.MathSciNetMATH Pynadath, D. V., & Tambe, M. (2002). The communicative multiagent team decision problem: Analyzing teamwork theories and models. Journal of Artificial Intelligence Research, 16(1), 389–423.MathSciNetMATH
39.
go back to reference Richter, S., & Westphal, M. (2010). The LAMA planner: Guiding cost-based anytime planning with landmarks. Journal of Artificial Intelligence Research (JAIR), 39(1), 127–177.MATH Richter, S., & Westphal, M. (2010). The LAMA planner: Guiding cost-based anytime planning with landmarks. Journal of Artificial Intelligence Research (JAIR), 39(1), 127–177.MATH
40.
go back to reference Richter, S., Helmert, M., & Westphal, M. (2008). Landmarks revisited. Association for the Advancement of Artificial Intelligence, 8, 975–982. Richter, S., Helmert, M., & Westphal, M. (2008). Landmarks revisited. Association for the Advancement of Artificial Intelligence, 8, 975–982.
41.
go back to reference Röger, G., & Helmert, M. (2010). The more, the merrier: Combining heuristic estimators for satisficing planning. In ICAPS (pp. 246–249). Röger, G., & Helmert, M. (2010). The more, the merrier: Combining heuristic estimators for satisficing planning. In ICAPS (pp. 246–249).
42.
go back to reference Sondik, E. J. (1971). The optimal control of partially observable markov processes. Ph.D. Thesis, Stanford University, United States, California. Sondik, E. J. (1971). The optimal control of partially observable markov processes. Ph.D. Thesis, Stanford University, United States, California.
43.
go back to reference Štolba, M., & Komenda, A. (2014). Relaxation heuristics for multiagent planning. In International Conference on Automated Planning and Scheduling (ICAPS). Štolba, M., & Komenda, A. (2014). Relaxation heuristics for multiagent planning. In International Conference on Automated Planning and Scheduling (ICAPS).
44.
go back to reference Štolba, M., Fišer, D., & Komenda, A. (2015). Admissible landmark heuristic for multi-agent planning. In International Conference on Automated Planning and Scheduling (ICAPS). Štolba, M., Fišer, D., & Komenda, A. (2015). Admissible landmark heuristic for multi-agent planning. In International Conference on Automated Planning and Scheduling (ICAPS).
45.
go back to reference Štolba, M., Komenda, A., & Kovacs, D.L. (2015). Competition of distributed and multiagent planners (codmap). The International Planning Competition (WIPC-15) (p. 24). Štolba, M., Komenda, A., & Kovacs, D.L. (2015). Competition of distributed and multiagent planners (codmap). The International Planning Competition (WIPC-15) (p. 24).
46.
go back to reference Torreño, A., Onaindia, E., & Sapena, O. (2014). A flexible coupling approach to multi-agent planning under incomplete information. Knowledge and Information Systems, 38(1), 141–178.CrossRef Torreño, A., Onaindia, E., & Sapena, O. (2014). A flexible coupling approach to multi-agent planning under incomplete information. Knowledge and Information Systems, 38(1), 141–178.CrossRef
47.
go back to reference Torreño, A., Onaindia, E., & Sapena, Ó. (2014). Fmap: Distributed cooperative multi-agent planning. Applied Intelligence, 41, 1–21.CrossRef Torreño, A., Onaindia, E., & Sapena, Ó. (2014). Fmap: Distributed cooperative multi-agent planning. Applied Intelligence, 41, 1–21.CrossRef
48.
go back to reference Torreno, A., Sapena, O., & Onaindia, E. (2015). Global heuristics for distributed cooperative multi-agent planning. In International Conference on Automated Planning and Scheduling (ICAPS). Torreno, A., Sapena, O., & Onaindia, E. (2015). Global heuristics for distributed cooperative multi-agent planning. In International Conference on Automated Planning and Scheduling (ICAPS).
49.
go back to reference Tozicka, J., Jakubuv, J., & Komenda, A. (2014). Generating multi-agent plans by distributed intersection of finite state machines. In ECAI (pp. 1111–1112). Tozicka, J., Jakubuv, J., & Komenda, A. (2014). Generating multi-agent plans by distributed intersection of finite state machines. In ECAI (pp. 1111–1112).
50.
go back to reference Valenzano, R. A., Sturtevant, N. R., Schaeffer, J., Buro, K., & Kishimoto, A. (2010). Simultaneously searching with multiple settings: An alternative to parameter tuning for suboptimal single-agent search algorithms. In ICAPS (pp. 177–184). Valenzano, R. A., Sturtevant, N. R., Schaeffer, J., Buro, K., & Kishimoto, A. (2010). Simultaneously searching with multiple settings: An alternative to parameter tuning for suboptimal single-agent search algorithms. In ICAPS (pp. 177–184).
51.
go back to reference Yeoh, W., Felner, A., & Koenig, S. (2010). Bnb-adopt: An asynchronous branch-and-bound dcop algorithm. Journal of Artificial Intelligence Research, 38, 85–133.MATH Yeoh, W., Felner, A., & Koenig, S. (2010). Bnb-adopt: An asynchronous branch-and-bound dcop algorithm. Journal of Artificial Intelligence Research, 38, 85–133.MATH
Metadata
Title
Collaborative privacy preserving multi-agent planning
Planners and heuristics
Publication date
22-03-2016
Published in
Autonomous Agents and Multi-Agent Systems / Issue 3/2017
Print ISSN: 1387-2532
Electronic ISSN: 1573-7454
DOI
https://doi.org/10.1007/s10458-016-9333-9

Other articles of this Issue 3/2017

Autonomous Agents and Multi-Agent Systems 3/2017 Go to the issue

Premium Partner