Skip to main content
Top
Published in: Optical and Quantum Electronics 3/2017

01-03-2017

Combination of binary particle swarm optimization algorithm and discrete dipole approximation method to investigate the plasmonic circuit-based coherent perfect absorption filter

Authors: Mehdi Mohamadrezaee, Mehdi Shirali, Majid Akhlaghi, Milad Kaboli

Published in: Optical and Quantum Electronics | Issue 3/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Here, we suggest the possibility of optical circuit design approach by employing the binary optimization of plasmonic nano rods. The proposed mechanism is based on combination of binary particle swarm optimization (BPSO) algorithm and discrete dipole approximation method. BPSO, a group of birds including a matrix with binary entries responsible for controlling nano rods in the array, shows the presence with symbol of (‘1’) and the absence with (‘0’). The current research represents a nanoscale and compact four channels plasmonic Demultiplexer as optical circuit. It includes eight coherent perfect absorption (CPA)—type filters. The operation principle is based on the absorbable formation of a conductive path in the dielectric layer of a plasmonic nano-rods waveguide. Since the CPA efficiency depends strongly on the number of plasmonic nano-rods and the nano rods location, an efficient binary optimization method based the BPSO algorithm is used to design an optimized array of the plasmonic nano-rod in order to achieve the maximum absorption coefficient in the ‘off’ state.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Aeschlimann, M., et al.: Adaptive subwavelength control of nano-optical fields. Nature 446(7133), 301–304 (2007)ADSCrossRef Aeschlimann, M., et al.: Adaptive subwavelength control of nano-optical fields. Nature 446(7133), 301–304 (2007)ADSCrossRef
go back to reference Aeschlimann, M., et al.: Spatiotemporal control of nanooptical excitations. Proc. Natl. Acad. Sci. 107(12), 5329–5333 (2010)ADSCrossRef Aeschlimann, M., et al.: Spatiotemporal control of nanooptical excitations. Proc. Natl. Acad. Sci. 107(12), 5329–5333 (2010)ADSCrossRef
go back to reference Akhlaghi, M., Emami, F.: Fuzzy Adaptive Modified PSO-Algorithm Assisted to Design of Photonic Crystal Fiber Raman Amplifier. J. Opt. Soc. Korea 17, 237–241 (2013)CrossRef Akhlaghi, M., Emami, F.: Fuzzy Adaptive Modified PSO-Algorithm Assisted to Design of Photonic Crystal Fiber Raman Amplifier. J. Opt. Soc. Korea 17, 237–241 (2013)CrossRef
go back to reference Akhlaghi, M., Emami, F., Nozhat, N.: TLBO algorithm assisted for designing plasmonic nano particles based absorption coefficient. J Optoelectron Adv Mater Rapid Commun 8(9–10), 1–4 (2014a) Akhlaghi, M., Emami, F., Nozhat, N.: TLBO algorithm assisted for designing plasmonic nano particles based absorption coefficient. J Optoelectron Adv Mater Rapid Commun 8(9–10), 1–4 (2014a)
go back to reference Akhlaghi, M., Emami, F., Nozhat, N.: Binary TLBO algorithm assisted for designing plasmonic nano bi-pyramids-based absorption coefficient. Modern Opt. 61(13), 1092–1096 (2014b)ADSCrossRef Akhlaghi, M., Emami, F., Nozhat, N.: Binary TLBO algorithm assisted for designing plasmonic nano bi-pyramids-based absorption coefficient. Modern Opt. 61(13), 1092–1096 (2014b)ADSCrossRef
go back to reference Akhlaghi, M., Emami, F., Nozhat, N.: Location effect on gold nano bi-domes based absorption coefficient. Opt. Quant. Electron. 47(7), 1713–1719 (2015a)CrossRef Akhlaghi, M., Emami, F., Nozhat, N.: Location effect on gold nano bi-domes based absorption coefficient. Opt. Quant. Electron. 47(7), 1713–1719 (2015a)CrossRef
go back to reference Akhlaghi, M., Nozhat, N., Emami, F.: Investigating the optical switch using dimer plasmonic nano-rods. IEEE Trans. Nanotechnol. 13(6), 1172–1175 (2014c)ADSCrossRef Akhlaghi, M., Nozhat, N., Emami, F.: Investigating the optical switch using dimer plasmonic nano-rods. IEEE Trans. Nanotechnol. 13(6), 1172–1175 (2014c)ADSCrossRef
go back to reference Akhlaghi, M., Shahmirzaee, H., Enjavi, M.H.: Binary optimization of metallic nano-tube-based absorption coefficient. J. Comput. Electron. 14(2), 486–491 (2015b)CrossRef Akhlaghi, M., Shahmirzaee, H., Enjavi, M.H.: Binary optimization of metallic nano-tube-based absorption coefficient. J. Comput. Electron. 14(2), 486–491 (2015b)CrossRef
go back to reference Akimov, A.V., et al.: Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450(7168), 402–406 (2007)ADSCrossRef Akimov, A.V., et al.: Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450(7168), 402–406 (2007)ADSCrossRef
go back to reference Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)ADSCrossRef Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)ADSCrossRef
go back to reference Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)ADSCrossRef Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)ADSCrossRef
go back to reference Baumert, T., et al.: Femtosecond pulse shaping by an evolutionary algorithm with feedback. Appl. Phy. B: Lasers Opt. 65(6), 779–782 (1997)ADSCrossRef Baumert, T., et al.: Femtosecond pulse shaping by an evolutionary algorithm with feedback. Appl. Phy. B: Lasers Opt. 65(6), 779–782 (1997)ADSCrossRef
go back to reference Becker, J., et al.: The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5(2), 161–167 (2010)CrossRef Becker, J., et al.: The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics 5(2), 161–167 (2010)CrossRef
go back to reference Bharadwaj, P., Deutsch, B., Novotny, L.: Optical antennas. Adv. Opt. Photon. 1(3), 438–483 (2009)CrossRef Bharadwaj, P., Deutsch, B., Novotny, L.: Optical antennas. Adv. Opt. Photon. 1(3), 438–483 (2009)CrossRef
go back to reference Biagioni, P., Huang, J.-S., Hecht, B.: Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 75(2), 024402 (2012)ADSCrossRef Biagioni, P., Huang, J.-S., Hecht, B.: Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 75(2), 024402 (2012)ADSCrossRef
go back to reference Draine, B.T., Flatau, P.J.: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A: 11, 1491–1499 (1994)ADSCrossRef Draine, B.T., Flatau, P.J.: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A: 11, 1491–1499 (1994)ADSCrossRef
go back to reference Emami, F., Akhlaghi, M.: Gain ripple decrement of S-band Raman amplifier. J. Photonics Technology letters. 24, 1349–1352 (2012)ADSCrossRef Emami, F., Akhlaghi, M.: Gain ripple decrement of S-band Raman amplifier. J. Photonics Technology letters. 24, 1349–1352 (2012)ADSCrossRef
go back to reference Eustis, S., El-Sayed, M.A.: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. R. Soc. Chem. 35, 209–217 (2006)CrossRef Eustis, S., El-Sayed, M.A.: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. R. Soc. Chem. 35, 209–217 (2006)CrossRef
go back to reference Forestiere, C., et al.: Particle-swarm optimization of broadband nanoplasmonic arrays. Opt. Lett. 35(2), 133–135 (2010)ADSCrossRef Forestiere, C., et al.: Particle-swarm optimization of broadband nanoplasmonic arrays. Opt. Lett. 35(2), 133–135 (2010)ADSCrossRef
go back to reference Forestiere, C., et al.: Genetically engineered plasmonic nanoarrays. Nano Lett. 12(4), 2037–2044 (2012)ADSCrossRef Forestiere, C., et al.: Genetically engineered plasmonic nanoarrays. Nano Lett. 12(4), 2037–2044 (2012)ADSCrossRef
go back to reference Forestiere, C., Miano, G., Boriskina, S.V., Negro, L.D.: The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays. Opt. Express 17, 9648–9661 (2009)ADSCrossRef Forestiere, C., Miano, G., Boriskina, S.V., Negro, L.D.: The role of nanoparticle shapes and deterministic aperiodicity for the design of nanoplasmonic arrays. Opt. Express 17, 9648–9661 (2009)ADSCrossRef
go back to reference Gallinet, B., Kern, A.M., Martin, O.J.F.: Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach. J. Opt. Soc. Am. A: 27(10), 2261–2271 (2010)ADSCrossRef Gallinet, B., Kern, A.M., Martin, O.J.F.: Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach. J. Opt. Soc. Am. A: 27(10), 2261–2271 (2010)ADSCrossRef
go back to reference Genet, C., Ebbesen, T.W.: Light in tiny holes. Nature photonic 445(7123), 39–46 (2007) Genet, C., Ebbesen, T.W.: Light in tiny holes. Nature photonic 445(7123), 39–46 (2007)
go back to reference Ginzburg, P., et al.: Resonances on-demand for plasmonic nano-particles. Nano Lett. 11(6), 2329–2333 (2011)ADSCrossRef Ginzburg, P., et al.: Resonances on-demand for plasmonic nano-particles. Nano Lett. 11(6), 2329–2333 (2011)ADSCrossRef
go back to reference Guo, Y., et al.: A plasmonic splitter based on slot cavity. Opt. Express 19(15), 13831–13838 (2011)ADSCrossRef Guo, Y., et al.: A plasmonic splitter based on slot cavity. Opt. Express 19(15), 13831–13838 (2011)ADSCrossRef
go back to reference Harrington, R. F.:Field Computation by Moment Method (IEEE Press, 1993) Harrington, R. F.:Field Computation by Moment Method (IEEE Press, 1993)
go back to reference Hosseini, A., Massoud, Y.: Nanoscale surface plasmon based resonator using rectangular geometry. Appl. Phys. Lett. 90(18), 181102 (2007)ADSCrossRef Hosseini, A., Massoud, Y.: Nanoscale surface plasmon based resonator using rectangular geometry. Appl. Phys. Lett. 90(18), 181102 (2007)ADSCrossRef
go back to reference Hu, F., Zhou, Z.: Wavelength filtering and demultiplexing structure based on aperture-coupled plasmonic slot cavities. JOSA B 28(10), 2518–2523 (2011)ADSCrossRef Hu, F., Zhou, Z.: Wavelength filtering and demultiplexing structure based on aperture-coupled plasmonic slot cavities. JOSA B 28(10), 2518–2523 (2011)ADSCrossRef
go back to reference Huang, J.-S., et al.: Impedance matching and emission properties of nanoantennas in an optical nanocircuit. Nano Lett. 9(5), 1897–1902 (2009)ADSCrossRef Huang, J.-S., et al.: Impedance matching and emission properties of nanoantennas in an optical nanocircuit. Nano Lett. 9(5), 1897–1902 (2009)ADSCrossRef
go back to reference Huang, H., Hoorfar, A., Lakhani, S: A comparative study of evolutionary programming, genetic algorithms and particle swarm optimization in antenna design. In: IEEE Antennas and Propagation Society International Symposium. IEEE, 2007 Huang, H., Hoorfar, A., Lakhani, S: A comparative study of evolutionary programming, genetic algorithms and particle swarm optimization in antenna design. In: IEEE Antennas and Propagation Society International Symposium. IEEE, 2007
go back to reference Jin, J.M.: The Finite Element Method in Electromagnetics, 2nd edn, pp. 1–876. Wiley, New York (2002) Jin, J.M.: The Finite Element Method in Electromagnetics, 2nd edn, pp. 1–876. Wiley, New York (2002)
go back to reference Juan, M.L., et al.: Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys. 5(12), 915–919 (2009)CrossRef Juan, M.L., et al.: Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys. 5(12), 915–919 (2009)CrossRef
go back to reference Kern, A.M., Martin, O.J.F.: Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures. J. Opt. Soc. Am. A: 26(4), 732–740 (2009)ADSMathSciNetCrossRef Kern, A.M., Martin, O.J.F.: Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures. J. Opt. Soc. Am. A: 26(4), 732–740 (2009)ADSMathSciNetCrossRef
go back to reference Kessentini, S., et al.: Particle swarm optimization and evolutionary methods for plasmonic biomedical applications. In IEEE Congress of Evolutionary Computation (CEC). IEEE, 2011 Kessentini, S., et al.: Particle swarm optimization and evolutionary methods for plasmonic biomedical applications. In IEEE Congress of Evolutionary Computation (CEC). IEEE, 2011
go back to reference Kinkhabwala, A., et al.: Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photon. 3(11), 654–657 (2009)ADSCrossRef Kinkhabwala, A., et al.: Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna. Nat. Photon. 3(11), 654–657 (2009)ADSCrossRef
go back to reference Kolesov, R., et al.: Wave–particle duality of single surface plasmon polaritons. Nat. Phys. 5(7), 470–474 (2009)CrossRef Kolesov, R., et al.: Wave–particle duality of single surface plasmon polaritons. Nat. Phys. 5(7), 470–474 (2009)CrossRef
go back to reference Koushkaki, H.R., Akhlaghi, M.: Investigating the optical nand gate using plasmonic nano-spheres. Opt. Quant. Electron. 47(11), 3637–3645 (2015a)CrossRef Koushkaki, H.R., Akhlaghi, M.: Investigating the optical nand gate using plasmonic nano-spheres. Opt. Quant. Electron. 47(11), 3637–3645 (2015a)CrossRef
go back to reference Koushkaki, H.R., Akhlaghi, M.: Investigating the optical nand gate using plasmonic nano-spheres. Opt. Quant. Electron. 47(11), 3637–3645 (2015b)CrossRef Koushkaki, H.R., Akhlaghi, M.: Investigating the optical nand gate using plasmonic nano-spheres. Opt. Quant. Electron. 47(11), 3637–3645 (2015b)CrossRef
go back to reference Koushkaki, H.R., Akhlaghi, M., Balvasi, M.: Binary optimization of plasmonic nano bi-domes to design an optical clocking. Opt. Quant. Electron. 47(11), 3589–3597 (2015)CrossRef Koushkaki, H.R., Akhlaghi, M., Balvasi, M.: Binary optimization of plasmonic nano bi-domes to design an optical clocking. Opt. Quant. Electron. 47(11), 3589–3597 (2015)CrossRef
go back to reference Liu, Z., et al.: Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11(3), 1111–1116 (2011)ADSCrossRef Liu, Z., et al.: Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett. 11(3), 1111–1116 (2011)ADSCrossRef
go back to reference Loke, V.L.Y., et al.: Comparison between discrete dipole approximation and other modelling methods for the plasmonic response of gold nanospheres. Applied Physics B 115(2), 237–246 (2014)CrossRef Loke, V.L.Y., et al.: Comparison between discrete dipole approximation and other modelling methods for the plasmonic response of gold nanospheres. Applied Physics B 115(2), 237–246 (2014)CrossRef
go back to reference Lu, H., et al.: Nanoplasmonic triple-wavelength demultiplexers in two-dimensional metallic waveguides. Appl. Phys. B 103(4), 877–881 (2011)ADSCrossRef Lu, H., et al.: Nanoplasmonic triple-wavelength demultiplexers in two-dimensional metallic waveguides. Appl. Phys. B 103(4), 877–881 (2011)ADSCrossRef
go back to reference Min, C., Veronis, G.: Absorption switches in metal-dielectric-metal plasmonic waveguides. Opt. Express 17(13), 10757–10766 (2009)ADSCrossRef Min, C., Veronis, G.: Absorption switches in metal-dielectric-metal plasmonic waveguides. Opt. Express 17(13), 10757–10766 (2009)ADSCrossRef
go back to reference Noual, A., et al.: Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths. New J. Phys. 11(10), 103020 (2009)ADSCrossRef Noual, A., et al.: Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths. New J. Phys. 11(10), 103020 (2009)ADSCrossRef
go back to reference Pantoja, M.F., Bretones, A.R., Martin, R.G.: Benchmark antenna problems for evolutionary optimization algorithms. IEEE Trans. Antennas Propag. 55(4), 1111–1121 (2007)ADSCrossRef Pantoja, M.F., Bretones, A.R., Martin, R.G.: Benchmark antenna problems for evolutionary optimization algorithms. IEEE Trans. Antennas Propag. 55(4), 1111–1121 (2007)ADSCrossRef
go back to reference Taboada, J.M., Rivero, J., Obelleiro, F., Araújo, M.G., Landesa, L.: Method-of-moments formulation for the analysis of plasmonic nano-optical antennas. J. Opt. Soc. Am. A: 28(7), 1341–1348 (2011)ADSCrossRef Taboada, J.M., Rivero, J., Obelleiro, F., Araújo, M.G., Landesa, L.: Method-of-moments formulation for the analysis of plasmonic nano-optical antennas. J. Opt. Soc. Am. A: 28(7), 1341–1348 (2011)ADSCrossRef
go back to reference Taflove, A., Brodwin, M.E.: Numerical solution of steady state electromagnetic scattering problems using the time dependent Maxwell’s equations. IEEE Trans. Microw. Theory Tech. 23(8), 623–630 (1975)ADSCrossRef Taflove, A., Brodwin, M.E.: Numerical solution of steady state electromagnetic scattering problems using the time dependent Maxwell’s equations. IEEE Trans. Microw. Theory Tech. 23(8), 623–630 (1975)ADSCrossRef
go back to reference Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite Difference Time Domain Method, 2nd edn. Artech House, ANDwood (2000)MATH Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite Difference Time Domain Method, 2nd edn. Artech House, ANDwood (2000)MATH
go back to reference Tai, C.-Y., Chang, S.H., Chiu, T.C.: Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays. IEEE Photon. Technol. Lett. 19(19), 1448–1450 (2007)ADSCrossRef Tai, C.-Y., Chang, S.H., Chiu, T.C.: Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays. IEEE Photon. Technol. Lett. 19(19), 1448–1450 (2007)ADSCrossRef
go back to reference Weiland, T.: A discretization method for the solution of Maxwell’s equations for six-component fields. Arch. Elektron. Übertragungstech. 31, 116–120 (1977)ADS Weiland, T.: A discretization method for the solution of Maxwell’s equations for six-component fields. Arch. Elektron. Übertragungstech. 31, 116–120 (1977)ADS
go back to reference Wen, K., et al.: Wavelength demultiplexing structure based on a plasmonic metal–insulator–metal waveguide. J. Opt. 14(7), 075001 (2012)ADSCrossRef Wen, K., et al.: Wavelength demultiplexing structure based on a plasmonic metal–insulator–metal waveguide. J. Opt. 14(7), 075001 (2012)ADSCrossRef
go back to reference Xiao, S., Liu, L.: Resonator narrow band stop filters in a plasmon-polariton metal. Opt. Express 14, 2932–2937 (2006)ADSCrossRef Xiao, S., Liu, L.: Resonator narrow band stop filters in a plasmon-polariton metal. Opt. Express 14, 2932–2937 (2006)ADSCrossRef
go back to reference Zeng, S., Yu, X., Law, W.-C., Zhang, Y., Hu, R., Dinh, X.-Q., Ho, H.-P., Yong, K.-T.: Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sens. Actuators B: Chem. 176, 1128 (2013). doi:10.1016/j.snb.2012.09.073 CrossRef Zeng, S., Yu, X., Law, W.-C., Zhang, Y., Hu, R., Dinh, X.-Q., Ho, H.-P., Yong, K.-T.: Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sens. Actuators B: Chem. 176, 1128 (2013). doi:10.​1016/​j.​snb.​2012.​09.​073 CrossRef
go back to reference Zhang, W., et al.: Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett. 10(3), 1006–1011 (2010)ADSCrossRef Zhang, W., et al.: Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Nano Lett. 10(3), 1006–1011 (2010)ADSCrossRef
go back to reference Zhang, Q., Huang, X.G., Lin, X.S., Tao, J., Jin, X.P.: A subwavelength coupler-type MIM optical filter. Opt. Express 17(9), 7549–7554 (2009)ADSCrossRef Zhang, Q., Huang, X.G., Lin, X.S., Tao, J., Jin, X.P.: A subwavelength coupler-type MIM optical filter. Opt. Express 17(9), 7549–7554 (2009)ADSCrossRef
go back to reference Zhu, J.H., Huang, X.G., Mei, X.: Improved models for plasmonic waveguide splitters and demultiplexers at the telecommunication wavelengths. IEEE Trans. Nanotechnol. 10(5), 1166–1171 (2011)ADSCrossRef Zhu, J.H., Huang, X.G., Mei, X.: Improved models for plasmonic waveguide splitters and demultiplexers at the telecommunication wavelengths. IEEE Trans. Nanotechnol. 10(5), 1166–1171 (2011)ADSCrossRef
Metadata
Title
Combination of binary particle swarm optimization algorithm and discrete dipole approximation method to investigate the plasmonic circuit-based coherent perfect absorption filter
Authors
Mehdi Mohamadrezaee
Mehdi Shirali
Majid Akhlaghi
Milad Kaboli
Publication date
01-03-2017
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 3/2017
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-017-0940-8

Other articles of this Issue 3/2017

Optical and Quantum Electronics 3/2017 Go to the issue