Skip to main content
Top
Published in: Acta Mechanica 10/2023

21-07-2023 | Original Paper

Combination of the guide-weight criterion and BESO method for fast and stable topology optimization of two-dimensional continuum structures

Authors: Jingping Liao, Gao Huang, Guoyu Zuo, Xuxiao Fan

Published in: Acta Mechanica | Issue 10/2023

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This paper proposes a new method for topology optimization of two-dimensional (2D) continuum structures by combining the features of the guide-weight criterion and the conventional bidirectional evolutionary structural optimization (BESO) method. The distribution of material is dominated by guide weights instead of sensitivity numbers. Benefitting from high computational efficiency and the existence of intermediate design variables of the guide-weight criterion, this new algorithm further improves the convergence speed and stability of the objective function. Several typical topology optimization examples of 2D continuum structures are used to demonstrate the efficiency of the proposed method. Numerical results show that convergent, mesh-independent and nearly black-and-white solutions can be achieved and that the proposed method is more stable and efficient than the conventional BESO method.
Literature
1.
go back to reference Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49, 1–38 (2014)MathSciNet Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49, 1–38 (2014)MathSciNet
2.
go back to reference Roiné, T., Montemurro, M., Pailhès, J.: Stress-based topology optimization through non-uniform rational basis spline hyper-surface. Mech. Adv. Mater. Struc. 29, 3387–3407 (2022) Roiné, T., Montemurro, M., Pailhès, J.: Stress-based topology optimization through non-uniform rational basis spline hyper-surface. Mech. Adv. Mater. Struc. 29, 3387–3407 (2022)
3.
go back to reference Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)MathSciNetMATH Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)MathSciNetMATH
4.
go back to reference Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989) Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989)
5.
go back to reference Zhou, M., Rozvany, G.I.N.: The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89, 309–336 (1991) Zhou, M., Rozvany, G.I.N.: The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89, 309–336 (1991)
6.
go back to reference Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49, 885–896 (1993) Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49, 885–896 (1993)
7.
go back to reference Querin, O.M., Steven, G.P., Xie, Y.M.: Evolutionary structural optimization (ESO) using a bidirectional algorithm. Eng. Comput. 15, 1031–1048 (1998)MATH Querin, O.M., Steven, G.P., Xie, Y.M.: Evolutionary structural optimization (ESO) using a bidirectional algorithm. Eng. Comput. 15, 1031–1048 (1998)MATH
8.
go back to reference Yang, X.Y., Xie, Y.M., Steven, G.P., Querin, O.M.: Bidirectional evolutionary method for stiffness optimization. AIAA J. 37, 1483–1488 (1999) Yang, X.Y., Xie, Y.M., Steven, G.P., Querin, O.M.: Bidirectional evolutionary method for stiffness optimization. AIAA J. 37, 1483–1488 (1999)
9.
go back to reference Wang, M.Y., Wang, X.M., Guo, D.M.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003)MathSciNetMATH Wang, M.Y., Wang, X.M., Guo, D.M.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003)MathSciNetMATH
10.
go back to reference Guo, X., Zhang, W.S., Zhong, W.L.: Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014) Guo, X., Zhang, W.S., Zhong, W.L.: Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014)
11.
go back to reference Huang, X., Xie, Y.M.: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem. Anal. Des. 43, 1039–1049 (2007) Huang, X., Xie, Y.M.: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem. Anal. Des. 43, 1039–1049 (2007)
12.
go back to reference Xia, L., Xia, Q., Huang, X., Xie, Y.M.: Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. Arch. Comput. Methods Eng. 25, 437–478 (2018)MathSciNetMATH Xia, L., Xia, Q., Huang, X., Xie, Y.M.: Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. Arch. Comput. Methods Eng. 25, 437–478 (2018)MathSciNetMATH
13.
go back to reference Zhao, F.: A nodal variable ESO (BESO) method for structural topology optimization. Finite Elem. Anal. Des. 86, 34–40 (2014)MathSciNet Zhao, F.: A nodal variable ESO (BESO) method for structural topology optimization. Finite Elem. Anal. Des. 86, 34–40 (2014)MathSciNet
14.
go back to reference Ghabraie, K.: An improved soft-kill BESO algorithm for optimal distribution of single or multiple material phases. Struct. Multidiscip. Optim. 52, 773–790 (2015)MathSciNet Ghabraie, K.: An improved soft-kill BESO algorithm for optimal distribution of single or multiple material phases. Struct. Multidiscip. Optim. 52, 773–790 (2015)MathSciNet
15.
go back to reference Lin, H.D., Xu, A., Misra, A., Zhao, R.H.: An ANSYS APDL code for topology optimization of structures with multi-constraints using the BESO method with dynamic evolution rate (DER-BESO). Struct. Multidiscip. Optim. 62, 2229–2254 (2020)MathSciNet Lin, H.D., Xu, A., Misra, A., Zhao, R.H.: An ANSYS APDL code for topology optimization of structures with multi-constraints using the BESO method with dynamic evolution rate (DER-BESO). Struct. Multidiscip. Optim. 62, 2229–2254 (2020)MathSciNet
16.
go back to reference Zhou, E.L., Wu, Y., Lin, X.Y., Li, Q.Q., Xiang, Y.: A normalization strategy for BESO-based structural optimization and its application to frequency response suppression. Acta Mech. 232, 1307–1327 (2021)MathSciNetMATH Zhou, E.L., Wu, Y., Lin, X.Y., Li, Q.Q., Xiang, Y.: A normalization strategy for BESO-based structural optimization and its application to frequency response suppression. Acta Mech. 232, 1307–1327 (2021)MathSciNetMATH
17.
go back to reference Huang, X., Xie, Y.M.: Evolutionary topology optimization of continuum structures: methods and applications. Wiley, Chichester (2010)MATH Huang, X., Xie, Y.M.: Evolutionary topology optimization of continuum structures: methods and applications. Wiley, Chichester (2010)MATH
18.
go back to reference Zheng, Y.F., Wang, Y.J., Lu, X., Liao, Z.Y., Qu, J.P.: Evolutionary topology optimization for mechanical metamaterials with auxetic property. Int. J. Mech. Sci. 179, 105638 (2020) Zheng, Y.F., Wang, Y.J., Lu, X., Liao, Z.Y., Qu, J.P.: Evolutionary topology optimization for mechanical metamaterials with auxetic property. Int. J. Mech. Sci. 179, 105638 (2020)
19.
go back to reference Huang, X., Li, Y., Zhou, S.W., Xie, Y.M.: Topology optimization of compliant mechanisms with desired structural stiffness. Eng. Struct. 79, 13–21 (2014) Huang, X., Li, Y., Zhou, S.W., Xie, Y.M.: Topology optimization of compliant mechanisms with desired structural stiffness. Eng. Struct. 79, 13–21 (2014)
20.
go back to reference Zuo, Z.H., Xie, Y.M., Huang, X.: Combining genetic algorithms with BESO for topology optimization. Struct. Multidiscip. Optim. 38, 511–523 (2009)MATH Zuo, Z.H., Xie, Y.M., Huang, X.: Combining genetic algorithms with BESO for topology optimization. Struct. Multidiscip. Optim. 38, 511–523 (2009)MATH
21.
go back to reference He, Y., Cai, K., Zhao, Z.L., Xie, Y.M.: Stochastic approaches to generating diverse and competitive structural designs in topology optimization. Finite Elem. Anal. Des. 173, 103399 (2020)MathSciNet He, Y., Cai, K., Zhao, Z.L., Xie, Y.M.: Stochastic approaches to generating diverse and competitive structural designs in topology optimization. Finite Elem. Anal. Des. 173, 103399 (2020)MathSciNet
22.
go back to reference Zhu, B.L., Zhang, X.M., Fatikow, S., Wang, N.F.: Bi-directional evolutionary level set method for topology optimization. Eng. Optim. 47, 390–406 (2015)MathSciNet Zhu, B.L., Zhang, X.M., Fatikow, S., Wang, N.F.: Bi-directional evolutionary level set method for topology optimization. Eng. Optim. 47, 390–406 (2015)MathSciNet
23.
go back to reference Xia, Q., Shi, T.L., Xia, L.: Topology optimization for heat conduction by combining level set method and BESO method. Int. J. Heat Mass Trans. 127, 200–209 (2018) Xia, Q., Shi, T.L., Xia, L.: Topology optimization for heat conduction by combining level set method and BESO method. Int. J. Heat Mass Trans. 127, 200–209 (2018)
24.
go back to reference Gao, J.W., Song, B.W., Mao, Z.Y.: Combination of the phase filed method and BESO method for topology optimization. Struct. Multidiscip. Optim. 61, 225–237 (2020)MathSciNet Gao, J.W., Song, B.W., Mao, Z.Y.: Combination of the phase filed method and BESO method for topology optimization. Struct. Multidiscip. Optim. 61, 225–237 (2020)MathSciNet
25.
go back to reference Radman, A.: Combination of BESO and harmony search for topology optimization of microstructures for material. App. Math. Model. 90, 650–661 (2021)MathSciNetMATH Radman, A.: Combination of BESO and harmony search for topology optimization of microstructures for material. App. Math. Model. 90, 650–661 (2021)MathSciNetMATH
26.
go back to reference Chen, S.X., Ye, S.H.: Criterion method for the optimal design of antenna structure. Acta Mech. Solida Sin. 4, 482–498 (1984) Chen, S.X., Ye, S.H.: Criterion method for the optimal design of antenna structure. Acta Mech. Solida Sin. 4, 482–498 (1984)
27.
go back to reference Chen, S.X., Ye, S.H.: A guide-weight criterion method for the optimal design of antenna structures. Eng. Optim. 10, 199–216 (1986) Chen, S.X., Ye, S.H.: A guide-weight criterion method for the optimal design of antenna structures. Eng. Optim. 10, 199–216 (1986)
28.
go back to reference Hong, J., Li, B.T., Chen, Y.B., Peng, H.: Study on the optimal design of engine cylinder head by parametric structure characterization with weight distribution criterion. J. Mech. Sci. Technol. 25, 2607–2614 (2011) Hong, J., Li, B.T., Chen, Y.B., Peng, H.: Study on the optimal design of engine cylinder head by parametric structure characterization with weight distribution criterion. J. Mech. Sci. Technol. 25, 2607–2614 (2011)
29.
go back to reference Liu, X.J., Li, Z.D., Wang, L.P., Wang, J.S.: Solving topology optimization problems by the Guide-Weight method. Front. Mech. Eng. 6, 136–150 (2011) Liu, X.J., Li, Z.D., Wang, L.P., Wang, J.S.: Solving topology optimization problems by the Guide-Weight method. Front. Mech. Eng. 6, 136–150 (2011)
30.
go back to reference Liu, X.J., Li, Z.D., Chen, X.: A new solution for topology optimization problems with multiple loads: the guide-weight method. Sci. China Tech. Sci. 54, 1505–1514 (2011)MATH Liu, X.J., Li, Z.D., Chen, X.: A new solution for topology optimization problems with multiple loads: the guide-weight method. Sci. China Tech. Sci. 54, 1505–1514 (2011)MATH
31.
go back to reference Xu, H.Y., Guan, L.W., Chen, X., Wang, L.P.: Guide-Weight method for topology optimization of continuum structures including body forces. Finite Elem. Anal. Des. 75, 38–49 (2013)MathSciNetMATH Xu, H.Y., Guan, L.W., Chen, X., Wang, L.P.: Guide-Weight method for topology optimization of continuum structures including body forces. Finite Elem. Anal. Des. 75, 38–49 (2013)MathSciNetMATH
32.
go back to reference Liao, J.P., Huang, G., Chen, X.C., Yu, Z.G., Huang, Q.: A guide-weight criterion-based topology optimization method for maximizing the fundamental eigenfrequency of the continuum structure. Struct. Multidiscip. Optim. 64, 2135–2148 (2021)MathSciNet Liao, J.P., Huang, G., Chen, X.C., Yu, Z.G., Huang, Q.: A guide-weight criterion-based topology optimization method for maximizing the fundamental eigenfrequency of the continuum structure. Struct. Multidiscip. Optim. 64, 2135–2148 (2021)MathSciNet
33.
go back to reference Cui, M.T., Wang, J., Li, P.J., Pan, M.: Topology optimization of plates with constrained layer damping treatments using a modified guide-weight method. J. Vib. Eng. Technol. 1–18 (2021) Cui, M.T., Wang, J., Li, P.J., Pan, M.: Topology optimization of plates with constrained layer damping treatments using a modified guide-weight method. J. Vib. Eng. Technol. 1–18 (2021)
34.
go back to reference Querin, O.M., Steven, G.P., Xie, Y.M.: Evolutionary structural optimization using an additive algorithm. Finite Elem. Anal. Des. 34, 291–308 (2000)MATH Querin, O.M., Steven, G.P., Xie, Y.M.: Evolutionary structural optimization using an additive algorithm. Finite Elem. Anal. Des. 34, 291–308 (2000)MATH
35.
go back to reference Da, D.C., Xia, L., Li, G.Y., Huang, X.D.: Evolutionary topology optimization of continuum structures with smooth boundary representation. Struct. Multidiscip. Optim. 57, 2143–2159 (2018)MathSciNet Da, D.C., Xia, L., Li, G.Y., Huang, X.D.: Evolutionary topology optimization of continuum structures with smooth boundary representation. Struct. Multidiscip. Optim. 57, 2143–2159 (2018)MathSciNet
36.
go back to reference Huang, X.: Smooth topological design of structures using the floating projection. Eng. Struct. 208, 110330 (2020) Huang, X.: Smooth topological design of structures using the floating projection. Eng. Struct. 208, 110330 (2020)
37.
go back to reference Montemurro, M.: On the structural stiffness maximisation of anisotropic continua under inhomogeneous Neumann-Dirichlet boundary conditions. Compos. Struct. 287, 115289 (2022) Montemurro, M.: On the structural stiffness maximisation of anisotropic continua under inhomogeneous Neumann-Dirichlet boundary conditions. Compos. Struct. 287, 115289 (2022)
38.
go back to reference Montemurro, M., Rodriguez, T., Pailhès, J., Texier, P.L.: On multi-material topology optimisation problems under inhomogeneous Neumann-Dirichlet boundary conditions. Finite Elem. Anal. Des. 214, 103867 (2023)MathSciNet Montemurro, M., Rodriguez, T., Pailhès, J., Texier, P.L.: On multi-material topology optimisation problems under inhomogeneous Neumann-Dirichlet boundary conditions. Finite Elem. Anal. Des. 214, 103867 (2023)MathSciNet
39.
go back to reference Bendsøe, M.P., Sigmund, O.: Topology optimization: theory methods and applications. Springer, Berlin (2003)MATH Bendsøe, M.P., Sigmund, O.: Topology optimization: theory methods and applications. Springer, Berlin (2003)MATH
40.
go back to reference Pedersen, N.L.: Maximization of eigenvalues using topology optimization. Struct. Multidiscip. Optim. 20, 2–11 (2000) Pedersen, N.L.: Maximization of eigenvalues using topology optimization. Struct. Multidiscip. Optim. 20, 2–11 (2000)
41.
go back to reference Huang, X., Zuo, Z.H., Xie, Y.M.: Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput. Struct. 88, 357–364 (2010) Huang, X., Zuo, Z.H., Xie, Y.M.: Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput. Struct. 88, 357–364 (2010)
42.
go back to reference Costa, G., Montemurro, M.: Eigen-frequencies and harmonic responses in topology optimisation: a CAD-compatible algorithm. Eng. Struct. 214, 110602 (2020) Costa, G., Montemurro, M.: Eigen-frequencies and harmonic responses in topology optimisation: a CAD-compatible algorithm. Eng. Struct. 214, 110602 (2020)
43.
go back to reference Li, Y., Huang, X., Xie, Y.M., Zhou, S.W.: Evolutionary topology optimization of hinge-free compliant mechanisms. Int. J. Mech. Sci. 86, 69–75 (2014) Li, Y., Huang, X., Xie, Y.M., Zhou, S.W.: Evolutionary topology optimization of hinge-free compliant mechanisms. Int. J. Mech. Sci. 86, 69–75 (2014)
44.
go back to reference Xu, S.L., Cai, Y.W., Cheng, G.D.: Volume preserving nonlinear density filter based on heaviside functions. Struct. Multidiscip. Optim. 41, 495–505 (2010)MathSciNetMATH Xu, S.L., Cai, Y.W., Cheng, G.D.: Volume preserving nonlinear density filter based on heaviside functions. Struct. Multidiscip. Optim. 41, 495–505 (2010)MathSciNetMATH
45.
go back to reference Wang, F.W., Lazarov, B.S., Sigmund, O.: On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim. 43, 767–784 (2011)MATH Wang, F.W., Lazarov, B.S., Sigmund, O.: On projection methods, convergence and robust formulations in topology optimization. Struct. Multidiscip. Optim. 43, 767–784 (2011)MATH
46.
go back to reference Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 33, 401–424 (2007) Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 33, 401–424 (2007)
Metadata
Title
Combination of the guide-weight criterion and BESO method for fast and stable topology optimization of two-dimensional continuum structures
Authors
Jingping Liao
Gao Huang
Guoyu Zuo
Xuxiao Fan
Publication date
21-07-2023
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 10/2023
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-023-03653-9

Other articles of this Issue 10/2023

Acta Mechanica 10/2023 Go to the issue

Premium Partners